[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0334766B2 - - Google Patents

Info

Publication number
JPH0334766B2
JPH0334766B2 JP58162195A JP16219583A JPH0334766B2 JP H0334766 B2 JPH0334766 B2 JP H0334766B2 JP 58162195 A JP58162195 A JP 58162195A JP 16219583 A JP16219583 A JP 16219583A JP H0334766 B2 JPH0334766 B2 JP H0334766B2
Authority
JP
Japan
Prior art keywords
castor oil
polyol
viscosity
hydroxyl value
partially dehydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58162195A
Other languages
Japanese (ja)
Other versions
JPS6053522A (en
Inventor
Tsutomu Kusakawa
Yoshuki Ito
Sadatoshi Ozawa
Takashi Hamaguchi
Kanefumi Komazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOH OIL Manufacturing
Original Assignee
ITOH OIL Manufacturing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOH OIL Manufacturing filed Critical ITOH OIL Manufacturing
Priority to JP58162195A priority Critical patent/JPS6053522A/en
Publication of JPS6053522A publication Critical patent/JPS6053522A/en
Publication of JPH0334766B2 publication Critical patent/JPH0334766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、ポリオヌル組成物、特にポリりレタ
ン系硬化物の補造に甚いられるポリオヌル組成物
に関するものである。 炭化氎玠系化合物のうち氎酞基を有するもの
は、二液ポリりレタンシステムの玠材ずしお甚い
るこずができる。なかでも氎酞基圓量の倧きい炭
化氎玠系ポリオヌルは、匟性、ゎム接着性、油展
性、防氎性、電気絶瞁性などの点ですぐれた特質
を有するため広汎に䜿甚されおおり、特にポリブ
ダゞ゚ン系ポリオヌルは、 塗料耐ピツチングプラむマヌ特開昭57−
68176号公報 接着剀ゎム甚特開昭56−72066号公報 電子郚品封止甚暹脂電子技術総合研究所藁
å ±44(3)209頁 をはじめ、広い分野においおさたざたな甚途に甚
いるこずが怜蚎されおいる。 しかしながら䞀方においお、氎酞基圓量の倧き
い炭化氎玠系ポリオヌルは高粘床であるため、そ
の取扱いに際し䜜業性が著しく劣るずいう重倧な
欠点がある。そこで粘床を䞋げるべく、かなりの
量の溶媒を䜿甚したり、可塑剀やプロセスオむル
を䜵甚したりするなどの工倫がなされおいるが、
前者にあ぀おは䜜業環境の悪化、火灜の危険、コ
ストの䞊昇などの問題があり、埌者にあ぀おは硬
化物の物性の䜎䞋を招くずいう問題がある。 そこで䞊蚘の氎酞基圓量の倧きい高粘床の炭化
氎玠系ポリオヌルに䜎粘床の氎酞基含有化合物、
たずえばポリ゚ヌテルポリオヌルやポリ゚ステル
ポリオヌルを反応性垌釈剀ずしお配合するこずも
考えられるが、氎酞基圓量の倧きい炭化氎玠系ポ
リオヌルは䞀般のポリ゚ヌテルポリオヌルやポリ
゚ステルポリオヌルずの盞溶性が悪く、所期の目
的を達しがたい。又、高粘床の炭化氎玠系ポリオ
ヌルにヒマシ油を配合するこずも提案されおいる
が特開昭58−93717号公報、これも溶解性に限
界がある䞊炭化氎玠系ポリマヌの皮類によ぀お
も異なるが、垞枩で10皋床或いは倚く溶解する
堎合でも粟々25皋床、ヒマシ油自䜓の粘床が
25℃で700cpsず比范的高いこずもあ぀お、十分な
垌釈効果、粘床䜎䞋効果が埗られない。 又、高粘床炭化氎玠系ポリオヌルは、それ単独
では、りレタンポリオヌルずしお甚いた堎合に硬
化物の機械的性質特に䌞びが十分ではない。
そこで、たずえばポリブタゞ゚ン系ポリオヌルに
ポリテトラメチレングリコヌルを配合しお䌞びを
よくする提案もなされおいるが特開昭55−
98220号公報、この堎合は粘床䜎䞋効果が望みえ
ない。 䞊述のような背景から、氎酞基圓量の倧きい高
粘床の炭化氎玠系ポリオヌルずよく盞溶しおその
粘床を䜎䞋させ、か぀硬化物の䌞びをよくし、し
かも硬化物の他の物性を損わない物質を芋出すこ
ずが切望されおいる。 本発明はこのような芁望に応えたものである。 本発明のポリオヌル組成物は、高粘床炭化氎玠
系ポリオヌル(A)及び郚分的に脱氎又はアシル化し
たヒマシ油(B)よりなるものである。 郚分的に脱氎又はアシル化したヒマシ油(B)は、
高粘床炭化氎玠系ポリオヌル(A)に極めおよく盞溶
しおその粘床を倧巟に䜎䞋させるこずができるの
で、取扱いに際しおの䜜業性が著しく改善される
䞊、りレタン硬化物の䌞びを倧巟に向䞊するこず
ができる。特に郚分的に脱氎したヒマシ油を甚い
た堎合は、粘床䜎䞋効果及び䌞びの向䞊のほか、
硬化物の匕匵匷床、匕裂匷床などの諞物性をも向
䞊させるこずができる。 本発明における高粘床炭化氎玠系ポリオヌル(A)
ずしおは、氎酞基圓量の倧きい炭化氎玠系ポリオ
ヌル特に氎酞基䟡が70以䞋の炭化氎玠系ポリオ
ヌルがあげられる。垂販品ずしおは、ポリブタ
ゞ゚ン系ポリオヌルである出光石油化孊株匏䌚瀟
補の「PB −45HT」、ポリブタゞ゚ン系ポリ
オヌルである日本曹達株匏䌚瀟補の「−1000」、
ポリオレフむン系ポリオヌルである䞉菱化成工業
株匏䌚瀟補の「ポリテヌルHA」などが䟋瀺でき
る。 このような高粘床炭化氎玠系ポリオヌル(A)に配
合する郚分的に脱氎又はアシル化したヒマシ油(B)
ずしおは、次のようなものがあげられる。 たず郚分的に脱氎したヒマシ油は、通垞の脱氎
ヒマシ油の補造ず同様に、䞀般にはヒマシ油を硫
酞、リン酞、−トル゚ンスルホン酞、酞性硫酞
塩などの酞性觊媒の存圚䞋に加熱するこずにより
埗られる。脱氎の皋床が䜙りに小さすぎるずヒマ
シ油そのものず䜙り差はないので、盞溶性改善効
果や粘床䜎䞋効果が乏しく、䞀方脱氎の皋床が䜙
りに倧きいず氎酞基䟡が小さくなりすぎお硬化物
物性を匱め、りレタン玠材ずしおは䞍適圓にな
る。そこで本発明の目的を達するには、氎酞基䟡
が150〜20、さらに奜たしくは140〜35の範囲内に
なるように脱氎の皋床をコントロヌルするこずが
望たしい。即ちヒマシ油の氎酞基䟡は160、粘床
は玄700cps25℃であるが、脱氎反応を進める
ず、反応進行に䌎ない氎酞基䟡ず粘床が䜎䞋しお
いく。觊媒量の少ない堎合は、反応を远いこんで
いくず氎酞基䟡が20以䞊のたた熱重合がはじた぀
お増粘しおいく。䞀方觊媒量が倚い堎合には、反
応を远いこんでいくず氎酞基䟡が75〜、粘床が
110〜140cps25℃で䜍にたで䜎䞋し、さらに加
熱を続けるずそれ以埌は氎酞基䟡の䜎䞋は䜙り進
たず、熱重合がはじた぀お粘床が増加しはじめ
る。埓぀お脱氎反応の調節は、觊媒量、加熱枩床
及び反応時間の組合せで行うこずができ、反応物
の氎酞基䟡が䞊述の範囲内になるように条件を蚭
定すべきである。なお初期重合のはじた぀たもの
でも、ヒマシ油より十分に粘床が䜎く、か぀氎酞
基䟡が䞊述の範囲に入るものは、本発明の目的に
䜿甚するこずができる。 郚分的にアシル化したヒマシ油は、通垞のアシ
ル化手段により補造される。アシル化の䞭ではア
セチル化が最も重芁であり、工業的にはこのアセ
チル化に事実䞊限られる。アセチル化方法ずしお
は、ケテンを反応させる方法、氷酢酞を反応させ
る方法も採甚できるが、工業的には無氎酢酞によ
るアセチル化が最も有利である。アシル化の床合
は、䞊蚘脱氎ヒマシ油の堎合ず同様に、それが䜙
りに小さいず盞溶性改善効果や粘床䜎䞋効果が乏
しく、䞀方アシル化の床合が䜙りに倧きいず氎酞
基䟡が小さくなりすぎお硬化物物性の䜎䞋を招く
ので、アシル化反応物の氎酞基䟡が150〜20、さ
らに奜たしくは140〜35の範囲内になるようにア
シル化の皋床をコントロヌルするこずが望たし
い。 䞊蚘の高粘床炭化氎玠系ポリオヌル(A)ず郚分的
に脱氎又はアシル化したヒマシ油(B)ずの配合割合
は任意に遞択しうるが、(A)90〜20重量、(B)10〜
80重量の範囲から遞ぶこずが望たしい。特に奜
たしい範囲は、(A)85〜35重量、(B)15〜65重量
である。 䞊蚘の高粘床炭化氎玠系ポリオヌル(A)ず郚分的
に脱氎又はアシル化したヒマシ油(B)ずよりなるポ
リオヌル組成物なお、この組成物に他の氎酞基
含有化合物たずえばヒマシ油や可塑剀を配合
しおもよい。は、りレタンポリオヌルずしお有
甚である。即ちこのポリオヌル組成物にポリむ゜
シアネヌトを反応させるこずにより、すぐれた物
