[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03292722A - Manufacture of silicon single crystal thin film - Google Patents

Manufacture of silicon single crystal thin film

Info

Publication number
JPH03292722A
JPH03292722A JP9477590A JP9477590A JPH03292722A JP H03292722 A JPH03292722 A JP H03292722A JP 9477590 A JP9477590 A JP 9477590A JP 9477590 A JP9477590 A JP 9477590A JP H03292722 A JPH03292722 A JP H03292722A
Authority
JP
Japan
Prior art keywords
wafer
seg
substrate
crystals
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9477590A
Other languages
Japanese (ja)
Inventor
Kenji Yamagata
憲二 山方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9477590A priority Critical patent/JPH03292722A/en
Publication of JPH03292722A publication Critical patent/JPH03292722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form (100) Si single crystal in very excellent bond properties between an SiO2 substrate and Si crystals to each other by a method wherein Si in the surface direction of (100) is selective epitaxially grown as seed crystals on a substrate comprising SiO2. CONSTITUTION:A 4-inch (100) Si wafer 11 is prepared and then the surface thereof is oxidized in thickness of 0.5mum to form an insulator layer 12. Next, SEG crystals 14 are selective epitaxially grown (SEG) in the openings 13 of the wafer 11 so as to be buried therein attaining the same level as that of the surface of the insulator layer 12. Successively, the surface flattened by SEG and the flattened surface of a 4-inch fused quartz wafer 10 are bonded to each other to form an interface 15 and then the (100) Si wafer 11 side is polished until the insulator layer 12 is exposed. Finally, the surface of grown crystals 16 epitaxial laterally overgrown (ELO) on an SiO2 surface using SEG crystals 14 as seed crystals are polished to form flat polished crystals 16'.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に高性能半導体素子の製造に有効なSi!
#結晶薄膜の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides Si!
#Relates to a method for producing a crystalline thin film.

[従来の技術] 従来より、石英基板のような5102を成分とする基板
上に51膜を形成させた場合、該Si膜に引っ張り応力
か作用することが知られている。
[Prior Art] It has been known that when a 51 film is formed on a substrate containing 5102, such as a quartz substrate, tensile stress acts on the Si film.

例えば、面の方位が(100)のSi膜に、前記引っ張
り応力を作用させると、膜中の電子移動度が極めて高く
なる。このことは、MIT (マサチューセッツエ科犬
学)のB−Y、Tsaurらによる理論計算と実験によ
り証明されたという報告がある(B−Y、Tsaur、
John C,C,Fan、and M、W、Ge1s
、Appl、Phys、Lett、40(4)、15 
February 1982)。
For example, when the tensile stress is applied to a Si film with a (100) plane orientation, the electron mobility in the film becomes extremely high. There is a report that this has been proven through theoretical calculations and experiments by BY, Tsaur, and colleagues at MIT (Massachusetts Canine Science) (B-Y, Tsaur,
John C, C, Fan, and M, W, Gels
, Appl, Phys, Lett, 40(4), 15
February 1982).

該報告によると、引っ張り応力を受けた(100)方位
のSi膜は、車なるSiウェハーに比べて電子穆動度が
1.5倍以上にもなるとされており、該応力を受けたS
i膜に形成される半導体素子は、前記Siウェハー上に
形成される半導体素子りも高性能化を実現させ易いとさ
れている。しかし、(100)面の方位以外の薄膜は、
引フ張り応力はそれほど効果的でないばかりか、ホール
移動度に関しては、引っ張り応力は逆効果を生じさせる
恐れがある。
According to this report, a (100) oriented Si film subjected to tensile stress has an electron mobility of more than 1.5 times that of a Si wafer, which is a car.
It is said that a semiconductor element formed on an i-film can more easily achieve higher performance than a semiconductor element formed on the Si wafer. However, for thin films with orientations other than the (100) plane,
Not only is tensile stress less effective, but tensile stress can have an adverse effect on hole mobility.

一方、石英基板のようなバルクのSiO2上にSiの単
結晶薄膜を形成する手法は、従来より色々と報告されて
いるものの、(ioo)面の方位に定められたSi完全
全単結晶薄膜作製する手法についてはほとんど開発され
ていない。
On the other hand, although various methods have been reported for forming a Si single-crystal thin film on bulk SiO2 such as a quartz substrate, it is possible to fabricate a completely Si single-crystal thin film oriented in the (ioo) plane. Very few methods have been developed to do so.

但し、例えば第3図に示すように、上記MITのB−Y
、Tsaurらは、熔融石英基板30上に31膜(多結
晶もしくは非晶質)31を堆積させ、これを棒状ヒータ
ー33により一旦溶融して再結晶化し、もって(100
)配向膜32を得るとするいわゆる溶融再結晶化法(以
下ZMR法という)という手法を提案している。この手
法は、5i02表面で液相のSiが結晶化するときには
、界面のエネルギーの安定な(100)面の方位を選択
し易いという現象を利用したものである。
However, for example, as shown in FIG.
, Tsaur et al. deposited a film 31 (polycrystalline or amorphous) 31 on a fused quartz substrate 30, melted it once with a rod-shaped heater 33 and recrystallized it, and then
) has proposed a method called the so-called melt recrystallization method (hereinafter referred to as ZMR method) to obtain the alignment film 32. This method utilizes the phenomenon that when liquid phase Si crystallizes on the 5i02 surface, it is easy to select the (100) plane orientation where the interfacial energy is stable.

