[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0331294A - New oligosaccharide and production thereof - Google Patents

New oligosaccharide and production thereof

Info

Publication number
JPH0331294A
JPH0331294A JP1165755A JP16575589A JPH0331294A JP H0331294 A JPH0331294 A JP H0331294A JP 1165755 A JP1165755 A JP 1165755A JP 16575589 A JP16575589 A JP 16575589A JP H0331294 A JPH0331294 A JP H0331294A
Authority
JP
Japan
Prior art keywords
oligosaccharide
acid
disaccharide
bonds
binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165755A
Other languages
Japanese (ja)
Inventor
Shoichi Hirooka
広岡 正一
Toshi Iizuka
登志 飯塚
Toshio Hirohashi
広橋 利夫
Takanao Kimura
木村 高尚
Sunao Kamata
直 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP1165755A priority Critical patent/JPH0331294A/en
Publication of JPH0331294A publication Critical patent/JPH0331294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Saccharide Compounds (AREA)

Abstract

NEW MATERIAL:An oligosaccharide prepared by separating the oligosaccharide from an acid-saccharified dextrose. USE:A culture raw material, a Lactobacillus bifidus-proliferating factor, a low cariogenic edulcorant and low-calonic edulcorant. PREPARATION:For example, corn starch is mixed with water to form a starchy milk, to which is added oxalic acid to adjust its pH to 1.7 and heated at a temperature of 140 deg.C for 40min to carry out saccharification. The resultant product is then neutralized, filtrated and treated with an ion-exchanger to purify and afford an acid-saccharified dextrose. Then the product is diluted, passed through a strong acid cation exchange resin and fractionated and an active fraction is further subjected to fractionation, ion-exchange purification, activated charcoal treatment, concentration, etc., to afford a disaccharide having alpha-binding and beta-binding or an oligosaccharide compound of the disaccharide having the alpha-binding and beta-binding.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規なオリゴ糖及びその製造方法に関し、さ
らに詳しくは独特の呈味を有する甘味料として飲食物へ
の利用、あるいは活性剤として、医薬なとの培養原料、
ビフィズス菌増殖因子、低う軸性甘味料、低カロリー甘
味料などに利用して効果のある新規なオリゴ糖及びその
製造方法に間するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a novel oligosaccharide and a method for producing the same, and more specifically, its use in foods and drinks as a sweetener with a unique taste, or as an active agent. , pharmaceutical culture raw materials,
The present invention relates to a novel oligosaccharide that can be effectively used as a bifidobacteria growth factor, a low axial sweetener, a low calorie sweetener, etc., and a method for producing the same.

〈従来の技術〉 近年、酵素化学の進歩発展により微生物起源の糖転移酵
素や加水分解酵素が検索され、新しい糖類の開発が活発
に行われている。この技術的流れの基本は酸糖化法から
酵素法への転換である。例えば工業的なぶどう糖の生産
は現在では完全に酸糖化法から酵素法に移行している。
<Prior Art> In recent years, with the progress and development of enzyme chemistry, glycosyltransferases and hydrolases of microbial origin have been searched for, and new saccharides are being actively developed. The basis of this technological flow is the conversion from the acid saccharification method to the enzymatic method. For example, industrial glucose production has now completely shifted from acid saccharification methods to enzymatic methods.

すなわち、酸糖化法によるぶとう糖生産においては、■
苦みを有するゲンチビオース等のβ−結合オリゴ糖が生
成する事。■ぶとう糖の収率が低くなる事。■高純度の
ぶとう糖を得るためには分蜜が必要な事。
In other words, in glucose production using the acid saccharification method, ■
Formation of β-linked oligosaccharides such as gentibiose that have a bitter taste. ■ Lower yield of glucose. ■Necessity is necessary to obtain high-purity glucose.

等の問題点があるため実施されでいないのが現実である
The reality is that it has not been implemented due to the following problems.