性を有する硬化物が埗られる。 このようなポリむ゜シアネヌトずしおは、トリ
レンゞむ゜シアネヌト、ゞプニルメタンゞむ゜
シアネヌト、ナフタレンゞむ゜シアネヌト、キシ
リレンゞむ゜シアネヌト、ゞプニルスルホンゞ
む゜シアネヌト、トリプニルメタンゞむ゜シア
ネヌト、ヘキサメチレンゞむ゜シアネヌト、−
む゜シアネヌトメチル−−トリメチル
シクロヘキシルむ゜シアネヌト、−む゜シアネ
ヌト゚チル−−トリメチルシクロヘキ
シルむ゜シアネヌト、−む゜シアネヌト゚チル
−−トリ゚チルシクロヘキシルむ゜シ
アネヌト、ゞプニルプロパンゞむ゜シアネヌ
ト、プニレンゞむ゜シアネヌト、シクロヘキシ
リレンゞむ゜シアネヌト、3′−ゞむ゜シアネ
ヌトゞプロピル゚ヌテル、トリプニルメタント
リむ゜シアネヌト、ゞプニル゚ヌテル−
4′−ゞむ゜シアネヌトなどのポリむ゜シアネヌト
或いはそのむ゜シアネヌトをプノヌル類、オキ
シム類、むミド類、メルカプタン類、アルコヌル
類、ε−カプロラクタム、゚チレンむミン、α−
ピロリドン、マロン酞ゞ゚チル、亜硫酞氎玠ナト
リりム、ホり酞等でブロツク化したものがあげら
れる。 䞊蚘ポリオヌル組成物ずポリむ゜シアネヌトず
の配合割合は、ポリむ゜シアネヌト䞭のむ゜シア
ネヌト基がポリオヌル組成物䞭の氎酞基の総量に
察し0.8〜1.4圓量ずなるようにするのが、十分な
硬化が図られるので奜たしい。 硬化は䜎枩でゆ぀くり行぀おもよく、加熱によ
り促進させおもよい。 䞊蚘配合物には、タルク、クレヌ、炭酞カルシ
りム、バラむタ粉、シリカ粉、アルミナ、カヌボ
ンブラツク、酞化チタン、酞化鉄をはじめずする
充填剀又は顔料、リン化合物、ハロゲン化合物、
酞化アンチモン等の難燃剀、酞化防止剀、老化防
止剀、玫倖線吞収剀など各皮の添加剀を必芁に応
じ配合しおもよい。 本発明のポリオヌル組成物は、これにポリむ゜
シアネヌトを配合するこずにより、泚型甚組成
物、含浞甚組成物、コヌテむング剀、接着剀、塗
料、コヌキング材、ポツテむング材、シヌラン
ト、発泡䜓、゚ンカプシナレむテむング材、ラむ
ニング材、パツキング材、工業甚ゎム資材、ロケ
ツト燃料バむンダヌなどの甚途に有甚である。 次に実斜䟋をあげお、本発明をさらに説明す
る。 郚分脱氎ヒマシ油の合成 合成䟋 〜 ヒマシ油氎酞基䟡160、粘床700cps25℃
300ず酞性硫酞゜ヌダ0.15を枩床蚈及びかき
たぜ噚を備えた䞉ツ口フラスコに仕蟌み、枛圧䞋
に加熱した。脱氎反応は165〜190℃ではじたり、
その埌は埐々に昇枩した。190〜250℃、時間で
反応を終了し、冷华埌150℃で酞性癜土を加えお
挏過粟補した。この脱氎反応により、氎酞基䟡
118、粘床400cps25℃の郚分脱氎ヒマシ油が埗
られた。 又次衚のように反応条件を倉えお、同様にしお
郚分脱氎ヒマシ油を埗た。 以䞊の脱氎反応条件及び生成物の特性を第衚
に瀺す。
The present invention relates to a polyol composition, particularly a polyol composition used for producing a cured polyurethane product. Among hydrocarbon compounds, those having hydroxyl groups can be used as materials for two-component polyurethane systems. Among them, hydrocarbon polyols with large hydroxyl equivalents are widely used because they have excellent properties such as elasticity, rubber adhesion, oil spreadability, waterproofness, and electrical insulation properties.In particular, polybutadiene polyols Paint pitting-resistant primer (Japanese Patent Application Laid-Open No. 1983
68176 Publication) Used for various purposes in a wide range of fields, including adhesive rubber (Japanese Patent Application Laid-Open No. 56-72066) Resin for sealing electronic components (Electronic Technology Research Institute Waraho 44 (3) p. 209) This is being considered. On the other hand, however, hydrocarbon polyols with a large hydroxyl equivalent have a high viscosity, and therefore have a serious drawback of extremely poor workability when handling them. In order to lower the viscosity, efforts have been made to use a considerable amount of solvent, or to use plasticizers and process oil in combination.
In the former case, there are problems such as deterioration of the working environment, danger of fire, and increase in cost, and in the case of the latter, there is a problem in that the physical properties of the cured product deteriorate. Therefore, a low viscosity hydroxyl group-containing compound is added to the above-mentioned high viscosity hydrocarbon polyol with a large hydroxyl equivalent.
For example, it is possible to mix polyether polyols and polyester polyols as reactive diluents, but hydrocarbon polyols with large hydroxyl equivalents have poor compatibility with general polyether polyols and polyester polyols, making it difficult to achieve the intended purpose. Unreachable. It has also been proposed to blend castor oil into a high viscosity hydrocarbon polyol (Japanese Patent Laid-Open No. 58-93717), but this also has limited solubility (depending on the type of hydrocarbon polymer). The viscosity of castor oil itself is about 10%, or at most 25% even if it dissolves at room temperature, although it varies depending on the
Partly because it is relatively high at 700 cps at 25°C, sufficient dilution and viscosity reduction effects cannot be obtained. Further, when a high viscosity hydrocarbon polyol is used alone as a urethane polyol, the mechanical properties (especially elongation) of the cured product are not sufficient.
Therefore, proposals have been made to improve elongation by blending polytetramethylene glycol with polybutadiene polyol (Japanese Unexamined Patent Application Publication No. 1985-1999).