他の手法としては、第4図に示すようないわゆる貼り合
わせ法がある。この手法は、S1ウエハー41と絶縁物
表面を有する他の支持体、例えば表面に酸化層43を有
するS1ウエハー42を互いに密着させ、H2;囲気等
て熱処理することにより接看し、次いて、いずれか−万
態から酸化膜43とS】薄膜41°を残すように研磨し
ようとするものである( La5ky、J、B、、 5
tiffler、S、RWhite、F、R,and 
 Abernathey、J、R,、“S i l 1
con−on−Tnsu−1ator(SOI) by
 Bonding and Etch−Back+IE
EE  International Electro
n Devices Meeting(IEDM)Te
chnical Digest、pp684−687.
Dec、 1985の他、いくつかの報告例有り)。
Another method is the so-called bonding method as shown in FIG. In this method, the S1 wafer 41 and another support having an insulating material surface, for example, the S1 wafer 42 having an oxide layer 43 on the surface, are brought into close contact with each other, and are brought into contact with each other by heat treatment such as H2; In either case, polishing is attempted to leave an oxide film 43 and a thin film 41° (La5ky, J, B, 5
tiffler, S, RWhite, F, R, and
Abernathey, J. R., “S i l 1
con-on-Tnsu-1ator (SOI) by
Bonding and Etch-Back+IE
EE International Electro
n Devices Meeting (IEDM)Te
Chnical Digest, pp684-687.
(Dec, 1985, and several other reported examples).

[発明か解決しようとしている課題] しかしなから、上記従来技術では以下に示すような問題
点が生じる。
[Problem to be Solved by the Invention] However, the above-mentioned prior art has the following problems.

まず、前記ZMR法は、前述したように、5i02−S
i界面の方位が、界面エネルギーの安定の容易性により
決定されるので、基板表面の傷痕や凹凸等の微細な変位
状態によって結晶方位が影響を受けてしまい、従って、
−律に(100)面の方位を有する結晶薄膜を作製する
のは困難である。また、−11Q的に、ZMR法により
形成されたS】膜は、ミリメートルオーダーの大粒径多
結晶であることが知られており、このことはグレイン・
バウンダリー(粒界)か存在すること、即ち膜全体が均
一な単結晶膜を形成し得ないということを示唆している
First, the ZMR method is performed using the 5i02-S
Since the orientation of the i-interface is determined by the ease with which the interfacial energy can be stabilized, the crystal orientation is affected by minute displacements such as scratches and irregularities on the substrate surface.
- It is difficult to produce a crystalline thin film having a (100) plane orientation. Furthermore, -11Q-wise, it is known that the S film formed by the ZMR method is polycrystalline with a large grain size on the order of millimeters, which means that the grain size is
This suggests that there are boundaries (grain boundaries), that is, it is not possible to form a uniform single crystal film over the entire film.

次に、前記貼り合わせ法であるが、この手法では、ウェ
ハーサイズの(100)面の方位を有する完全結晶を5
i02上に作製すことは一応可能であるものの、接着力
が弱いという欠点を有している。換言すれば、石英基板
上に、該貼つ合わせ法で31薄膜を形成しても、引っ張
り応力による影響て膜剥離等か生し易い。
Next, regarding the above-mentioned bonding method, in this method, a perfect crystal with a wafer-sized (100) plane orientation is
Although it is possible to fabricate it on i02, it has the drawback of weak adhesive strength. In other words, even if a 31 thin film is formed on a quartz substrate by this bonding method, peeling of the film is likely to occur due to the influence of tensile stress.

また、十分な富者状5態て貼り合わせても、その後のバ
ルクSiの研磨により、均一な薄膜にすることには極め
て困難が伴なう。すなわち、s1ウェハーは、本来的に
、数μm〜数十μmの反りを有しているので、貼り合わ
せ後のウェハーを平行に研磨したとすると、相当な@厚
ムラを有するようになるからである。
Further, even if the Si layers are bonded together in a sufficient state, it is extremely difficult to form a uniform thin film due to subsequent polishing of the bulk Si. In other words, since the S1 wafer inherently has a warp of several μm to several tens of μm, if the wafers are polished in parallel after bonding, they will have considerable @ thickness unevenness. be.

本発明は、上記従来技術の課題を解決すべく、5jO2
基板土に一律に定められた(100)面の方位を有し、
@厚か均一であると共に、高性能な半導体素子に適用し
て有用なS1!#結晶服の作製方、・去を捏イ共するこ
とを目的とする。
The present invention aims to solve the problems of the prior art described above.
The substrate soil has a uniformly determined (100) plane orientation,
@ S1 is uniform in thickness and useful for application to high-performance semiconductor devices! # The purpose is to share how to make and knit crystal clothes.

[課題を解決するための手段] 本発明は、上記目的を達成すへく、鋭意研究を重ねるこ
とで成されたものである。
[Means for Solving the Problems] The present invention has been achieved through extensive research in order to achieve the above objects.