〈発明が解決しようとする課題〉 本発明者らは、種々のオリゴ糖の性質について検討した
ところ、r!II塘化ぶどう糖よりクロマト分離して得
られるオリゴ塘には、新規な転移酵素や加水分解酵素な
どにより得られるオリゴ糖にはない優れた性質があるこ
とを見い出し本発明に至った。
<Problems to be Solved by the Invention> The present inventors investigated the properties of various oligosaccharides and found that r! The present inventors have discovered that oligosaccharides obtained by chromatographic separation from II-containing glucose have excellent properties that oligosaccharides obtained by novel transferases, hydrolases, etc. do not have.

すなわち本発明は酸糖化ぶとう糖の生産の際問題点であ
ったゲンチビオースなどの副成するオリゴ糖を積極的に
応用しようとするものであり、このような技術的思想は
過去例がなく本発明が最初である。
In other words, the present invention seeks to actively apply oligosaccharides produced as by-products such as gentibiose, which have been a problem during the production of acid-saccharified glucose, and this technical idea has no precedent and is unique to this book. Invention is the first.

く問題点を解決するための手段〉 本発明は酵素法による新規糖類開発の現況の中で積極的
に酸糖化法を応用して完成させたものである。
Means for Solving the Problems The present invention was completed by proactively applying the acid saccharification method in the current situation of developing new saccharides by enzymatic methods.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(酸糖化法によるオリゴ糖を含有したぶとう糖の製造) 澱粉は植物の光合成によって生産される高分子炭水化物
で、ぶとう糖の重合体から出来ている。
(Manufacture of glucose containing oligosaccharides by acid saccharification method) Starch is a high-molecular carbohydrate produced by photosynthesis in plants, and is made from a polymer of glucose.

このぶどう糖の結合は、α−1・4およびα−1・6の
グルコシド結合であり、理論的にはf4酸と共に加熱す
ると容易にぶどう糖まで加水分解される。しかしながら
工業的に採用される加水分解の条件においては、実際に
は澱粉分子は非常に低い濃度においても均一の溶液とは
ならず、ミセルを作って加水分解を受は難い部分があり
、更に澱粉や酸の濃度あるいは反応温度が高い場合には
いったん生したぶとう糖の適合成が起こってニゲロース
、ゲンチビオースやその他の種類が生成し澱粉を完全に
ぶとう糖昆位にすることは困難である。
This glucose bond is an α-1.4 and α-1.6 glucoside bond, and theoretically, when heated with f4 acid, it is easily hydrolyzed to glucose. However, under the hydrolysis conditions used industrially, starch molecules do not form a homogeneous solution even at very low concentrations, and some parts of the starch molecules form micelles that are difficult to undergo hydrolysis. If the concentration of starch, acid, or reaction temperature is high, the conversion of raw glucose occurs to produce nigerose, gentibiose, and other types, making it difficult to completely convert starch into glucose. .

すなわち酸糖化法による澱粉の加水分解後には生成物の
ぶとう糖のほかに相当量のオリゴ糖を含有するものであ
り、酸糖化ぶどう塘はオリゴ糖の原料として有用である
。S粉の酸糖化は水素イオンの触媒作用による加水分解
であるが、加水分解の進行程度によりぶとう糖とオリゴ
糖の潰合物が種々の比率で生成する。この分解程度に影
響する具体的な要因としては澱粉の種類と仕込濃度、酸
の種類と使用量、分解方式と装置、温度と時間なとがあ
る。使用する澱粉としてはコーンスターチ、馬鈴薯澱粉
、せr4澱粉、タピオカ澱粉なとであるが通常糖化用に
使用される澱粉であれは制限はない。
That is, after starch hydrolysis by the acid saccharification method, it contains a considerable amount of oligosaccharides in addition to the product glucose, and the acid saccharified grape tang is useful as a raw material for oligosaccharides. Acid saccharification of S powder is hydrolysis due to the catalytic action of hydrogen ions, and glucose and oligosaccharide condensates are produced in various ratios depending on the degree of progress of hydrolysis. Specific factors that influence the degree of decomposition include the type and concentration of starch, the type and amount of acid used, the decomposition method and equipment, temperature and time. The starch to be used may be corn starch, potato starch, Ser4 starch, tapioca starch, etc., but there is no restriction as long as it is a starch commonly used for saccharification.

