JPH0334594A - 量子井戸構造の製造方法 - Google Patents
量子井戸構造の製造方法Info
- Publication number
- JPH0334594A JPH0334594A JP17006589A JP17006589A JPH0334594A JP H0334594 A JPH0334594 A JP H0334594A JP 17006589 A JP17006589 A JP 17006589A JP 17006589 A JP17006589 A JP 17006589A JP H0334594 A JPH0334594 A JP H0334594A
- Authority
- JP
- Japan
- Prior art keywords
- quantum well
- iii
- layer
- barrier layer
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 230000004888 barrier function Effects 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 16
- 230000014509 gene expression Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 29
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 7
- 229910000673 Indium arsenide Inorganic materials 0.000 description 6
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 6
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000004871 chemical beam epitaxy Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004211 migration-enhanced epitaxy Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、半導体デバイスに用いられる量子井戸構造に
関する。
関する。
(従来の技術)
量子井戸は、電子が2次元的に閉じ込められるために、
キャリア状態密度のエネルギー分布が階段状となる事に
特徴がある。このため、量子井戸を活性層とする量子井
戸レーザは低閾値電流密度で発振する利点を有する。こ
の量子井戸をさらに発展させた形態の量子細線において
はキャリア状態密度のエネルギー分布が極大値を持つ様
になるため、これを量子井戸レーザ等の活性層に形成し
た場合にはさらに一層の低閾値電流密度が期待されてい
る。
キャリア状態密度のエネルギー分布が階段状となる事に
特徴がある。このため、量子井戸を活性層とする量子井
戸レーザは低閾値電流密度で発振する利点を有する。こ
の量子井戸をさらに発展させた形態の量子細線において
はキャリア状態密度のエネルギー分布が極大値を持つ様
になるため、これを量子井戸レーザ等の活性層に形成し
た場合にはさらに一層の低閾値電流密度が期待されてい
る。
そこでこの量子細線の一形成方法として、文献(第5回
MBE国際会議ワークブックp382〜p388)に示
されている様にオフ基板を用いるものがある。これは、
(100)面から1〜2°オフしたGaAs基板上に量
子細線を形成するものである。第2図に示す様にオフ基
板では100〜200A毎に単原子層ステップがある。
MBE国際会議ワークブックp382〜p388)に示
されている様にオフ基板を用いるものがある。これは、
(100)面から1〜2°オフしたGaAs基板上に量
子細線を形成するものである。第2図に示す様にオフ基
板では100〜200A毎に単原子層ステップがある。
この上にGaAsとAI□、2Ga□、8Asを交互に
積層するとこのステップより成長が始まるため横方向に
周期性のある傾斜超格子23が形成される。この傾斜超
格子23をAlGaAs22とAlGaAs24ではさ
む事によって量子細線構造が実現する。
積層するとこのステップより成長が始まるため横方向に
周期性のある傾斜超格子23が形成される。この傾斜超
格子23をAlGaAs22とAlGaAs24ではさ
む事によって量子細線構造が実現する。
(発明が解決しようとする課題)
しかしながらこの様な形成方法で量子細線構造を形成す
る場合に量子細線幅を均一性良く形成する事が非常に困
難である欠点があった。すなわち、オフ基板の単原子層
ステップ間隔が量子細線の周期を決定するが、この単原
子層ステップ間隔の均一性が現状の技術では良くない事
に起因する。このためこの様な方法で形成された量子細
線の発光スペクトルは拡がってしまい良好な量子細線の