本発明は、S10.を成分とする基板上に、面方位か(
100)の5il−結晶FiPAを作製する方法におい
て、 (100)Siウェハー表面に、Siとの選択研磨か可
能であって、選択エピタキシャル成長のマスクとしても
使用可能な絶縁物層を形成する第1の工程と、 該絶縁物層の一部に開口部を形成してマスクを形成し、
該開口部を介して臨まされる前記SiウニバーのSiを
前記絶縁物層の表面まで選択エピタキシャル成長させる
第2の工程と、 前記選択エピタキシャル成長をさせた側の面と前記基板
の面とを密着させ、該密着部の接着を行うべく熱処理を
する第3の工程と、 前記接着ざわた基板の前記Siウェハー側から前記マス
クをストッパーとする選択研磨を行なう第4の工程と、 前記選択研磨によって残された(ioo)の面方位のS
iを種子結晶として、前記基板上にSiの選択成長をさ
せる第5の工程とを含むことを特徴とする。
The present invention includes S10. On a substrate whose component is
In the method of manufacturing 5il-crystalline FiPA of (100), a first insulating layer is formed on the surface of the Si wafer, which can be selectively polished with Si and can also be used as a mask for selective epitaxial growth. forming an opening in a portion of the insulating layer to form a mask;
a second step of selectively epitaxially growing Si of the Si univer facing through the opening up to the surface of the insulating layer; and bringing the surface on which the selective epitaxial growth has been made into close contact with the surface of the substrate; a third step of performing heat treatment to bond the adhering portion; a fourth step of performing selective polishing from the Si wafer side of the bonded rough substrate using the mask as a stopper; and a fourth step of performing selective polishing using the mask as a stopper. S of plane orientation of (ioo)
A fifth step of selectively growing Si on the substrate using i as a seed crystal.

[作用] (I)第1の工程では、(100)S iウェハー表面
に、酸化等により絶縁物層を形成する。
[Operation] (I) In the first step, an insulating layer is formed on the surface of the (100) Si wafer by oxidation or the like.

前記絶縁物層は、後記マスクとしても、選択研磨のスト
ッパーとしても機能するので、両者に使用可能な材料、
例えば5i02 、Sis N4.5iON等から成る
。この場合、その材料としてSiO2を選択するときに
は、Siウェハー11の表面を熱酸化してもよい。その
他の場合はCVD等で当該材料を堆積させる。
The insulating layer functions both as a mask and a stopper for selective polishing, so it is possible to use materials that can be used for both.
For example, it consists of 5i02, Sis N4.5iON, etc. In this case, when SiO2 is selected as the material, the surface of the Si wafer 11 may be thermally oxidized. In other cases, the material is deposited by CVD or the like.

前記絶縁物層の膜厚は、マスク及びストッパーの両方の
役割を十分果たさせるべく、0.1〜10μmに設定す
るのが好ましく、より好ましくは02〜0.5μmに設
定する。なお、最適な膜厚はマスクの材料や、後の研磨
の方法によって異なる。
The thickness of the insulating layer is preferably set to 0.1 to 10 μm, more preferably 02 to 0.5 μm, so that it can sufficiently function as both a mask and a stopper. Note that the optimum film thickness varies depending on the material of the mask and the method of subsequent polishing.

(11)第2の工程では、第1の工程で形成された前記
絶縁物層の任意の位置に微小な開口部を形成し、その後
該開口部から露出しているSi面を種子結晶として選択
エピタキシャル成長(以下SEGという)を行なう。
(11) In the second step, a minute opening is formed at an arbitrary position in the insulating layer formed in the first step, and then the Si plane exposed from the opening is selected as a seed crystal. Epitaxial growth (hereinafter referred to as SEG) is performed.

前記開口部の大きさは、前記SEGや横方向成長を考慮
して、その直径を1〜5μm1好ましくは2〜4μm、
最適には3μm程度に設定する。
The size of the opening is 1 to 5 μm in diameter, preferably 2 to 4 μm, considering the SEG and lateral growth.
Optimally, it is set to about 3 μm.

前記SEGにより形成されるSEG結晶の成長は、その
成長面が前記マスクたる絶縁物層の表面と同一面になっ
たところで終了させる。
The growth of the SEG crystal formed by the SEG is terminated when its growth surface becomes flush with the surface of the insulating layer serving as the mask.

前記SEGを行う場合、ガス系としては、SiH4,S
i□H6等のシラン系のもの、および5iH2Cn2,
5iHCf13,5iCu4等のクロロシラン系のもの
その他を用い、添加カスとしては、エツチング作用のあ
るHCJ2等を用いる。
When performing the above SEG, the gas system is SiH4, S
Silane-based ones such as i□H6, and 5iH2Cn2,
A chlorosilane type material such as 5iHCf13, 5iCu4, etc. is used, and as the additive residue, HCJ2 or the like having an etching action is used.

また、キャリアーカスとしてはH2を用いる。Furthermore, H2 is used as the carrier cassette.

温度は使用ガス等に大きく依存するが、800〜120
0℃、好ましくは900〜1100℃に設定する。
The temperature depends largely on the gas used, etc., but is between 800 and 120.
The temperature is set at 0°C, preferably 900-1100°C.

圧力は数10Torr 〜200Torrの範囲に設定
し、好ましくは100Torr前後の値に設定する。
The pressure is set in the range of several tens of Torr to 200 Torr, preferably around 100 Torr.

(III )第3の工不呈ては、SEGを施したSiウ
ニバーの表面にSiO2を成分とする基板を当接させ、
その後納処理を行なって該当接部を十分にに接着させる
(III) The third technique is to bring a substrate containing SiO2 into contact with the surface of the SEG-treated Si unibar,
Afterwards, a mounting process is performed to ensure that the corresponding contact areas are sufficiently bonded.