仕込澱粉乳の濃度は固形分10〜40重量%程度である
。使用する酸のfIl類としては塩酸、硫酸、シュウ酸
があるが一般的にはシ】つ酸が使用される。シュウ酸糖
化の場合、中和剤として炭酸カルシウムを使用すると生
成するシュウ酸カルシウムは沈澱粒子が大きいので慣通
が容易であり、溶解度が極めて小さいために糖度の色調
や透明度がよく、イオン交換に対する負荷も少ないもの
である。
The concentration of the charged starch milk is about 10 to 40% by weight of solids. Examples of acids used include hydrochloric acid, sulfuric acid, and oxalic acid, but oxalic acid is generally used. In the case of oxalate saccharification, the calcium oxalate produced when calcium carbonate is used as a neutralizing agent has large precipitated particles, so it is easy to use, and its solubility is extremely low, so the color and transparency of the sugar content are good, and it is resistant to ion exchange. The load is also small.

酸の使用量は加圧方式の場合、対澱粉(4!!水物とし
て)0.1〜2.0重量%程度である。分解方式として
は常圧で行う方法と加圧で行う方法が考えられるが、酸
糖化を常圧で行うには多量の酸を要し、かつ時間が長く
かかるので、通常加圧糖化が採用される。加圧糖化には
単缶式(回分式)装置と連続式装置があり、どちらも利
用できる。糖化温度と時間は分解装置にもよるが、通常
温度130〜160℃、時間10〜80分である。この
ような条件によって得られる酸糖化反応液は、DE(ブ
ドウ糖当量)75〜95、ぶとう糖分く固形あたり)7
0〜85重量%、ぶとう糖以外のニゲロース、ゲンチビ
オースなとやその他の塘(固形あたり)を15〜30重
量%含有する。この酸糖化反応液は続いて中和、濾過、
イオン交換精製、活性炭精製、濃縮され酸糖化ぶどう糖
液すなわちオリゴ糖を含有したぶどう糖液となる。この
オリゴ糖は酸素糖化法では含まれにくいニゲロース、ゲ
ンチビオース等を含有することが特徴である。
In the case of the pressurized method, the amount of acid used is approximately 0.1 to 2.0% by weight relative to starch (as 4!! water). There are two decomposition methods: normal pressure and pressurization, but acid saccharification at normal pressure requires a large amount of acid and takes a long time, so pressure saccharification is usually used. Ru. There are two types of pressurized saccharification: single-can type (batch type) equipment and continuous type equipment, both of which can be used. The saccharification temperature and time depend on the decomposition equipment, but are usually 130 to 160°C and 10 to 80 minutes. The acid saccharification reaction solution obtained under these conditions has a DE (glucose equivalent) of 75 to 95 (glucose content per solid) of 7.
It contains 0 to 85% by weight, and 15 to 30% by weight of other substances other than glucose such as nigerose, gentibiose, and other substances (per solid basis). This acid saccharification reaction solution is then neutralized, filtered,
It undergoes ion exchange purification, activated carbon purification, and concentration to become an acid-saccharified glucose solution, that is, a glucose solution containing oligosaccharides. This oligosaccharide is characterized by containing nigerose, gentibiose, etc., which are difficult to contain in the oxygen saccharification method.