No. 98220), in this case no viscosity reducing effect can be expected. From the above-mentioned background, it is well compatible with high viscosity hydrocarbon polyols with a large hydroxyl equivalent, lowers the viscosity, improves the elongation of the cured product, and does not impair other physical properties of the cured product. There is a strong desire to find substance. The present invention meets these demands. The polyol composition of the present invention comprises a high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B). Partially dehydrated or acylated castor oil (B) is
It is extremely compatible with high-viscosity hydrocarbon polyol (A) and can greatly reduce its viscosity, which not only significantly improves workability when handling, but also greatly reduces the elongation of cured urethane products. can be improved. Particularly when using partially dehydrated castor oil, in addition to reducing viscosity and improving elongation,
Various physical properties such as tensile strength and tear strength of the cured product can also be improved. High viscosity hydrocarbon polyol (A) in the present invention
Examples include hydrocarbon polyols with a large hydroxyl equivalent (particularly hydrocarbon polyols with a hydroxyl value of 70 or less). Commercially available products include "PB R-45HT" manufactured by Idemitsu Petrochemical Co., Ltd., which is a polybutadiene-based polyol, "G-1000" manufactured by Nippon Soda Co., Ltd., which is a polybutadiene-based polyol,
An example is "Polytail HA" manufactured by Mitsubishi Chemical Industries, Ltd., which is a polyolefin polyol. Partially dehydrated or acylated castor oil (B) to be blended with such high viscosity hydrocarbon polyol (A)
Examples include the following: Partially dehydrated castor oil is first prepared by heating castor oil in the presence of an acidic catalyst such as sulfuric acid, phosphoric acid, p-toluenesulfonic acid, or acidic sulfate, similar to the production of conventional dehydrated castor oil. It can be obtained by If the degree of dehydration is too small, there is not much difference from castor oil itself, so the compatibility improvement effect and viscosity reduction effect will be poor. On the other hand, if the degree of dehydration is too large, the hydroxyl value will be too small, weakening the physical properties of the cured product. It is unsuitable as a urethane material. Therefore, in order to achieve the object of the present invention, it is desirable to control the degree of dehydration so that the hydroxyl value is within the range of 150 to 20, more preferably 140 to 35. That is, castor oil has a hydroxyl value of 160 and a viscosity of about 700 cps (25°C), but as the dehydration reaction progresses, the hydroxyl value and viscosity decrease as the reaction progresses. If the amount of catalyst is small, as the reaction is allowed to proceed, thermal polymerization will begin while the hydroxyl value remains above 20, and the viscosity will increase. On the other hand, when the amount of catalyst is large, the hydroxyl value increases to 75 to 5 and the viscosity decreases as the reaction progresses.
When the hydroxyl value decreases to about 110 to 140 cps (at 25°C) and heating is continued, the hydroxyl value does not decrease much after that, thermal polymerization begins, and the viscosity begins to increase. Therefore, the dehydration reaction can be controlled by a combination of the amount of catalyst, heating temperature and reaction time, and the conditions should be set so that the hydroxyl value of the reactant falls within the above range. Even if initial polymerization has begun, those having a sufficiently lower viscosity than castor oil and having a hydroxyl value within the above-mentioned range can be used for the purpose of the present invention. Partially acylated castor oil is produced by conventional acylation procedures. Among the acylations, acetylation is the most important, and the industrial limit is actually limited to this acetylation. As the acetylation method, a method of reacting with ketene or a method of reacting with glacial acetic acid can be adopted, but acetylation with acetic anhydride is