5i02を成分とする基板の材料としては、溶融石英、
合成石英、高耐熱ガラス等、5in2を主成分とし、熱
処理温度に耐えられるものfjらいずれても適用できる
。熱処理の温度は5102基板10のガラス転移温度付
近で行なうのが好ましい。また、熱処理の雰囲気は水素
(H2)または水素を含むフォーミングガスか好ましい
Materials for the substrate containing 5i02 include fused silica,
Synthetic quartz, high heat-resistant glass, etc., which have 5in2 as a main component and can withstand the heat treatment temperature, can be used. The temperature of the heat treatment is preferably around the glass transition temperature of the 5102 substrate 10. Further, the atmosphere for the heat treatment is preferably hydrogen (H2) or a forming gas containing hydrogen.

(rV)i4の工程では、面方位が(100)のS】ウ
ェハーを遭択石升磨する。
In the step (rV)i4, the S] wafer with a surface orientation of (100) is polished with a selected stone.

前記研磨はマスクたる絶縁物層の面か露出したところで
終了させる。
The polishing is finished when the surface of the insulating layer serving as a mask is exposed.

選択研磨の方法には、犬きく分けて2種類挙げられる。There are two types of selective polishing methods.

1つは機械化学研磨法(メカノケミカルエツチング)、
1つは機械研磨法(メカニカルエツチング)である。
One is mechanical chemical polishing method (mechanochemical etching),
One is a mechanical polishing method (mechanical etching).

前者は、前屈絶縁物層を5102に選定した場合、特殊
な化学研M液を混入してSiと5102の研磨速度を著
しく異ならせるようにした選択研磨法である(濱田、連
層、応用物理学会誌・第56巻、第11号、1480頁
、その他)。
The former is a selective polishing method in which when 5102 is selected as the forward bending insulator layer, a special chemical polishing solution is mixed to make the polishing speeds of Si and 5102 significantly different (Hamada, Journal of the Physical Society of Japan, Vol. 56, No. 11, p. 1480, etc.).

上記研磨は、具体的には、例えばエチレン・ジアミン・
ピロカテコールというアルカリ系溶液を用いてボリシン
グ布土で行なう。なお、上記化学研磨液はSiを5i(
OH)62−として溶解するが、5i02には反応しな
いので、露出した5i02面が研磨の終了位置となり、
該露出面はストッパーとして働く。
Specifically, the above polishing is performed using, for example, ethylene diamine,
This is done using an alkaline solution called pyrocatechol with a borizing cloth. In addition, the above chemical polishing liquid polishes Si with 5i (
It dissolves as OH)62- but does not react with 5i02, so the exposed 5i02 surface becomes the polishing end position.
The exposed surface acts as a stop.

一方、マスクたる絶縁物層をSi3N4等、モース硬度
がSiより十分に高い材料を使用するときは、材料研磨
法を用いることができる(特願昭63−247819号
)。上記研磨法はStと同等、若しくはそれより硬度が
高く、5L3N4よりも硬度の低い砥粒「コロイダル・
シリカ」を研磨剤として使用し、機械的に研磨するもの
である。コロイダル・シリカは硬度が低いためSi3N
4を研磨できないので、Si3N4面が露出した時点で
研磨を終了させる。
On the other hand, when a material such as Si3N4, which has a Mohs hardness sufficiently higher than that of Si, is used for the insulating layer serving as a mask, a material polishing method can be used (Japanese Patent Application No. 63-247819). The above polishing method uses "colloidal" abrasive grains, which have a hardness equal to or higher than St, but lower than 5L3N4.
Silica is used as an abrasive for mechanical polishing. Colloidal silica has low hardness, so Si3N
Since the Si3N4 surface cannot be polished, the polishing is finished when the Si3N4 surface is exposed.

なお、コロイダル・シリカより硬度が高く、選択成長が
可能な絶縁物であれば、本発明の工程においては機械研
磨用マスクとして用いることができる。
Note that any insulator that is harder than colloidal silica and that can be selectively grown can be used as a mask for mechanical polishing in the process of the present invention.

次に、前記絶縁物層をエツチングする。このとき、5i
02基板とSEG結晶のエツチングは回避させる。なお
、該絶縁物層の材料が、例えば、5isN4であれば熱
リン酸が好ましい。絶縁物層の材料が(100)Siウ
ェハーの熱酸化膜、もしくは常圧CVD等で堆積した5
iOzであれば、希フッ酸溶液等を使用することができ
る。但し、この場合には、基板は溶融石英または合成石
英であることを要する。(溶融石英、合成石英等は、熱
酸化膜もしくはCV D −S i O2よりもHFエ
ッチレートが遅い)。
Next, the insulating layer is etched. At this time, 5i
Etching of the 02 substrate and SEG crystal is avoided. Note that if the material of the insulating layer is, for example, 5isN4, hot phosphoric acid is preferable. The material of the insulating layer is a thermal oxide film of a (100) Si wafer or deposited by atmospheric pressure CVD, etc. 5
If it is iOz, a dilute hydrofluoric acid solution or the like can be used. However, in this case, the substrate needs to be made of fused silica or synthetic quartz. (Fused quartz, synthetic quartz, etc. have a slower HF etch rate than a thermal oxide film or CVD-SiO2).