(クロマト分離による高純度オリゴ糖の製造〉ニゲロー
ス、ゲンチビオースなとを主成分とするオリゴ糖を大暑
にかつ安価に分離する手段としてはクロマト分離法が優
れており、充填剤としては強酸性陽イオン交換樹脂が適
している。本発明に使用する強酸性陽イオン交換樹脂と
しては、スルフォン酸型であり、例えばダイヤイオン5
KIB、ダイヤイオンSK 102、ダイヤイオン5K
104、ダイヤイオンSK 106、ダイヤイオン5K
IIO、ダイヤイオン5K112、ダイヤイオン5K1
16、ダイヤイオンFROI(以上商品名、三菱化成I
りあるいはアンバーライト[R−116、アンバーライ
トIR−118、アンバーライトI R−120R17
ンハ−ライトXTl022E、7ンバーライトxT47
1E、アンバーライ)G102(以上商品名、オルガノ
社製)あるいはダウエックス50WX2、ダウエックス
50WX4、ダウエックス50WX8、ダウエックス8
8(以上商品名、ダウケミカル社!り等が適しており、
使用前にアルカリ金属型またはアルカリ土類金属型とし
て用いる0分+11装置は、原液槽、展間溶媒槽、送液
ポンプ、分離塔、検出器、分離区分分取機構、制御機構
で構成されるものであり、ぶどう糖とオリゴ糖を効率よ
く分離するための操作としては、原tIl糖濃度30〜
80重量%、温度30〜80℃、通液速度=SVO,0
1〜1゜0の条件が好ましいものである。分離した高純
度オリゴ塘の区分は濾過、イオン交換精製、活性炭精製
、濃縮して高純度オリゴ糖とするが、必要があれば噴霧
乾燥により粉末とすることが出来る。
(Manufacture of high-purity oligosaccharides by chromatographic separation) Chromatographic separation is an excellent means of separating oligosaccharides whose main components are nigerose and gentibiose in a very hot and inexpensive manner. Exchange resins are suitable.The strongly acidic cation exchange resins used in the present invention are of the sulfonic acid type, such as Diaion 5.
KIB, Diaion SK 102, Diaion 5K
104, Diaion SK 106, Diaion 5K
IIO, Diaion 5K112, Diaion 5K1
16.Diaion FROI (product name, Mitsubishi Kasei I)
Or Amberlight [R-116, Amberlight IR-118, Amberlight I R-120R17
7 Amber Light XT1022E, 7 Amber Light xT47
1E, Amberly) G102 (all product names, manufactured by Organo) or DOWEX 50WX2, DOWEX 50WX4, DOWEX 50WX8, DOWEX 8
8 (The above product names, Dow Chemical Company! etc. are suitable,
The 0 min + 11 device, which is used as an alkali metal type or alkaline earth metal type before use, is composed of a stock solution tank, an exfoliating solvent tank, a liquid feed pump, a separation tower, a detector, a separation separation separation mechanism, and a control mechanism. Therefore, the operation for efficiently separating glucose and oligosaccharides requires a raw tIl sugar concentration of 30 to 30.
80% by weight, temperature 30-80°C, liquid passing rate = SVO, 0
A condition of 1 to 1°0 is preferred. The separated high-purity oligosaccharides are filtered, ion exchange purified, activated carbon purified, and concentrated to obtain high-purity oligosaccharides, but if necessary, they can be made into powder by spray drying.

〈実施例〉 以下に、本発明の実施例を示すが、本発明はかかる実施
例に限定されるものではない。
<Examples> Examples of the present invention are shown below, but the present invention is not limited to these examples.

反応例1 (オリゴ糖を含有する酸糖化ぶとう糖の[り内容IIk
3Qの攪拌機(30r、p、m)付の単缶式塘化缶(加
圧缶)を用いた。仕込水2000mQにシ1つ酸を加え
てpH1,7に調整した。
Reaction example 1 (Content IIk of acid saccharified glucose containing oligosaccharide
A single can type canner (pressurized can) equipped with a 3Q stirrer (30r, p, m) was used. Silicic acid was added to 2000 mQ of water to adjust the pH to 1.7.

これにコーンスターチ1400gを加えて澱粉乳とし、
温度140℃で糖化した。糖化温度140℃までに要し
た時間は25分であった。 140℃に上がってから攪
拌機を回転させ、糖化進行の均一化をはかりながら40
分間塘糖化た。糖化終了後炭酸カルシウムを加えpH5
,6まで中和し、濾過、イオン交換精製、活性炭精製、
濃縮してオリゴ塘含有の酸糖化ぶどう糖を調製した。
Add 1400g of cornstarch to this to make starch milk,
Saccharification was carried out at a temperature of 140°C. The time required to reach the saccharification temperature of 140°C was 25 minutes. After the temperature rose to 140℃, rotate the stirrer to ensure uniform saccharification progress.
It was saccharified for minutes. After saccharification, add calcium carbonate to pH 5.
, neutralized to 6, filtration, ion exchange purification, activated carbon purification,
Acid-saccharified glucose containing oligomers was prepared by concentrating.