発光特性を得ることが困難であった。
る場合に量子細線幅を均一性良く形成する事が非常に困
難である欠点があった。すなわち、オフ基板の単原子層
ステップ間隔が量子細線の周期を決定するが、この単原
子層ステップ間隔の均一性が現状の技術では良くない事
に起因する。このためこの様な方法で形成された量子細
線の発光スペクトルは拡がってしまい良好な量子細線の
発光特性を得ることが困難であった。
そこで、本発明の目的は、上述した様な量子細線幅の不
均一の問題が無く良好な量子細線の発光特性が得られる
製造方法を提供する事にある。
均一の問題が無く良好な量子細線の発光特性が得られる
製造方法を提供する事にある。
(課題を解決するための手段)
以上の課題を解決するために本発明の量子井戸構造の製
造方法ではIILV族化合物半導体を主材料とする量子
井戸構造を製造する方法において、(hkl)面から0
(rad)オフしたIII −V族化合物半導体基板上
に、第1のバリア層を形成する工程と、この第1のバリ
ア層上に量子井戸層を形成する工程と、この量子井戸層
の上に第2のバリア層を形成する工程とを備え、前記量
子井戸層形成中にInを含むIII e V族化合物半
導体を1原子層未満形戒する工程を含み、前記量子井戸
層はIII −V族化合物半導体から構成され、かつ上
記のり、に、 1はh≦1、k≦1、l≦1,1≦1を
満たす整数で、0は前記GaAs基板の格子定数a(A
)に対してa/600≦θ≦a/40なる不等式を満た
ず事を特徴とする。
造方法ではIILV族化合物半導体を主材料とする量子
井戸構造を製造する方法において、(hkl)面から0
(rad)オフしたIII −V族化合物半導体基板上
に、第1のバリア層を形成する工程と、この第1のバリ
ア層上に量子井戸層を形成する工程と、この量子井戸層
の上に第2のバリア層を形成する工程とを備え、前記量
子井戸層形成中にInを含むIII e V族化合物半
導体を1原子層未満形戒する工程を含み、前記量子井戸
層はIII −V族化合物半導体から構成され、かつ上
記のり、に、 1はh≦1、k≦1、l≦1,1≦1を
満たす整数で、0は前記GaAs基板の格子定数a(A
)に対してa/600≦θ≦a/40なる不等式を満た
ず事を特徴とする。
(作用)
従来の量子井戸構造では、オフ基板上にA10,2Ga
□、5AsとGaAsを交互に成長し、AlGaAsの
1/2原子層とGaAsの172原子層を合わせてほぼ
一原子層となる様にすると第2図に示す様な傾斜超格子
23が形成できる。傾斜超格子の横方向の周期の均一性
は成長層のステップ間隔の均一性で決まってわり、これ
は成長原子のGa及びAlの表面拡散距離の大きさに依
存する。すなわち、表面拡散距離がステップ間隔よりも
充分大きい場合には、成長層の原子ステップ間隔は均一
となる。
□、5AsとGaAsを交互に成長し、AlGaAsの
1/2原子層とGaAsの172原子層を合わせてほぼ
一原子層となる様にすると第2図に示す様な傾斜超格子
23が形成できる。傾斜超格子の横方向の周期の均一性
は成長層のステップ間隔の均一性で決まってわり、これ
は成長原子のGa及びAlの表面拡散距離の大きさに依
存する。すなわち、表面拡散距離がステップ間隔よりも
充分大きい場合には、成長層の原子ステップ間隔は均一
となる。
ところが表面拡散距離がステップ間隔よりも小さい場合
には充分なステップがらの成長が実現しないためにステ
ップ間隔は不均一となる。従来がら用いられているGa
As及びAlGaAsの材料ではGa及びAIの表面拡
散距離がステップ間隔の均一性を決める事となるが、A
Iの表面拡散距離は通常〜60Aであり、通常の単原子
ステップ間隔(20〜300人)に比べてあまり大きく
無い。このため従来の量子井戸構造では、均一な量子細
線構造が実現されなかった。そこで本発明では量子井戸
をGaAsとInAsで構成した。この場合にはGa原
子とIn原子の表面拡散距離でステップ間隔の均一性が
決まるが、Ga原子及びIn原子の表面拡散距離は、成
長温度600°Cで20OA以上とAl原子に比べて3
倍以上大きいため、均一な単原子ステップの成長層が得
られ良好な量子細線が形成できる。またInAsはGa
Asの格子定数に比べ7%程度大きいため通常は格子整
合した成長は不可能である。しかしながら、GaAsと
InAsを1/2原子層づつ形成する方法では、数原子
層のGaAs/InAsの傾斜超格子を、転位を発生さ
せる事なく形成する事ができる。そこで本発明の量子井
戸構造ではGaAs量子井戸の中にGaAs/InAs
の傾斜超格子を数原子層はさむ事によって横方向の間隔
が均一な量子細線が実現できるため、従来の量子井戸に
比べてより狭い良好な発光スペクトルが得られる。
には充分なステップがらの成長が実現しないためにステ
ップ間隔は不均一となる。従来がら用いられているGa
As及びAlGaAsの材料ではGa及びAIの表面拡