また、絶縁物層の材料が5i02である場合には、前記
エツチング工程を省略できる。
Further, when the material of the insulating layer is 5i02, the etching step can be omitted.

(V)第5の工程では、前記SEG結晶を種子結晶とし
てSiの選択成長を行なう。
(V) In the fifth step, selective growth of Si is performed using the SEG crystal as a seed crystal.

選択成長については、前記第2の工程と同様でかまわな
い。但し、処理時間は、隣接する種子結晶から成長して
来た成長結晶同士が接触して粒界を形成するまで行なう
のが好ましい。しかし、前記選択成長により得られる成
長結晶は必ずしも粒界を介して連続である必要はない。
The selective growth may be the same as the second step. However, it is preferable that the treatment be carried out until the grown crystals grown from adjacent seed crystals come into contact with each other and form grain boundaries. However, the grown crystals obtained by the selective growth do not necessarily have to be continuous across grain boundaries.

なお、前記成長結晶はファセットを有するので、上面を
研磨し平坦な研磨結晶を得る。この場合の研磨はSiウ
ェハーの鏡面を形成する際におけるような一般的な最終
仕上げ研磨と同様に行なえばよい。
Note that since the grown crystal has facets, the upper surface is polished to obtain a flat polished crystal. Polishing in this case may be performed in the same manner as general final polishing such as when forming a mirror surface of a Si wafer.

前記研磨結晶の厚さは1.2〜10μm程度が好ましく
、より好ましくは0.4〜2μm程度である。最適には
0.5μm程度である。
The thickness of the polished crystal is preferably about 1.2 to 10 μm, more preferably about 0.4 to 2 μm. The optimal thickness is about 0.5 μm.

該研磨に際しては、成長結晶の大きさや、面方位がいず
れも揃っているので、時間を制御することにより、残す
べき膜厚を容易に制御することができる。
During the polishing, since the grown crystals have the same size and plane orientation, the thickness of the film to be left can be easily controlled by controlling the time.

[実施例コ 以下に、上記(100)Si単結晶Fi!膜の製造方法
の第1実施例につぎ、具体的に説明する。
[Example 1] The above (100) Si single crystal Fi! Next, a first example of a method for manufacturing a membrane will be specifically described.

(a)まず、S1図(a)に示すように、4インチの(
100)Siウェハー11を用意し、その表面を0.5
μm酸化して絶縁物層12を形成した。酸化条件は、H
2:02=3・2の雰囲気中で温度を1000℃とし、
酸化時間を3時間とした。
(a) First, as shown in Figure S1 (a), a 4-inch (
100) Prepare a Si wafer 11, and make its surface 0.5
An insulator layer 12 was formed by oxidizing the insulating material to a micrometer. The oxidation conditions were H
The temperature is 1000℃ in an atmosphere of 2:02=3・2,
The oxidation time was 3 hours.

次に、通常のフォトリソグラフィー工程を用いて、前記
絶縁物層12に直径2μmの開口部13となる部位を5
0μm間隔でマトリックス状にパターニングし、HF 
m ?W−てエツチングした。
Next, using a normal photolithography process, five portions of the insulating layer 12 that will become the openings 13 with a diameter of 2 μm are formed.
Patterned in a matrix at 0 μm intervals, HF
M? W-etched.

(b)次いて、第1図(b)に示すように、上記ウェハ
ーの開口部13をSEGによりSEG結晶14を成長さ
せ、該SEG結晶14は絶縁物層12の表面と艮−面に
なるように埋められた。このSEG条件は次のとおりで
ある。
(b) Next, as shown in FIG. 1(b), an SEG crystal 14 is grown in the opening 13 of the wafer by SEG, and the SEG crystal 14 becomes a surface that is flush with the surface of the insulating layer 12. It was buried like that. The SEG conditions are as follows.

ガス種  ・・・ S i H2Cfl 2 / HC
Jl / H2ガス流量比・・・ 0.53/1.6/
100[1/min] 温度  ・・・+030[t] 圧力  −100[Torrコ 成長時間−180[sec] (c)続いて、第1図(c)に示すように、前記SEG
により平坦になった表面と4インチの溶融石英ウェハー
10の平坦面を密着させて界面15を形成し、ざらにH
2:N2 =20 :80 (%)のフォーミングガス
雰囲気で980℃、30分間熱処理し、前記密着部の接
着を行った。
Gas type: S i H2Cfl 2 / HC
Jl/H2 gas flow ratio...0.53/1.6/
100 [1/min] Temperature...+030 [t] Pressure -100 [Torr Co-growth time -180 [sec] (c) Subsequently, as shown in FIG. 1(c), the SEG
The flat surface of the 4-inch fused silica wafer 10 is brought into close contact to form an interface 15.
Heat treatment was performed at 980° C. for 30 minutes in a forming gas atmosphere of 2:N2 = 20:80 (%) to bond the adhesive portions.

(d)さらに、第1図(d)に示すように、前記接着し
たものの(100)Siウェハー側を研磨する。この場
合、Siウェハー11の厚さは、本来520μm程度に
形成されているので50μmまではアルミナ(Af12
03)等の粗い砥粒を用いて粗削りし、それ以後は、前
述したメカノケニカルエッチング法で研磨し、前記絶縁
物層12が露出したところで研磨を終了させた。
(d) Furthermore, as shown in FIG. 1(d), the (100) Si wafer side of the bonded product is polished. In this case, the thickness of the Si wafer 11 is originally formed to be about 520 μm, so the thickness of the Si wafer 11 is alumina (Af12) up to 50 μm.
Rough cutting was performed using coarse abrasive grains such as No. 03), and thereafter, polishing was performed using the mechanochemical etching method described above, and the polishing was completed when the insulating layer 12 was exposed.

