JPH0330392A - Pyrogenic conductive and low-dielectric constant circuit board - Google Patents
Pyrogenic conductive and low-dielectric constant circuit boardInfo
- Publication number
- JPH0330392A JPH0330392A JP1163787A JP16378789A JPH0330392A JP H0330392 A JPH0330392 A JP H0330392A JP 1163787 A JP1163787 A JP 1163787A JP 16378789 A JP16378789 A JP 16378789A JP H0330392 A JPH0330392 A JP H0330392A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- dielectric constant
- nitride sintered
- circuit board
- aluminum nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001698 pyrogenic effect Effects 0.000 title abstract 2
- 239000012212 insulator Substances 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims abstract description 7
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 25
- IWBUYGUPYWKAMK-UHFFFAOYSA-N [AlH3].[N] Chemical compound [AlH3].[N] IWBUYGUPYWKAMK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 8
- 229920005989 resin Polymers 0.000 abstract description 8
- 239000011347 resin Substances 0.000 abstract description 8
- 150000004767 nitrides Chemical class 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 5
- 239000011148 porous material Substances 0.000 abstract description 4
- 239000004593 Epoxy Substances 0.000 abstract description 3
- 239000004698 Polyethylene Substances 0.000 abstract description 2
- 239000004642 Polyimide Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract description 2
- 239000004809 Teflon Substances 0.000 abstract description 2
- 229920006362 Teflon® Polymers 0.000 abstract description 2
- 239000005355 lead glass Substances 0.000 abstract description 2
- -1 polyethylene Polymers 0.000 abstract description 2
- 229920000573 polyethylene Polymers 0.000 abstract description 2
- 229920001721 polyimide Polymers 0.000 abstract description 2
- 229920001296 polysiloxane Polymers 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は高熱伝導性低誘電率回路基板に係り、特に高速
信号伝播用に優れた回路基板に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high thermal conductivity, low dielectric constant circuit board, and particularly to a circuit board excellent for high-speed signal propagation.
(従来の技術)
回路基板の絶縁体として要求される特性には種々のもの
がある。例えば半導体素子の高集積化に伴なう発熱量の
増大に対処するため、高熱伝導性が要求されている。従
来の回路基板としてアルミナが広く用いられているが熱
伝導率は高々20W/nK以下である。これに対し窒化
アルミニウムは約200W/mにと優れた熱伝導率を示
し有望である。(Prior Art) There are various characteristics required of an insulator for a circuit board. For example, high thermal conductivity is required in order to cope with the increase in heat generation due to higher integration of semiconductor devices. Although alumina is widely used as a conventional circuit board, its thermal conductivity is at most 20 W/nK or less. On the other hand, aluminum nitride has excellent thermal conductivity of about 200 W/m and is promising.
一方高速信号伝幡を考えた場合、絶縁体の誘電率の平方
根に比例して信号が遅延するため回路基板としては低誘
電率であることが望まれる。窒化アルミニウムの誘電率
は8.5〜8.8と例えばガラスエポキシの4.8〜5
.1に比べて高い。従って高速信号伝播用としては窒化
アルミニウムは若干不利となる。On the other hand, when considering high-speed signal propagation, it is desirable that the circuit board has a low dielectric constant because the signal is delayed in proportion to the square root of the dielectric constant of the insulator. The dielectric constant of aluminum nitride is 8.5 to 8.8, and for example, the dielectric constant of glass epoxy is 4.8 to 5.
.. Higher than 1. Therefore, aluminum nitride is somewhat disadvantageous for high-speed signal propagation.