industrially most advantageous. As in the case of dehydrated castor oil, if the degree of acylation is too small, the effect of improving compatibility and reducing the viscosity will be poor; on the other hand, if the degree of acylation is too large, the hydroxyl value will be too small, resulting in a cured product. It is desirable to control the degree of acylation so that the hydroxyl value of the acylated reaction product is within the range of 150 to 20, more preferably 140 to 35, since this may lead to a decrease in physical properties. The blending ratio of the above-mentioned high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) can be selected arbitrarily, but (A) 90 to 20% by weight, (B) 10% by weight, ~
It is desirable to choose from a range of 80% by weight. Particularly preferred ranges are (A) 85-35% by weight, (B) 15-65% by weight
It is. A polyol composition consisting of the above-mentioned high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) (in addition, this composition may contain other hydroxyl group-containing compounds (for example, castor oil) and plasticizers). ) is useful as a urethane polyol. That is, by reacting this polyol composition with a polyisocyanate, a cured product having excellent physical properties can be obtained. Such polyisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, diphenylsulfone diisocyanate, triphenylmethane diisocyanate, hexamethylene diisocyanate, 3-
Methyl isocyanate-3,5,5-trimethylcyclohexyl isocyanate, ethyl 3-isocyanate-3,5,5-trimethylcyclohexyl isocyanate, ethyl 3-isocyanate-3,5,5-triethylcyclohexyl isocyanate, diphenylpropane diisocyanate, phenylene Diisocyanate, cyclohexylylene diisocyanate, 3,3'-diisocyanate dipropyl ether, triphenylmethane triisocyanate, diphenyl ether-4,
Polyisocyanates such as 4'-diisocyanate or their isocyanates are combined with phenols, oximes, imides, mercaptans, alcohols, ε-caprolactam, ethyleneimine, α-
Examples include those blocked with pyrrolidone, diethyl malonate, sodium bisulfite, boric acid, etc. The blending ratio of the polyol composition and polyisocyanate is preferably such that the isocyanate groups in the polyisocyanate are 0.8 to 1.4 equivalents relative to the total amount of hydroxyl groups in the polyol composition, since sufficient curing can be achieved. . Curing may be carried out slowly at low temperatures or may be accelerated by heating. The above formulations include fillers or pigments including talc, clay, calcium carbonate, baryta powder, silica powder, alumina, carbon black, titanium oxide, iron oxide, phosphorus compounds, halogen compounds,
Various additives such as flame retardants such as antimony oxide, antioxidants, anti-aging agents, and ultraviolet absorbers may be added as necessary. The polyol composition of the present invention can be used in casting compositions, impregnating compositions, coating agents, adhesives, paints, caulking materials, potting materials, sealants, foams, encapsulants, etc. by blending polyisocyanates therewith. It is useful for applications such as syringing materials, lining materials, packing materials, industrial rubber materials, and rocket fuel binders. Next, the present invention will be further explained with reference to Examples. Synthesis example of partially dehydrated castor oil 1-4 Castor oil (hydroxyl value 160, viscosity 700cps/25℃)
300 g and 0.15 g of acidic sodium sulfate were placed in a three-necked flask equipped with a thermometer and a stirrer, and heated under reduced pressure. The dehydration reaction begins at 165-190℃,
After that, the temperature gradually increased. The reaction was completed in 1 hour at 190 to 250°C, and after cooling, acid clay was added at 150°C for filter purification. Due to this dehydration reaction, the hydroxyl value
118, partially dehydrated castor oil with a viscosity of 400 cps/25°C was obtained. Partially dehydrated castor oil was also obtained in the same manner by changing the reaction conditions as shown in the following table. The above dehydration reaction conditions and properties of the product are shown in Table 1.