具体的には、市販のボリシングクロスにSi単結晶部を
摺動させつつ、pH=9.5、温度45℃に設定したエ
チレンジアミンピロカテコールを少量ずつ摺動面に注入
しながら研磨を行った。
Specifically, polishing was performed while sliding the Si single crystal part on a commercially available polishing cloth and injecting small amounts of ethylenediamine pyrocatechol, set at pH = 9.5 and temperature 45°C, onto the sliding surface. .

(e)第1図(e)に示す工程図では、マスクとなる絶
縁物層12をエツチングしているが、本実施例では、絶
縁物層12がSiO2で石英基板10と同成分、即ちS
i結晶に対する応力は同じなので、本エツチング工程を
省略できる。
(e) In the process diagram shown in FIG. 1(e), the insulating layer 12 serving as a mask is etched, but in this example, the insulating layer 12 is SiO2, which has the same composition as the quartz substrate 10, that is, S
Since the stress on the i-crystal is the same, the main etching step can be omitted.

(f)そして、第1図(f)に示すように、前記SEG
結晶14を種子結晶としてSiO2面上に横方向成長(
Epitaxial  Lateral  Overg
rowth。
(f) Then, as shown in FIG. 1(f), the SEG
Lateral growth (
Epitaxial Lateral Overg
rowth.

以下車にELOという)させた。このときの条件は前記
(b)の工程で行なったSEG条件と同様とした。但し
、成長時間は、隣接する成長結晶16同士が接触して粒
界17を形成するまでの間、すなわち90分間であった
(hereinafter referred to as ELO). The conditions at this time were the same as the SEG conditions used in the step (b) above. However, the growth time was 90 minutes, which was the time until adjacent grown crystals 16 came into contact with each other to form grain boundaries 17.

(g)最後に、第1図(g)に示すように、前記ELO
により成長した成長結晶16の上面を研磨し、2μmの
厚さの平坦な研磨結晶16゛を形成した。この場合の研
磨は、通常のSiウェハーをつくるときの研磨と同様な
ものであり、最終的には鏡面仕上げを行なう。
(g) Finally, as shown in FIG. 1 (g), the ELO
The upper surface of the grown crystal 16 was polished to form a flat polished crystal 16'' with a thickness of 2 μm. The polishing in this case is similar to the polishing when making a normal Si wafer, and the final result is a mirror finish.

このように−して作製されたSi単結晶薄膜は、第2図
に示すように、粒界27によって囲まれた各領域に夫々
、面方位が(ioo)のSi完全単結晶膜26゛が形成
されたものとなった。該単結晶膜26°の一つの領域の
サイズは、前記(a)で述へたように、開口部13のピ
ッチを50μmとしたので、縦横長が夫々50μmで厚
さが2μmであった。
As shown in FIG. 2, the Si single-crystal thin film produced in this manner has a Si complete single-crystal film 26' with (ioo) plane orientation in each region surrounded by grain boundaries 27. It became formed. As described in (a) above, the size of one region of the single crystal film 26° was 50 μm in length and width and 2 μm in thickness since the pitch of the openings 13 was 50 μm.

なお、前記単結晶@26″の1つの領域内に1つのNM
OSトランジスタを形成したところ、その電子移動度は
800cm2/v ・secとなり、同プロセスで形成
した通常のSiウェハー上の電子B勅度600cm2/
v−seeを大きく上回ったものとなった。
Note that one NM in one region of the single crystal @26″
When an OS transistor was formed, its electron mobility was 800 cm2/v sec, and the electron B mobility on a normal Si wafer formed by the same process was 600 cm2/v sec.
This greatly exceeded V-see.

[他の実施例] 次に、第2の実施例につき説明する。[Other Examples] Next, a second example will be explained.

(a’ )4インチの(100)Siウェハー11を用
意し、その表面にLPCVD法によりSi3N4から成
る絶縁物層12を0.2μmの厚みに堆積させた(第1
図(a)参照)。この場合の堆積条件は、SiH2CJ
22=20secm、NH3=80secmの混合ガス
を用い、温度を800℃とし、真空度を0.3Torr
として、堆積時間を60分間とした。次いで、通常のフ
ォトリソグラフィーの技術を用いて前記絶縁物層12に
直径2μmの開口部13の部位を50μm間隔でバター
ニングし、RIE(反応性イオンエツチング)によりエ
ツチングした。
(a') A 4-inch (100) Si wafer 11 was prepared, and an insulating layer 12 made of Si3N4 was deposited to a thickness of 0.2 μm on its surface by the LPCVD method (first
(See figure (a)). The deposition conditions in this case are SiH2CJ
Using a mixed gas of 22 = 20 sec and NH3 = 80 sec, the temperature was 800°C, and the degree of vacuum was 0.3 Torr.
The deposition time was 60 minutes. Next, openings 13 having a diameter of 2 μm were patterned in the insulating layer 12 at intervals of 50 μm using a conventional photolithography technique, and etched by RIE (reactive ion etching).