上記にて得られた得られた酸糖化ぶどう糖の特性を表1
に記す。
Table 1 shows the properties of the acid-saccharified glucose obtained above.
It is written in

表1 DPIは主にグルコース(ぶとう糖)からなる単糖類で
ある。DP2はα−結合の二糖類としては、ニゲロース
、コーンビオース、イソマルトース、マルトース、α−
トレハロースであり、β−結合の二糖類としてはゲンチ
ビオース、ラミナリビオース、ソホロース、セロビオー
ス、β−トレハ七−スから成るオリゴ糖である。DP3
以上はマルトトリオース、マルトテトラオースなどから
成るオリゴ糖である。上記の成分分析には以下の分析装
置を用いた。
Table 1 DPI is a monosaccharide consisting mainly of glucose. DP2 has α-linked disaccharides such as nigerose, cornbiose, isomaltose, maltose, α-
Trehalose is an oligosaccharide consisting of β-linked disaccharides such as gentibiose, laminaribiose, sophorose, cellobiose, and β-trehaleptase. DP3
The above are oligosaccharides consisting of maltotriose, maltotetraose, etc. The following analyzer was used for the above component analysis.

分析装置 高速液体クロマトグラフィー■      
   ■ (機構)ウォーターズ   島津LC4A型590型 
    (島津製作所) (カラム) (溶媒) SCRIOIN (島原製作所) 水 Zorbax   Nll2 (デュポン) i’t)ニトリル:  水 =70:   30 に記す。
Analyzer High performance liquid chromatography■
■ (Organization) Waters Shimadzu LC4A type 590 type
(Shimadzu Corporation) (Column) (Solvent) SCRIOIN (Shimabara Corporation) Water Zorbax Nll2 (DuPont) i't) Nitrile: Water = 70: 30.

表2 実施例1 (クロマト分離による高純度酸糖化オリゴ糖の調製) 反応例1の操作で得たオリゴ糖を含有する酸糖化ぶとう
糖を所定の濃度に希釈し、強酸性陽イオン交換樹脂に通
液させ、A区分と8区分に分離した。へ区分はα結合、
β結合を有する二種類あるいはα結合、β結合を有する
二種類を主成分とするオリゴ糖を固彰あたり20道量%
以上含有する区分である。8区分はぶとう糖類を主成分
として含有するもので、製品から除去する区分である。
Table 2 Example 1 (Preparation of high-purity acid-saccharified oligosaccharides by chromatographic separation) The acid-saccharified glucose containing oligosaccharides obtained by the operation in Reaction Example 1 was diluted to a predetermined concentration, and the acid-saccharified glucose containing the oligosaccharides obtained by the operation in Reaction Example 1 was diluted to a predetermined concentration, and the acid-saccharified glucose containing the oligosaccharides obtained by the operation in Reaction Example 1 was diluted to a predetermined concentration. The mixture was separated into A section and 8 sections. The division is α bond,
Contains 20% oligosaccharide based on two types of β-bonds or two types of α- and β-bonds per serving.
This is a category containing the above. Category 8 contains glucose as a main component and is a category that is removed from products.

へ区分は目的の製品とする区分であり、濾過、イオン交
換精製、活性炭処理、濃縮してオリゴ糖シロップに調整
した。
Category F is the category for the target product, which is adjusted to oligosaccharide syrup by filtration, ion exchange purification, activated carbon treatment, and concentration.

上記にで得られたオリゴ糖シロップの特性を表2上記の
分離条件は以下の通りである。
The properties of the oligosaccharide syrup obtained above are shown in Table 2. The above separation conditions are as follows.