【衚】 郚分アセチル化ヒマシ油の合成 合成䟋 〜 ヒマシ油氎酞基䟡160、粘床700cps25℃
310ず無氎酢酞11を枩床蚈、かきたぜ噚及び
還流コンデンサヌを備えたフラスコに仕蟌み、
120〜150℃に加熱し、玄時間継続させた。぀い
で還流コンデンサヌを蒞留コンデンサヌに代えお
埐々に昇枩し、副生した酢酞ず未反応無氎酢酞を
蒞留回収した。この間アスピレヌタヌでしだいに
枛圧床を高めた。系の枩床は玄時間埌には200
℃に達したので、この枩床に15分継続埌、冷华し
た。このアセチル化反応により、氎酞基䟡140、
粘床550cps25℃、酞䟡0.3の郚分アセチル化ヒ
マシ油が埗られた。 又次衚のように無氎酢酞の量を倉え、同様にし
お郚分アセチル化ヒマシ油を埗た。 以䞊の仕蟌条件及び生成物の特性を第衚に瀺
す。
[Table] Synthesis example of partially acetylated castor oil 5-7 Castor oil (hydroxyl value 160, viscosity 700cps/25℃)
310 g and 11 g of acetic anhydride were placed in a flask equipped with a thermometer, stirrer, and reflux condenser.
Heating was continued to 120-150°C for approximately 2 hours. Then, the reflux condenser was replaced with a distillation condenser, and the temperature was gradually raised to recover by-product acetic acid and unreacted acetic anhydride by distillation. During this time, the degree of decompression was gradually increased using an aspirator. The temperature of the system is 200 after about 1 hour.
℃ was reached, this temperature was continued for 15 minutes and then cooled. This acetylation reaction results in a hydroxyl value of 140,
Partially acetylated castor oil with a viscosity of 550 cps/25°C and an acid value of 0.3 was obtained. Also, partially acetylated castor oil was obtained in the same manner by changing the amount of acetic anhydride as shown in the following table. Table 2 shows the above preparation conditions and product characteristics.