(bo)次の条件で前記SEGを行なう(第1図(b)
参照)。
(bo) Perform the SEG under the following conditions (Figure 1(b)
reference).

ガス種  ・・・ S i H2Cf12 / HCj
2 / H2ガス流量比・・・ 0.53/2.4/1
00[塁/m1nl 温度   ・・・1oso[℃] 圧力   −80[T orr ] 成長時間 −220[sec] (C゛)これにより得られた成長結晶の成長面の側に熔
融石英ウェハー10を畜看させ、H4囲気で1000’
Cl2O分間熱処理し、該密着面の接着を行った(第1
図(C)参照)。
Gas type...S i H2Cf12 / HCj
2/H2 gas flow ratio...0.53/2.4/1
00 [base/m1nl] Temperature...1 oso [℃] Pressure -80 [Torr] Growth time -220 [sec] (C) A fused silica wafer 10 was placed on the growth surface side of the grown crystal thus obtained. Let me watch, 1000' with H4 air
The adhesion surface was bonded by heat treatment with Cl2O for a minute (first
(See figure (C)).

(d′)接着したウェハーのSiウェハー側から研磨す
る。この研磨は、前述したメカニカル研磨で、コロイダ
ルシリカ(SiO2)を砥粒として行なう(第1図(d
)参照)。具体的には、市販のボリシングクロスに51
単結晶を摺動させつつ、中性溶液に懸濁させたコロイダ
ルシリカを摺動部に注入させつつ研磨を行った。この溶
液はメタノールと水を3=7の割合で混合したものであ
り、コロイダルシリカは粒径が100人に揃ったものを
使用した。
(d') Polishing the bonded wafer from the Si wafer side. This polishing is the mechanical polishing described above, and is performed using colloidal silica (SiO2) as abrasive grains (Fig. 1(d)
)reference). Specifically, commercially available Borising cloth has 51
Polishing was performed while sliding the single crystal and injecting colloidal silica suspended in a neutral solution into the sliding part. This solution was a mixture of methanol and water in a ratio of 3=7, and colloidal silica with particle sizes of 100 was used.

(e’ )S i3 N4膜たる絶縁物層12が露出し
たところで研磨を終了し、表面に出た前記絶縁物層12
を熱リン酸H3PO4(180℃)によりエツチングし
た(第1図(e)参照)。
(e') When the insulating layer 12, which is a Si3N4 film, is exposed, the polishing is finished, and the insulating layer 12 exposed to the surface is removed.
was etched with hot phosphoric acid H3PO4 (180°C) (see Figure 1(e)).

(fo)前記SEG結晶14を種子結晶として、5f3
N4面上に成長結晶16をELOする(第1図(f)参
照)。このELOの条件は次のとおりである。
(fo) Using the SEG crystal 14 as a seed crystal, 5f3
The grown crystal 16 is subjected to ELO on the N4 plane (see FIG. 1(f)). The conditions for this ELO are as follows.

ガス種  ・・・ S i H2CIt 2 / HC
IL / H2ガス流量比・・・ 0.53/1.8/
100[It / m t nコ 温度   ・・弓050[’C] 圧力   −=80[Torrコ 成長時間 ・・・90[min] (go)その後、上記第1の実施例の場合と同様に、前
記成長結晶16の上部を研磨したところ、膜厚1μmの
均一な研磨結晶16°が得られた(第1図(g)参照)
Gas type: S i H2CIt 2 / HC
IL/H2 gas flow ratio...0.53/1.8/
100 [It / m t n temperature ... bow 050 ['C] pressure - = 80 [Torr growth time ... 90 [min] (go) After that, as in the case of the first embodiment, When the upper part of the grown crystal 16 was polished, a uniform polished crystal 16° with a thickness of 1 μm was obtained (see FIG. 1(g)).
.

なお、この研磨結晶16°上に形成されたNMo5トラ
ンジスターの電子移動度は、第1の実施例の場合と同程
度の800Cm2/v−5eCとなり、やはりバルクの
単結晶51以上の性能を有していた。
Note that the electron mobility of the NMo5 transistor formed on this 16° polished crystal is 800 Cm2/v-5eC, which is similar to that of the first example, and it also has a performance higher than that of the bulk single crystal 51. was.

[発明の効果コ 以上説明したように、本発明によれば、SiO2を成分
とする基板上に、面方位が(100)のSiを種子結晶
として選択成長させることにより、面方位の完全な制御
をすることができ、任意の位置に粒界を設定することが
できる。また、本発明においては、種子結晶の部分のみ
を貼り合わせており、結晶の大部分は基板上を横方向に
成長させているので、SiO□基板とSi結晶の密着性
が極めて良好な(100)Si単結晶を形成することが
できる。
[Effects of the Invention] As explained above, according to the present invention, complete control of the plane orientation can be achieved by selectively growing Si with a (100) plane orientation as a seed crystal on a substrate containing SiO2 as a component. grain boundaries can be set at any position. In addition, in the present invention, only the seed crystal part is bonded together, and most of the crystals are grown laterally on the substrate, so the adhesion between the SiO□ substrate and the Si crystal is extremely good (100 ) A Si single crystal can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は本発明の実施例に係る工程図、
第2図は本発明の単結晶膜を形成した基板の斜視図、第
3図は従来のZMR法による単結晶膜の作製を説明する
側断面図、第4図(a)。 (b)は従来の貼り合わせ法による単結晶膜の作製を説
明する側断面図である。 第 図 (符号の説明) 10.20・・・石英基板、11・・・Si基板、12
・・・絶縁物層、13・・・開口部、14・・・SEG
結晶、15・・・界面、16・・・成長結晶、16°・
・・研磨結晶26°・・・5ijlL結晶膜層、17.
27・・・粒界412 第 図 4 第 図
FIGS. 1(a) to (g) are process diagrams according to embodiments of the present invention,
FIG. 2 is a perspective view of a substrate on which a single crystal film of the present invention is formed, FIG. 3 is a side sectional view illustrating the production of a single crystal film by the conventional ZMR method, and FIG. 4 (a). (b) is a side sectional view illustrating the production of a single crystal film by a conventional bonding method. Figure (Explanation of symbols) 10.20...Quartz substrate, 11...Si substrate, 12
... Insulator layer, 13... Opening, 14... SEG
Crystal, 15...Interface, 16...Growing crystal, 16°・
...Polished crystal 26°...5ijlL crystal film layer, 17.
27... Grain boundary 412 Fig. 4 Fig.