散距離がステップ間隔の均一性を決める事となるが、A
Iの表面拡散距離は通常〜60Aであり、通常の単原子
ステップ間隔(20〜300人)に比べてあまり大きく
無い。このため従来の量子井戸構造では、均一な量子細
線構造が実現されなかった。そこで本発明では量子井戸
をGaAsとInAsで構成した。この場合にはGa原
子とIn原子の表面拡散距離でステップ間隔の均一性が
決まるが、Ga原子及びIn原子の表面拡散距離は、成
長温度600°Cで20OA以上とAl原子に比べて3
倍以上大きいため、均一な単原子ステップの成長層が得
られ良好な量子細線が形成できる。またInAsはGa
Asの格子定数に比べ7%程度大きいため通常は格子整
合した成長は不可能である。しかしながら、GaAsと
InAsを1/2原子層づつ形成する方法では、数原子
層のGaAs/InAsの傾斜超格子を、転位を発生さ
せる事なく形成する事ができる。そこで本発明の量子井
戸構造ではGaAs量子井戸の中にGaAs/InAs
の傾斜超格子を数原子層はさむ事によって横方向の間隔
が均一な量子細線が実現できるため、従来の量子井戸に
比べてより狭い良好な発光スペクトルが得られる。
又、以上の効果を、得るためには、単原子層ステップを
有する基板上に超格子からなる閉じ込め層と量子井戸を
形成する必要がある。この単原子層ステップの間隔は、
横方向の量子井戸構造の一周期の長さを決定するもので
ある。通常のIII e V族生導体(GaAs、 I
nP等)では2O−30OAであるため単原子層ステッ
プの間隔もこの程度となる必要がある。
有する基板上に超格子からなる閉じ込め層と量子井戸を
形成する必要がある。この単原子層ステップの間隔は、
横方向の量子井戸構造の一周期の長さを決定するもので
ある。通常のIII e V族生導体(GaAs、 I
nP等)では2O−30OAであるため単原子層ステッ
プの間隔もこの程度となる必要がある。
従ってオフ基板の低指数面(hklXh、 k、 1は
整数h≦1゜k≦1.1≦1.)からのオフ角e(ra
d)は20人≦a/21O≦30OA
(1)の関係を満たす必要がある。ここでa[
A]は半導体の格子定数である。ここで基板の面方位と
して(511)等の高指数面を取り入れていないのは、
これらの面は低指数面(111)からのオフした面と考
える事ができるからである。
整数h≦1゜k≦1.1≦1.)からのオフ角e(ra
d)は20人≦a/21O≦30OA
(1)の関係を満たす必要がある。ここでa[
A]は半導体の格子定数である。ここで基板の面方位と
して(511)等の高指数面を取り入れていないのは、
これらの面は低指数面(111)からのオフした面と考
える事ができるからである。
(1)式からe(rad)の範囲としては、a/600
≦θ≦a/40 (2)(a[
入]は格子定数) となる。
≦θ≦a/40 (2)(a[
入]は格子定数) となる。
(実施例)
次に本発明の実施例について図面を参照して詳細に説明
する。第1図は本発明の一実施例の製造方法で形成され
た量子井戸構造の断面図である。
する。第1図は本発明の一実施例の製造方法で形成され
た量子井戸構造の断面図である。
まず(100)面から(111)A面方向に1°オフし
たGaAs基板1を用意する。オフ角と単原子ステップ
間隔とは一対一の関係がある。このオフ角10の場合に
は単原子ステップ間隔は160Aとなる。次に分子線エ
ピタクシ−法を用いてAlGaAs2を成長する。成長
する温度は高い方がAlGaAs2の結晶性が改善され
るが後で成長するInの付着係数が650°C以上では
極端に低下する。このため成長温度は600°Cとした
。
たGaAs基板1を用意する。オフ角と単原子ステップ
間隔とは一対一の関係がある。このオフ角10の場合に
は単原子ステップ間隔は160Aとなる。次に分子線エ
ピタクシ−法を用いてAlGaAs2を成長する。成長
する温度は高い方がAlGaAs2の結晶性が改善され
るが後で成長するInの付着係数が650°C以上では
極端に低下する。このため成長温度は600°Cとした
。
AlGaAsの厚みは任意に設定できるが、キャリアを
有効に閉じ込めるには40Å以上が必要と考えられる。
有効に閉じ込めるには40Å以上が必要と考えられる。
我々の実験では3000Aとした。次にGaAs3を5
0A形威した後に成長中断を1分間行なった。成長中断
とは、As脱離を防ぐためAsビームのみを照射してい
るがGaビーム等のIII族ビームを照射せずに実質的
な成長は行なわれない工程である。この成長中断は、行
なわなくても差しつかえないが、これを行なう事によっ
てより界面のステ、ツブ間隔の均一性平坦性が向上する
。次にInAs4を1/2原子層形威した。この時には
単原子ステップがら成長が行なわれるため単原子ステッ
プ間隔(160A)の約半分の80A幅のInAs4か
らなる単原子層細線が形成される。次にGaAs5を5
0A形威して量子井戸6が形成出来る。最後にバリア層