(発明が解決しようとする課題)
この様に窒化アルミニウムを用いた回路基板は高熱伝導
性という点では優れているものの誘電率が比絞的高いた
め、高速信号伝播用としては問題があった。しかしなが
ら高速信号伝播用の回路基板としても高熱伝導性が要求
されるのは当然であり、両特性を兼ね備えた回路基板の
出現が望まれていた。(Problems to be Solved by the Invention) Although circuit boards using aluminum nitride are excellent in terms of high thermal conductivity, they have a relatively high dielectric constant, which poses a problem for high-speed signal propagation. However, it is natural that a circuit board for high-speed signal propagation also requires high thermal conductivity, and it has been desired to develop a circuit board that has both of these characteristics.
本発明は以上の点を考慮してなされたもので。The present invention has been made in consideration of the above points.
高熱伝導率かつ低誘電率の回路基板を提供することを目
的とする。The purpose is to provide a circuit board with high thermal conductivity and low dielectric constant.
(111題を解決するための手段及び作用)本発明者等
は窒化アルミニウムの高熱伝導性を生かしつつ、低誘電
率化を達成するための手段を研究した。その結果1通常
高熱伝導率を達成するためにはできるだけ緻密に焼結す
る手法がとられるが、多少気孔が存在しても焼結体を構
成する個々の粒子が結合していれば窒化アルミニウムの
高熱伝導性を十分に生かすことができることを見出した
。すなわち気孔率が35%以下であれば、同様の組成の
ほぼ緻密な窒化アルミニウム焼結体の熱伝導率に比べ5
0%程度の低下が認められるだけで1例えば緻密な焼結
体で得られる熱伝導率が200V/mにであれば、t0
0V/mKと、アルミナ等に比べ格段に優れたものを得
ることができるのである。(Means and effects for solving Problem 111) The present inventors have researched means for achieving a low dielectric constant while taking advantage of the high thermal conductivity of aluminum nitride. As a result 1, normally, in order to achieve high thermal conductivity, a method of sintering as densely as possible is used, but even if there are some pores, if the individual particles that make up the sintered body are bonded, aluminum nitride It was discovered that high thermal conductivity can be fully utilized. In other words, if the porosity is 35% or less, the thermal conductivity is 5% lower than that of a nearly dense aluminum nitride sintered body with a similar composition.
For example, if the thermal conductivity obtained from a dense sintered body is 200 V/m, t0
0V/mK, which is much superior to alumina and the like.
これを超える気孔率ではまず機械的強度が低下し、回路
基板としての実用性に乏しく、また熱伝導率も窒化アル
ミニウムを用いるメリットがなくなる。If the porosity exceeds this, the mechanical strength will first decrease, making it impractical as a circuit board, and the thermal conductivity will eliminate the advantage of using aluminum nitride.
一方3%未i1’jlの気孔率では誘電率が緻密な窒化
アルミニウム焼結体と大差なく、低誘電率は図れない。On the other hand, with a porosity of less than 3% i1'jl, the dielectric constant is not much different from that of a dense aluminum nitride sintered body, and a low dielectric constant cannot be achieved.
以上の様な知見を基にして回路基板への適用を考えたが
、気孔の存在する窒化アルミニウム焼結体は耐優性に乏
しい。すなわち、大気中の水分と反応して加水分解を起
こしアンモニアを発生する。Based on the above knowledge, we considered application to circuit boards, but aluminum nitride sintered bodies with pores have poor resistance. That is, it reacts with moisture in the atmosphere to cause hydrolysis and generate ammonia.
そこで気孔を有する窒化アルミニウム焼結体の表面を樹
脂、ガラス等のAQNに比べ誘電率の低い誘電率で被覆
するか、もしくはこの焼結体に樹脂、ガラス等と含浸せ
しめることにより上述の如く問題点を解消した。Therefore, by coating the surface of the aluminum nitride sintered body with pores with a dielectric constant lower than that of AQN such as resin or glass, or by impregnating this sintered body with resin, glass, etc., the above problems can be solved. The points were resolved.