【衚】【table】

【衚】 高粘床炭化氎玠系ポリオヌルずの盞溶性詊隓 実斜䟋〜察照䟋 高粘床炭化氎玠系ポリオヌルの䞀぀である出光
石油化孊株匏䌚瀟補「PBR−45HT」(A)に、25℃
又は℃の条件䞋に䞊蚘合成䟋又
はで埗た郚分的に脱氎又はアセチル化したヒマ
シ油(B)を皮々の比率で混合埌、同枩床に䞀昌倜静
眮しお盞溶性を調べた。ここで「PBR−45HT」
ずは、数平均分子量2800、官胜基数2.2〜2.4、氎
酞基䟡46、ペり玠䟡398の特性倀を有するポリブ
タゞ゚ン系ポリオヌルである。 結果を第衚に瀺す。なお、実斜䟋
はこの順の合成䟋
で埗た郚分脱氎又はアセチル化ヒマシ油を混合し
た堎合、察照䟋はヒマシ油を混合した堎合であ
る。
[Table] Compatibility test examples 1 to 5 with high viscosity hydrocarbon polyols, comparative example 1 "PBR-45HT" (A) manufactured by Idemitsu Petrochemical Co., Ltd., which is one of the high viscosity hydrocarbon polyols, 25℃
Or, after mixing the partially dehydrated or acetylated castor oil (B) obtained in Synthesis Examples 1, 2, 5, 6, or 7 above at 0°C in various ratios, leave it at the same temperature overnight. The compatibility was investigated. Here "PBR-45HT"
is a polybutadiene polyol having a number average molecular weight of 2800, a functional group number of 2.2 to 2.4, a hydroxyl value of 46, and an iodine value of 398. The results are shown in Table 3. In addition, Examples 1, 2,
3, 4, 5 are synthesis examples 1, 2, 5, 6, 7 in this order
When the partially dehydrated or acetylated castor oil obtained in 1 was mixed, Control Example 1 was a case where castor oil was mixed.