としてAlGaAs7を3000A形威した。以上述べ
た様に本実施例ではGaAs3とGaAs5の間にIn
As4が1/2原子層はさまれた構造となっており、キ
ャリアはInAs4近傍に閉じ込められる。又、InA
sの横方向の均一性が良好なため狭いスペクトル幅の良
好な発光が得られる。
0A形威した後に成長中断を1分間行なった。成長中断
とは、As脱離を防ぐためAsビームのみを照射してい
るがGaビーム等のIII族ビームを照射せずに実質的
な成長は行なわれない工程である。この成長中断は、行
なわなくても差しつかえないが、これを行なう事によっ
てより界面のステ、ツブ間隔の均一性平坦性が向上する
。次にInAs4を1/2原子層形威した。この時には
単原子ステップがら成長が行なわれるため単原子ステッ
プ間隔(160A)の約半分の80A幅のInAs4か
らなる単原子層細線が形成される。次にGaAs5を5
0A形威して量子井戸6が形成出来る。最後にバリア層
としてAlGaAs7を3000A形威した。以上述べ
た様に本実施例ではGaAs3とGaAs5の間にIn
As4が1/2原子層はさまれた構造となっており、キ
ャリアはInAs4近傍に閉じ込められる。又、InA
sの横方向の均一性が良好なため狭いスペクトル幅の良
好な発光が得られる。
以上述べた実施例では、成長方法として分子線エビタク
シ−法を用いたが、この一種の変形であるマイグレーシ
ョンエンハンストエピタクシ−(MEE)法やケミカル
ビームエピタクシ−(CBE)法等の他の方法を用いて
も本実施例と同様な効果が得られる。
シ−法を用いたが、この一種の変形であるマイグレーシ
ョンエンハンストエピタクシ−(MEE)法やケミカル
ビームエピタクシ−(CBE)法等の他の方法を用いて
も本実施例と同様な効果が得られる。
第1図は本発明の一実施例の製造方法による量子井戸構
造の断面図である。第2図は従来の量子井戸構造の断面
図である。 図中、1はGaAs基板、2はAlGaAs、 3はG
aAs、 4はInAs、5はGaAs、 6は量子井
戸、7はAlGaAs、 21はGaAs基板、22は
AlGaAs、23は傾斜超格子、24はAlGaAs
、25はAlGaAs、26はGaAsである。
造の断面図である。第2図は従来の量子井戸構造の断面
図である。 図中、1はGaAs基板、2はAlGaAs、 3はG
aAs、 4はInAs、5はGaAs、 6は量子井
戸、7はAlGaAs、 21はGaAs基板、22は
AlGaAs、23は傾斜超格子、24はAlGaAs
、25はAlGaAs、26はGaAsである。
Claims (1)
- III−V族化合物半導体を主材料とする量子井戸構造を
製造する方法において、(hkl)面からθ(rad)
オフしたIII−V族化合物半導体基板上に、第1のバリ
ア層を形成する工程と、この第1のバリア層上に量子井
戸層を形成する工程と、この量子井戸層の上に第2のバ
リア層を形成する工程とを備え、前記量子井戸層形成中
にInを含むIII−V族化合物半導体を一原子層未満形
成する工程を含み、前記量子井戸層はIII−V族化合物
半導体から構成され、かつ上記のh、k、lはh≦1、
k≦1、l≦1を満たす整数で、θは前記GaAs基板
の格子定数a(Å)に対してa/600≦θ≦a/40
なる不等式を満たす事を特徴とする量子井戸構造の製造
方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17006589A JPH0334594A (ja) | 1989-06-30 | 1989-06-30 | 量子井戸構造の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17006589A JPH0334594A (ja) | 1989-06-30 | 1989-06-30 | 量子井戸構造の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0334594A true JPH0334594A (ja) | 1991-02-14 |
Family
ID=15897982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17006589A Pending JPH0334594A (ja) | 1989-06-30 | 1989-06-30 | 量子井戸構造の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0334594A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0427905A2 (en) * | 1989-11-13 | 1991-05-22 | Research Development Corporation Of Japan | Grid-inserted quantum structure |