充填剤: ダイヤイオンFROI (Na型)(三菱化
成社製) 分離カラム:  40mm l X2000mmH(樹
脂ff1211) 負荷糖量:  154g/BX65 (1工程)分H温
度= 66℃ 通液速度:SVo、05 DPIは主にグルコースから成る単糖類である。
Packing agent: Diaion FROI (Na type) (manufactured by Mitsubishi Kasei Corporation) Separation column: 40 mm l X2000 mmH (resin ff1211) Loaded sugar amount: 154 g/BX65 (1 step) Min H temperature = 66°C Liquid passing rate: SVo, 05 DPI is a monosaccharide consisting primarily of glucose.

DP2はα−結合の二種類としてはニゲロース、コージ
ビオース、イソマルトース、マルトース、α−トレハロ
ースであり、β−結合の二種類としてはゲンチビオース
、ラミナリビオース、ソホロース、セロビオース、β−
トレハロースから成るオリゴ糖である。
The two types of α-linkages in DP2 are nigerose, cordibiose, isomaltose, maltose, and α-trehalose, and the two types of β-linkages are gentibiose, laminaribiose, sophorose, cellobiose, and β-
It is an oligosaccharide consisting of trehalose.

上記成分分析には以下のi置を用いた。The following i settings were used for the above component analysis.

分析装査 高速液体クロマトグラフィー(1)    
      ■ (機種) ウォーターズ   島淳LC4A型590型
  (島原製作所) (カラム)      5CRIOIN       
       Zorbax   NHp(島原製作所
)     (デュポン)(溶媒)         
水             ?セトニ1ク1=70:
   30 〈発明の効果〉 以上詳述した本発明によれば、酸糖化ぶどう糖からα−
結合、β−結合を有する二種類か、またはα−結合、β
−結合を有する二種類を主成分とするオリゴ糖を高純度
に含有するシロップを効率的、経済的に大量に生産する
工業的製造方法を提供することができる。
Analytical instrument High performance liquid chromatography (1)
■ (Model) Waters Shimajun LC4A type 590 (Shimabara Manufacturing) (Column) 5CRIOIN
Zorbax NHp (Shimabara Manufacturing) (DuPont) (solvent)
water ? Setnik 1 ku 1 = 70:
30 <Effects of the Invention> According to the present invention detailed above, α-
bond, two types with β-bond or α-bond, β
- It is possible to provide an industrial manufacturing method for efficiently and economically producing a syrup containing two types of oligosaccharides with high purity as main components.

この製造方法により得られるオリゴ糖シロップは独特の
呈味を有する甘味料として飲食物への利用、あるいは活
性剤として医薬なとの培養原料、ビフィズス菌増殖因子
、低う触性甘味料、低カロリー甘味料なと多分野に利用
して効果がある新規な高機能性糖類である。
The oligosaccharide syrup obtained by this production method can be used as a sweetener with a unique taste in foods and drinks, or as an active agent as a culture raw material for pharmaceuticals, bifidobacteria growth factors, low cariogenic sweeteners, and low calorie. It is a novel highly functional saccharide that can be used effectively in many fields, including as a sweetener.

Claims (1)