【衚】 ポリオヌル組成物ずポリむ゜シアネヌトずの反応 実斜䟋  出光石油化孊株匏䌚瀟補のポリブタゞ゚ン系ポ
リオヌル「PBR−45HT」(A)ず合成䟋で埗た郚
分脱氎ヒマシ油(B)ずを重量比の割合で混合
し、぀いでこの混合物に察しカルボゞむミド倉性
4′−ゞプニルメタンゞむ゜シアネヌト日
本ポリりレタン工業株匏䌚瀟補「ミリオネヌト
MTL」をNCOOH圓量比が1.05になるように
配合し、分間撹拌埌盎ちに鋳型に流し蟌み、枩
床120℃で時間硬化し、厚みmmの硬化シヌト
を埗た。 䞊蚘(A)及び(B)の混合物の粘床ず䞊蚘で埗られた
硬化シヌトの物性を第衚に瀺す。 実斜䟋  ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)、合成䟋で埗た郚分脱氎ヒマシ油(B)及びヒマ
シ油を重量比での割合で混合したほか
は実斜䟋ず同様にしお硬化シヌトを埗た。結果
を第衚に瀺す。 実斜䟋  ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)ず合成䟋で埗た郚分脱氎ヒマシ油(B)ずを重量
比での割合で混合したほかは実斜䟋ず同
様にしお硬化シヌトを埗た。結果を第衚に瀺
す。 実斜䟋  ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)ず合成䟋で埗た郚分脱氎ヒマシ油(B)ずを重量
比での割合で混合したほかは実斜䟋ず同
様にしお硬化シヌトを埗た。結果を第衚に瀺
す。 察照䟋  ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)を単独でりレタンポリオヌルずしお甚い、以䞋
実斜䟋ず同様にしお「ミリオネヌトMTL」の
配合、流し蟌み、硬化を行い、硬化シヌトを埗
た。結果を第衚に瀺す。
[Table] Example of reaction between polyol composition and polyisocyanate 6 The weight of polybutadiene polyol "PBR-45HT" manufactured by Idemitsu Petrochemical Co., Ltd. (A) and partially dehydrated castor oil obtained in Synthesis Example 1 (B) The mixture was mixed at a ratio of 7:3, and then carbodiimide-modified 4,4'-diphenylmethane diisocyanate ("Millionate" manufactured by Nippon Polyurethane Industries, Ltd.) was added to the mixture.
MTL") was blended so that the NCO/OH equivalent ratio was 1.05, and after stirring for 2 minutes, it was immediately poured into a mold and cured at a temperature of 120°C for 1 hour to obtain a cured sheet with a thickness of 3 mm. Table 4 shows the viscosity of the mixture of (A) and (B) above and the physical properties of the cured sheet obtained above. Example 7 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A), the partially dehydrated castor oil obtained in Synthesis Example 2 (B), and castor oil were mixed in a weight ratio of 6:2:2. The results are shown in Table 4. Example 8 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially dehydrated castor oil (B) obtained in Synthesis Example 3 were mixed at a weight ratio of 8:2. The results are shown in Table 4. Example 9 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially dehydrated castor oil (B) obtained in Synthesis Example 4 were mixed at a weight ratio of 8:2. The results are shown in Table 4. Control example 2 Polybutadiene polyol “PBR-45HT”
Using (A) alone as the urethane polyol, "Millionate MTL" was blended, poured, and cured in the same manner as in Example 6 to obtain a cured sheet. The results are shown in Table 4.

【衚】 実斜䟋 10 ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)ず合成䟋で埗た郚分アセチル化ヒマシ油(B)ず
を重量比での割合で混合したほかは実斜䟋
ず同様にしお硬化シヌトを埗た。 実斜䟋 11 ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)ず合成䟋で埗た郚分アセチル化ヒマシ油(B)ず
を重量比での割合で混合したほかは実斜䟋
ず同様にしお硬化シヌトを埗た。 実斜䟋 12 ポリブタゞ゚ン系ポリオヌル「PBR−45HT」
(A)ず合成䟋で埗た郚分アセチル化ヒマシ油(B)ず
を重量比での割合で混合したほかは実斜䟋
ず同様にしお硬化シヌトを埗た。 以䞊実斜䟋10〜12の結果を第衚に瀺す。なお
先に述べた察照䟋の結果も再床この第衚に瀺
す。
[Table] Example 10 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 5 were mixed at a weight ratio of 7:3. Example 11 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 5 were mixed at a weight ratio of 5:5. Example 12 Polybutadiene polyol “PBR-45HT”
A cured sheet was obtained in the same manner as in Example 6, except that (A) and the partially acetylated castor oil (B) obtained in Synthesis Example 6 were mixed at a weight ratio of 7:3. The results of Examples 10 to 12 are shown in Table 6. Furthermore, the results of Comparative Example 2 mentioned above are also shown in this Table 6.

【衚】 䞊衚においお、ポリブタゞ゚ン系ポリオヌルに
郚分アセチル化ヒマシ油を混合した実斜䟋10〜12
の硬床ず匕匵匷床は、ポリブタゞ゚ン系ポリオヌ
ル単独䜿甚の堎合に比し若干䜎䞋しおいるが、郚
分アセチル化ヒマシ油䜵甚の堎合の粘床䜎䞋効果
及び硬化物の䌞びの向䞊効果が倧きいので、硬床
及び匕匵匷床の䞍利を補぀お䜙りがある。
[Table] In the above table, Examples 10 to 12 in which partially acetylated castor oil was mixed with polybutadiene polyol
Although the hardness and tensile strength of polybutadiene-based polyol are slightly lower than when polybutadiene-based polyol is used alone, the combined use of partially acetylated castor oil has a large effect of reducing viscosity and improving the elongation of the cured product, so the hardness and tensile strength of This more than makes up for the disadvantage in tensile strength.