EP0582986A2 (en) * | 1992-08-10 | 1994-02-16 | Canon Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
JPH07273032A (ja) * | 1994-03-29 | 1995-10-20 | Hikari Gijutsu Kenkyu Kaihatsu Kk | 半導体結晶成長方法 |
-
1989
- 1989-06-30 JP JP17006589A patent/JPH0334594A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0427905A2 (en) * | 1989-11-13 | 1991-05-22 | Research Development Corporation Of Japan | Grid-inserted quantum structure |
EP0582986A2 (en) * | 1992-08-10 | 1994-02-16 | Canon Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
EP0582986A3 (en) * | 1992-08-10 | 1994-03-23 | Canon Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
JPH07273032A (ja) * | 1994-03-29 | 1995-10-20 | Hikari Gijutsu Kenkyu Kaihatsu Kk | 半導体結晶成長方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6377596B1 (en) | Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices | |
JPH0418476B2 (ja) | ||
US5073893A (en) | Semiconductor structure and semiconductor laser device | |
GB2280311A (en) | Semiconductor laser | |
Someya et al. | Tightly confined one‐dimensional states in T‐shaped GaAs edge quantum wires with AlAs barriers | |
JPH09148556A (ja) | 半導体装置,及びその製造方法 | |
JPH0555711A (ja) | 半導体レーザ素子とその製造方法 | |
JPH0334594A (ja) | 量子井戸構造の製造方法 | |
JP2006505134A (ja) | 半導体光デバイス内の量子井戸混合 | |
US4759030A (en) | Semiconductor laser | |
JPS6289383A (ja) | 半導体レ−ザ | |
JP3278035B2 (ja) | 電流狭窄構造を持った量子箱構造及びその作成法 | |
JP2780333B2 (ja) | 半導体積層構造及びこれを有する半導体素子 | |
JPH02156521A (ja) | 量子井戸構造の製造方法 | |
US5833870A (en) | Method for forming a high density quantum wire | |
US5341006A (en) | Semiconductor device having diffusion-preventing layer between III-V layer and IV layer | |
Nötzel et al. | Self-organized quantum dots | |
JP3382309B2 (ja) | 半導体装置 | |
US8263965B2 (en) | Single-crystal semiconductor layer with heteroatomic macro-network | |
Shur | Compound Semiconductors 1996, Proceedings of the Twenty-Third INT Symposium on Compound Semiconductors held in St Petersburg, Russia, 23-27 September 1996 | |
JPH0846290A (ja) | 光半導体素子 | |
JP2780325B2 (ja) | 半導体積層構造及びこれを有する半導体素子 | |
JPH07122486A (ja) | 量子細線または量子箱の形成方法 | |
JPH0680865B2 (ja) | 半導体超格子 | |
JPH04356963A (ja) | 半導体量子細線の製造方法 |