すなわち本発明は、気孔率が3%以上35%以下の窒化
アルミニウム焼結体表面がこの窒化アルミニウム焼結体
の誘電率より低い誘電率を有する誘電体層で被覆された
絶縁体に導体路が形成されたことを特徴とする高熱伝導
性低誘電率回路基板であり、また気孔率が3%以上35
%以下の窒素アルミニウム焼結体にこの窒化アルミニウ
ム焼結体の誘電率より低い誘電率を有する誘電体が含浸
された絶縁体に導体路が形成されたことを特徴とする高
熱伝導性低誘電率回路基板である。That is, the present invention provides conductor paths in an insulator in which the surface of an aluminum nitride sintered body having a porosity of 3% to 35% is covered with a dielectric layer having a dielectric constant lower than that of the aluminum nitride sintered body. It is a high thermal conductivity and low dielectric constant circuit board characterized by a high thermal conductivity and a porosity of 3% or more.
% or less of nitrogen aluminum sintered body is impregnated with a dielectric material having a dielectric constant lower than that of the aluminum nitride sintered body, and a conductor path is formed in the insulator, which has high thermal conductivity and low dielectric constant. It is a circuit board.
本発明において被覆又は含浸に用いる誘電体としては窒
化アルミニウム焼結体に比較して誘電率が低ければ良く
、例えばポリイミド、ポリエチレン、エポキシ、シリコ
ーン、テフロン等の樹脂、ソーダガラス、石英ガラス、
鉛ガラス、等のガラスが挙げられる。In the present invention, the dielectric used for coating or impregnation may have a dielectric constant lower than that of the aluminum nitride sintered body, such as resins such as polyimide, polyethylene, epoxy, silicone, Teflon, soda glass, quartz glass, etc.
Examples include glass such as lead glass.
なお、本発明に用いる窒化アルミニウム焼結体は希土類
元素、 アルカリ土類元素等の0,1〜20wt%程度
の焼結助剤の他、Ti等の遷移金属を含んでいても良い
。従って構成相としてはAQNの他に、希土類、アルカ
リ土類の酸化物、窒化物、アルミネート等も含有する。The aluminum nitride sintered body used in the present invention may contain transition metals such as Ti in addition to about 0.1 to 20 wt % of sintering aids such as rare earth elements and alkaline earth elements. Therefore, in addition to AQN, the constituent phases include rare earth metals, alkaline earth metal oxides, nitrides, aluminates, and the like.
本発明に係るポーラスな窒化アルミニウム焼結体は各種
の方法で製造される。例えばAQN粉に0.1〜10w
t%程度の焼結助剤を加え、通常の焼成温度より低い1
300〜1700℃程度で焼結することで得ることがで
きる。なお高熱伝導化のためには焼結後、C等の還元性
雰囲気で1720℃以上の熱処理を行なうことが好まし
い。この様な処理で希土類、アルカリ土類を含む粒界相
を除去することができ、実質的に窒化アルミニウム単相
からなるポーラスな窒化アルミニウム焼結体を得ること
ができる。The porous aluminum nitride sintered body according to the present invention can be manufactured by various methods. For example, 0.1 to 10w for AQN powder
By adding about t% of sintering aid, the firing temperature is lower than the normal firing temperature.
It can be obtained by sintering at about 300 to 1700°C. Note that in order to achieve high thermal conductivity, it is preferable to perform heat treatment at 1720° C. or higher in a reducing atmosphere such as C after sintering. Through such treatment, grain boundary phases containing rare earth and alkaline earth elements can be removed, and a porous aluminum nitride sintered body consisting essentially of a single phase of aluminum nitride can be obtained.
また導体路はAu、 Cu、 AQ、 W、 Mo、
Ti、 TiN等の厚膜、薄膜いずれの形態でも良く、
表面にのみ形成されていても良いし、誘電体内部に存在
しても良い。多層配線でも良いことは言うまでもなく、
半導体素子と塔載したいわゆるパッケージ等の形態をと
っても良い。Also, the conductor paths are Au, Cu, AQ, W, Mo,
It can be either a thick film or a thin film of Ti, TiN, etc.