Claims (1)

【特許請求の範囲】 (1)SiO_2を成分とする基板上に、面の方位が(
100)のSi単結晶薄膜を作製する方法において、 (100)Siウェハー表面に、Siとの選択研磨が可
能であって、選択エピタキシャル成長のマスクとしても
使用可能な絶縁物層を形成する第1の工程と、 該絶縁物層に開口部を設けてマスクを形成し、該開口部
を介して臨まされる前記SiウェハーのSiを前記絶縁
物層の表面まで選択エピタキシャル成長させる第2の工
程と、 前記選択エピタキシャル成長をさせた側の面と前記基板
の面とを当接させ、該当接部の接着を行うべく熱処理を
する第3の工程と、 前記接着された基板の前記Siウェハー側から前記マス
クをストッパーとする選択研磨を行なう第4の工程と、 前記選択研磨によって残された(100)面の方位のS
iを種子結晶として、前記基板上にSiの選択成長をさ
せる第5の工程とを含むことを特徴とするSi単結晶薄
膜の作製方法。
[Claims] (1) On a substrate containing SiO_2, the plane orientation is (
(100) In the method for producing a Si single crystal thin film, a first step is performed to form an insulating layer on the surface of the Si wafer, which can be selectively polished with Si and can also be used as a mask for selective epitaxial growth. a second step of forming an opening in the insulating layer to form a mask, and selectively epitaxially growing Si of the Si wafer exposed through the opening to the surface of the insulating layer; a third step of bringing the surface on which selective epitaxial growth has been performed and the surface of the substrate into contact and performing heat treatment to bond the corresponding contact portion; and applying the mask from the Si wafer side of the bonded substrate. A fourth step of performing selective polishing as a stopper, and S of the orientation of the (100) plane left by the selective polishing.
a fifth step of selectively growing Si on the substrate using i as a seed crystal.
JP9477590A 1990-04-10 1990-04-10 Manufacture of silicon single crystal thin film Pending JPH03292722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9477590A JPH03292722A (en) 1990-04-10 1990-04-10 Manufacture of silicon single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9477590A JPH03292722A (en) 1990-04-10 1990-04-10 Manufacture of silicon single crystal thin film

Publications (1)

Publication Number Publication Date
JPH03292722A true JPH03292722A (en) 1991-12-24

Family

ID=14119475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9477590A Pending JPH03292722A (en) 1990-04-10 1990-04-10 Manufacture of silicon single crystal thin film

Country Status (1)

Country Link
JP (1) JPH03292722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104153A (en) * 1992-03-16 1994-04-15 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104153A (en) * 1992-03-16 1994-04-15 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
Yonehara et al. Control of Grain Boundary Location by Selective Nucleation Over Amorphous Substrates
JP4173884B2 (en) Method for manufacturing germanium-on-insulator (GeOI) type wafer
EP0553860B1 (en) Process for preparing a semiconductor substrate
US4997787A (en) Method for fabricating a semiconductor film which is electrically isolated from a substrate
US5234535A (en) Method of producing a thin silicon-on-insulator layer
JPH07142502A (en) Manufacturing for bonded semiconductor substrate and dielectric separation bipolar transistor
JP2596547B2 (en) Solar cell and method of manufacturing the same
JP2699359B2 (en) Semiconductor substrate manufacturing method
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
Yonehara et al. Manipulation of nucleation sites and periods over amorphous substrates
JPH03292722A (en) Manufacture of silicon single crystal thin film
JPH03292734A (en) Formation of si single crystal thin film
JP3347354B2 (en) Etching method and method of manufacturing semiconductor substrate
JPH056883A (en) Manufacture of semiconductor substrate
JPH03292723A (en) Manufacture of silicon singe crystal thin film
JPH0480922A (en) Formation of crystal product
JPH03125458A (en) Method of forming single crystal region, and single crystal article using same
JPH0324719A (en) Forming method of single crystal film and crystal products
JPH04373121A (en) Manufacture of crystal base material
JP2619734B2 (en) Semiconductor substrate and method of manufacturing the same
JPH05326683A (en) Manufacutre of soi substrate
JP2527016B2 (en) Method for manufacturing semiconductor film
JPH03265157A (en) Manufacture of semiconductor substrate
JP2592832B2 (en) Crystal formation method
JP2737152B2 (en) SOI forming method