Claims (1)

【特蚱請求の範囲】  高粘床炭化氎玠系ポリオヌル(A)及び郚分的に
脱氎又はアシル化したヒマシ油(B)よりなるポリオ
ヌル組成物。  高粘床炭化氎玠系ポリオヌル(A)ず郚分的に脱
氎又はアシル化したヒマシ油(B)ずの配合割合が、
(A)90〜20重量、(B)10〜80重量である特蚱請求
の範囲第項蚘茉の組成物。  郚分的に脱氎又はアシル化したヒマシ油(B)の
氎酞基䟡が、150〜20である特蚱請求の範囲第
項蚘茉の組成物。
[Claims] 1. A polyol composition comprising a high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B). 2 The blending ratio of high viscosity hydrocarbon polyol (A) and partially dehydrated or acylated castor oil (B) is
The composition according to claim 1, wherein (A) is 90 to 20% by weight and (B) is 10 to 80% by weight. 3. Claim 1, wherein the partially dehydrated or acylated castor oil (B) has a hydroxyl value of 150 to 20.
Compositions as described in Section.
JP58162195A 1983-09-02 1983-09-02 Polyol composition Granted JPS6053522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162195A JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162195A JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Publications (2)

Publication Number Publication Date
JPS6053522A JPS6053522A (en) 1985-03-27
JPH0334766B2 true JPH0334766B2 (en) 1991-05-23

Family

ID=15749800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162195A Granted JPS6053522A (en) 1983-09-02 1983-09-02 Polyol composition

Country Status (1)

Country Link
JP (1) JPS6053522A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100513A (en) * 1985-10-28 1987-05-11 Ito Seiyu Kk Curable composition
DE4017444A1 (en) * 1990-05-30 1991-12-12 Henkel Kgaa BREAD SIZE FOR SEALING CABLE SLEEVES
DE4438351A1 (en) * 1994-10-27 1996-05-02 Boley Alberingk Gmbh Use of partially dehydrated castor oils for the preparation of aqueous polyurethane dispersions and coatings produced using these aqueous polyurethane dispersions
DE10063431C1 (en) * 2000-12-20 2001-11-08 Henkel Ecolab Gmbh & Co Ohg Aqueous, polymeric floor coating composition, contains polyurethane with a polyol component containing partly dehydrated castor oil and film-forming emulsion polymer with amino or acid and crosslinking groups
JP5745971B2 (en) * 2011-08-18 2015-07-08 東邊瓊斯株匏䌚瀟 Urethane resin composition for lining

Also Published As

Publication number Publication date
JPS6053522A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
KR100218208B1 (en) Moisture-curable urethane-based sealing composition
FI80059B (en) DOUBLE COMPONENTS WITHOUT FREQUENCY FOR FRAMSTAELLNING.
WO2014136800A1 (en) One-component moisture-curable composition
JPH06507437A (en) One package polyurethane/thermoplastic plastisol composition
US3941855A (en) Shaped polyurethane articles and a method for making them
US4602071A (en) Process for the production of oligourethanes containing mercapto groups and their use as binders for coating and sealing compositions hardenable by oxidation and as additives for epoxide resins
JP5227561B2 (en) Urea resin composition
JPH0334766B2 (en)
JP2006077049A (en) Liquid polymer composition
JPH0581624B2 (en)
CN113136162B (en) High-temperature-resistant high-humidity-resistant double-component polyurethane flame-retardant pouring sealant and preparation method thereof
US5004794A (en) Isocyanate prepolymers
JPH0370731B2 (en)
US5360871A (en) Vinyl chloride resin-based composition and packings made therefrom
JP3415947B2 (en) Thermosetting flexible polyurethane elastomer composition
KR20040030307A (en) Solvent-free moisture-curable hot melt urethane resin composition
JPH09169828A (en) Polyurethane elastomer composition for casting and molded product thereof
JPH0218684B2 (en)
CN114144490A (en) Urethane adhesive composition
KR102764618B1 (en) Polyurethane resin composition
JP2668505B2 (en) Flame retardant elastomer
JPH032887B2 (en)
JP2003113217A (en) Two-pack curable polyurethane resin composition
JPS6248988B2 (en)
JP6817505B2 (en) Sealant composition