It may be formed only on the surface or may exist inside the dielectric. Needless to say, multi-layer wiring is also good.
It may also take the form of a so-called package mounted with a semiconductor element.
(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
窒化アルミニウム粉末にイツトリアを3重量%添加して
窒素ガス中、1700℃で30分常圧焼成したのち、カ
ーボン雰囲気中、1880℃で3時間熱処理した素板の
気孔率は22%で残留イツトリウム0.12%、酸素0
.05%であった。この素板にエポキシ樹脂を含浸させ
た基板の20℃での熱伝導率とI MHzにおける比誘
電率はそれぞれ1601/m4.7.2であった。また
、窒化アルミニウム粉末にイツトリアを3重量%添加し
て窒素ガス中、 1600℃で10分常圧焼成した素板
の気孔率は38%で、この素仮にポリイミド樹脂を含浸
被覆させた基板の熱伝導率と比誘電率はそれぞれ70シ
/m4.5.8で、4点曲げ強度22にg7mm2であ
った。このように本方法で作製した基板は高い熱伝導率
と比較的低い誘電率を兼ね備えていることがわかる。な
おこれらの測定はJISC2141に従って行った。ま
た、これらの基板を絶縁体として、この上に導体路を形
成した回路基板上にGaAs半導体集積回路素子を実装
し熱抵抗と信号遅延速度を評価したところ回路基板とし
て優れていることが確認された。After adding 3% by weight of yttrium to aluminum nitride powder and firing in nitrogen gas at 1,700°C for 30 minutes under normal pressure, the blank was heat-treated at 1,880°C for 3 hours in a carbon atmosphere.The porosity of the blank was 22% and no residual yttrium. .12%, oxygen 0
.. It was 0.5%. The thermal conductivity at 20° C. and the dielectric constant at I MHz of this substrate impregnated with epoxy resin were 1601/m4.7.2, respectively. In addition, the porosity of the base plate made by adding 3% by weight of ittria to aluminum nitride powder and firing it in nitrogen gas at 1600°C for 10 minutes under normal pressure was 38%. The conductivity and dielectric constant were 70 sh/m4.5.8, respectively, and the four-point bending strength was 22 g7mm2. It can thus be seen that the substrate produced by this method has both high thermal conductivity and relatively low dielectric constant. Note that these measurements were performed in accordance with JISC2141. Furthermore, when we evaluated thermal resistance and signal delay speed by mounting GaAs semiconductor integrated circuit elements on circuit boards with conductor paths formed on these boards as insulators, we confirmed that they were excellent as circuit boards. Ta.
またこの基板を120℃、2気圧の飽和水蒸気中で20
0時間放置しても物理的、化学的に変化がみられなかっ
た。Furthermore, this substrate was placed in saturated steam at 120°C and 2 atm for 20
Even after being left for 0 hours, no physical or chemical changes were observed.
なお、上述の実施例では樹脂含浸の例を説明したが、表
面に樹脂層を形成しても同様の効果を得ることができる
。In addition, although the example of resin impregnation was explained in the above-mentioned Example, the same effect can be obtained even if a resin layer is formed on the surface.
以上説明したように本発明によれば、高熱伝導性に優れ
かつ誘電率が低いために高周波・高速で動作する半導体
回路に適し、耐候性に優れた窒化アルミニウム複合基板
を回路基板として用いることができる。As explained above, according to the present invention, an aluminum nitride composite substrate, which has excellent thermal conductivity and low dielectric constant, is suitable for semiconductor circuits operating at high frequency and high speed, and has excellent weather resistance can be used as a circuit board. can.
Claims (2)
焼結体表面がこの窒化アルミニウム焼結体の誘電率より
低い誘電率を有する誘電体層で被覆された絶縁体に導体
路が形成されたことを特徴とする高熱伝導性低誘電率回
路基板。(1) A conductor path is formed in an insulator in which the surface of an aluminum nitride sintered body with a porosity of 3% to 35% is covered with a dielectric layer having a dielectric constant lower than that of the aluminum nitride sintered body. A high thermal conductivity and low dielectric constant circuit board.