【特許請求の範囲】 1、酸糖化ぶどう糖よりオリゴ糖を分離することにより
得られる新規なオリゴ糖。 2、酸糖化ぶとう糖よりオリゴ糖を分離することを特徴
とするオリゴ糖の製造方法。 3、分離したオリゴ糖が、α−結合、β−結合を有する
二糖類か、またはα−結合、β−結合を有する二糖類を
主成分とするオリゴ糖であり、その組成割合が固形あた
り20重量%以上であることを特徴とする特許請求の範
囲第1項記載のオリゴ糖。 4、分離したオリゴ糖が、α−結合、β−結合を有する
二糖類か、またはα−結合、β−結合を有する二糖類を
主成分とするオリゴ糖であり、その組成割合が固形あた
り20重量%以上であることを特徴とする特許請求の範
囲第2項記載のオリゴ糖の製造方法。 5、α−結合の二糖類がニゲロース、コージビオース、
イソマルトース、マルトース、α−トレハロースであり
、β−結合の二糖類がゲンチビオース、ラミナリビオー
ス、ソホロース、セロビオース、β−トレハロースであ
る特許請求の範囲第3項記載のオリゴ糖。 6、α−結合の二糖類がニゲロース、コージビオース、
イソマルトース、マルトース、α−トレハロースであり
、β−結合の二糖類がゲンチビオース、ラミナリビオー
ス、ソホロース、セロビオース、β−トレハロースであ
る特許請求の範囲第4項記載のオリゴ糖の製造方法。 7、分離剤として強酸性陽イオン交換樹脂を使用する特
許請求の範囲第2項記載のオリゴ糖の製造方法。
[Claims] 1. A novel oligosaccharide obtained by separating oligosaccharide from acid-saccharified glucose. 2. A method for producing oligosaccharides, which comprises separating oligosaccharides from acid-saccharified glucose. 3. The separated oligosaccharide is a disaccharide having α-bonds and β-bonds, or an oligosaccharide whose main component is a disaccharide having α-bonds and β-bonds, and the composition ratio is 20% per solid. The oligosaccharide according to claim 1, wherein the oligosaccharide is at least % by weight. 4. The separated oligosaccharide is a disaccharide having α-bonds and β-bonds, or an oligosaccharide whose main component is a disaccharide having α-bonds and β-bonds, and the composition ratio is 20% per solid. 3. The method for producing an oligosaccharide according to claim 2, wherein the amount is at least % by weight. 5. α-linked disaccharides include nigerose, cordibiose,
4. The oligosaccharide according to claim 3, wherein the oligosaccharide is isomaltose, maltose, or α-trehalose, and the β-linked disaccharide is gentibiose, laminaribiose, sophorose, cellobiose, or β-trehalose. 6. α-linked disaccharides include nigerose, cordibiose,
5. The method for producing an oligosaccharide according to claim 4, wherein the oligosaccharide is isomaltose, maltose, or α-trehalose, and the β-linked disaccharide is gentibiose, laminaribiose, sophorose, cellobiose, or β-trehalose. 7. The method for producing oligosaccharides according to claim 2, which uses a strongly acidic cation exchange resin as a separating agent.
JP1165755A 1989-06-28 1989-06-28 New oligosaccharide and production thereof Pending JPH0331294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165755A JPH0331294A (en) 1989-06-28 1989-06-28 New oligosaccharide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165755A JPH0331294A (en) 1989-06-28 1989-06-28 New oligosaccharide and production thereof

Publications (1)

Publication Number Publication Date
JPH0331294A true JPH0331294A (en) 1991-02-12

Family

ID=15818445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165755A Pending JPH0331294A (en) 1989-06-28 1989-06-28 New oligosaccharide and production thereof

Country Status (1)

Country Link
JP (1) JPH0331294A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659769A2 (en) * 1993-12-20 1995-06-28 Matsutani Chemical Industry Co., Ltd. Agent for promoting the proliferation of bifidobacterium
EP0814093A3 (en) * 1996-06-19 1999-03-17 Canon Kabushiki Kaisha Polymeric compound comprising glycopolymer and a method for decomposing the same
JP2001000200A (en) * 1999-06-23 2001-01-09 Nippon Rensui Co Ltd Production of isomerized sugar with high fructose content
JP2006290831A (en) * 2005-04-13 2006-10-26 Matsutani Chem Ind Ltd Method for purifying cellobiose and method for producing the same
WO2011035978A1 (en) 2009-09-23 2011-03-31 Basf Se Oligosaccharides and their preparation by acidic hydrolysis of starch
US7956045B2 (en) * 2001-11-30 2011-06-07 Vitalan Limited Compositions and methods for animal treatment
JP2013013424A (en) * 1993-06-03 2013-01-24 Hayashibara Co Ltd Trehalose-releasing enzyme, method for producing the same, and use thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013424A (en) * 1993-06-03 2013-01-24 Hayashibara Co Ltd Trehalose-releasing enzyme, method for producing the same, and use thereof
EP0659769A3 (en) * 1993-12-20 1995-10-18 Matsutani Kagaku Kogyo Kk Agent for promoting the proliferation of bifidobacterium.
US5698437A (en) * 1993-12-20 1997-12-16 Matsutani Chemical Industry Co., Ltd. Agent for promoting the proliferation of bifidobacterium
EP0659769A2 (en) * 1993-12-20 1995-06-28 Matsutani Chemical Industry Co., Ltd. Agent for promoting the proliferation of bifidobacterium
EP0814093A3 (en) * 1996-06-19 1999-03-17 Canon Kabushiki Kaisha Polymeric compound comprising glycopolymer and a method for decomposing the same
JP2001000200A (en) * 1999-06-23 2001-01-09 Nippon Rensui Co Ltd Production of isomerized sugar with high fructose content
US7956045B2 (en) * 2001-11-30 2011-06-07 Vitalan Limited Compositions and methods for animal treatment
WO2006112316A1 (en) * 2005-04-13 2006-10-26 Matsutani Chemical Industry Co. Ltd. Purification method and production method for cellobiose
GB2438573B (en) * 2005-04-13 2009-08-26 Matsutani Kagaku Kogyo Kk Purification method and production method for cellobiose
KR100939551B1 (en) * 2005-04-13 2010-02-03 마쓰다니가가꾸고오교가부시끼가이샤 Purification method and production method for cellobiose
GB2438573A (en) * 2005-04-13 2007-11-28 Matsutani Kagaku Kogyo Kk Purification method and production method for cellobiose
JP2006290831A (en) * 2005-04-13 2006-10-26 Matsutani Chem Ind Ltd Method for purifying cellobiose and method for producing the same
US8580955B2 (en) 2005-04-13 2013-11-12 Matsutani Chemical Industry Co., Ltd. Purification method and production method for cellobiose
WO2011035978A1 (en) 2009-09-23 2011-03-31 Basf Se Oligosaccharides and their preparation by acidic hydrolysis of starch

Similar Documents

Publication Publication Date Title
DE69821047T2 (en) Process for the preparation of isomalto-oligosaccharide-rich syrups
US5462864A (en) Manufacturing method of high purity maltose and its reduced product
US4861381A (en) Process for the enzymatic preparation from sucrose of a mixture of sugars having a high content of isomaltose, and products obtained
JPH0751083A (en) Preparation of long chain inulin
CA2801258C (en) Process for manufacturing tagatose and glucose
FI106853B (en) A process for making polyols from an arabinoxylan-containing material
JPH0331294A (en) New oligosaccharide and production thereof
US4294623A (en) Method of producing high purity maltose
EP2809793B1 (en) Process for producing maltitol from starch
KR100508724B1 (en) How to prepare trehalose and sugar alcohol
US8580955B2 (en) Purification method and production method for cellobiose
JPH02163092A (en) Production of saccharide compound
JPS63109790A (en) Continuous production of branched oligosaccharide syrup
DE68913801T2 (en) Process for the preparation of compounds based on 5-C-hydroxymethylaldohexose.
JPS6030695A (en) Production of nonfermentable sugar containing highly hygroscopic isomaltose as main component
JP2822240B2 (en) Novel saccharide and method for producing the same
JPS63216492A (en) Production of neotrehalose and centose
JPH0612977B2 (en) Method for producing fructose condensate
JP2860489B2 (en) Food material, bifidobacterium growth promoter and method for producing them
JPH0614870B2 (en) Method for producing galactooligosaccharide
KR0162726B1 (en) Method for separating fructo-oligosaccharide from fructo-oligosaccharide compound
JP3630378B2 (en) Method for producing galactosylglycerols
CN118184715A (en) Method for preparing isomaltooligosaccharide by utilizing glucose byproduct mother liquor
JP2531601B2 (en) How to improve the physical properties of food
JP3078377B2 (en) Method for producing mannosyl-transferred oligosaccharide