焼結体にこの窒化アルミニウム焼結体の誘電率より低い
誘電率を有する誘電体が含浸された絶縁体に導体路が形
成されたことを特徴とする高熱伝導性低誘電率回路基板
。(2) A conductor path is formed in an insulator in which a nitrogen aluminum sintered body with a porosity of 3% to 35% is impregnated with a dielectric material having a dielectric constant lower than that of the aluminum nitride sintered body. High thermal conductivity and low dielectric constant circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1163787A JP2766318B2 (en) | 1989-06-28 | 1989-06-28 | High thermal conductivity low dielectric constant circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1163787A JP2766318B2 (en) | 1989-06-28 | 1989-06-28 | High thermal conductivity low dielectric constant circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0330392A true JPH0330392A (en) | 1991-02-08 |
JP2766318B2 JP2766318B2 (en) | 1998-06-18 |
Family
ID=15780701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1163787A Expired - Lifetime JP2766318B2 (en) | 1989-06-28 | 1989-06-28 | High thermal conductivity low dielectric constant circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2766318B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127634A (en) * | 1994-10-11 | 2000-10-03 | Fujitsu Limited | Wiring board with an insulating layer to prevent gap formation during etching |
JP2002193691A (en) * | 2000-12-26 | 2002-07-10 | Kyocera Corp | Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61281088A (en) * | 1985-05-31 | 1986-12-11 | イビデン株式会社 | High machine processability ceramic composite body |
-
1989
- 1989-06-28 JP JP1163787A patent/JP2766318B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61281088A (en) * | 1985-05-31 | 1986-12-11 | イビデン株式会社 | High machine processability ceramic composite body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127634A (en) * | 1994-10-11 | 2000-10-03 | Fujitsu Limited | Wiring board with an insulating layer to prevent gap formation during etching |
JP2002193691A (en) * | 2000-12-26 | 2002-07-10 | Kyocera Corp | Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2766318B2 (en) | 1998-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0100232B2 (en) | Substrate for semiconductor apparatus | |
JPS62207789A (en) | Surface structure for aluminum nitride material and manufacture | |
JPS5811390B2 (en) | Method of manufacturing thermally conductive substrate | |
EP0290578A1 (en) | Tungsten paste for co-sintering with pure alumina and method for producing same. | |
JP3517062B2 (en) | Copper metallized composition and glass-ceramic wiring board using the same | |
JPH0330392A (en) | Pyrogenic conductive and low-dielectric constant circuit board | |
JPS61291480A (en) | Surface treating composition for aluminum nitride base material | |
JPS61119094A (en) | High thermoconductive circuit board | |
JPH0576795B2 (en) | ||
JP2751473B2 (en) | High thermal conductive insulating substrate and method of manufacturing the same | |
JP3271342B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP2002212651A (en) | Copper composite material | |
JP2506270B2 (en) | High thermal conductivity circuit board and high thermal conductivity envelope | |
JPH02153883A (en) | High thermal conductivity base and its production | |
JP4249371B2 (en) | Metal base circuit board | |
JP3314133B2 (en) | Wiring board | |
JPH01220462A (en) | Aluminum nitride substrate whose surface qualify is improved | |
JP2721258B2 (en) | Manufacturing method of ceramic substrate | |
JPH0323511B2 (en) | ||
JPS61281074A (en) | High heat conductivity aluminum nitride sintered body | |
JPH02283684A (en) | Production of sintered aluminum nitride | |
JPH01301575A (en) | Aluminum nitride base for semiconductor | |
JPH04125952A (en) | Ceramic package | |
JPH0444395A (en) | Multilayer circuit board | |
Vaezi-Nejad et al. | Comparison of properties of alternative substrates |