[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03295931A - Construction method for frame straight pillar - Google Patents

Construction method for frame straight pillar

Info

Publication number
JPH03295931A
JPH03295931A JP2097333A JP9733390A JPH03295931A JP H03295931 A JPH03295931 A JP H03295931A JP 2097333 A JP2097333 A JP 2097333A JP 9733390 A JP9733390 A JP 9733390A JP H03295931 A JPH03295931 A JP H03295931A
Authority
JP
Japan
Prior art keywords
steel frame
column steel
structural
concrete
inclinometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2097333A
Other languages
Japanese (ja)
Other versions
JP2747566B2 (en
Inventor
Naoki Kamiura
直樹 上浦
Yasufumi Oshima
大嶋 康文
Isao Sagawa
功 佐川
Norio Kosaka
則夫 小坂
Isao Tsutsui
筒井 勲
Masato Sakai
正人 酒井
Masanobu Sato
正信 佐藤
Masanori Ide
井出 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2097333A priority Critical patent/JP2747566B2/en
Publication of JPH03295931A publication Critical patent/JPH03295931A/en
Application granted granted Critical
Publication of JP2747566B2 publication Critical patent/JP2747566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Foundations (AREA)

Abstract

PURPOSE:To improve the installation precision by measuring the erection precision continuously up to the solidification of the concrete laid into a hole bottom part after the erection of a frame straight pillar iron frame by an inclination meter and carrying out correction by a correcting jack device, after the erection of a frame straight pillar iron frame. CONSTITUTION:After a pile hole 1 is excavated by using a stand pipe 2, a correcting jack device 9 is suspended into the pipe 2. Then, a structural straight pillar iron frame 10 having an inclination meter 15 at the lower edge is erected into the pile hole 1, and the upper edge of the iron frame 10 is supported at the center part of the pile hole 1 by a rack base 8. Then, the position and tilt of the iron frame 10 are corrected by a jack device 9 so that the tilt of the iron frame 10 which is measured by the inclination meter 15 becomes zero. Concrete is laid into the hole bottom part, and the change of the position of the iron frame 10 during and after laying is confirmed by the inclination meter 15, and the position and tilt of the iron frame 10 are corrected. Further, concrete is cured to fix a pillar leg part.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主として建物の地下階構造部分を逆打ち工
法によって構築するに際し、柱の基礎とされる構真柱を
地中に構築する工法に係り、さらに云えば、鉄骨造の柱
梁架構の施工を可能ならしめる程度に建入れ精度の高い
構真柱を構築するための工法に間する。
[Detailed Description of the Invention] Industrial Application Field This invention mainly relates to a method of constructing structural pillars, which are used as the foundations of columns, underground when constructing the underground floor structure of a building using the reverse casting method. More specifically, we will develop a construction method for constructing structural columns with high construction precision to the extent that it will be possible to construct a steel column-beam structure.

従来の技術 従来、逆打ち工法は広〈実施され、当該工法に必要とさ
れる構真柱の構築も広く行なわれている。
BACKGROUND OF THE INVENTION Conventionally, the reverse casting method has been widely practiced, and the construction of structural pillars required for this method has also been widely practiced.

構真柱の構築においては、その建入れ精度を高めること
が重要である。特に最近では構真柱を鉄骨造の柱梁架構
として実施する傾向にある。しかも工場加工を多く取り
入れる必要上、柱梁架構の組立精度も1/1000程度
に納めることが要望されているので、構真柱の建入れ精
度を高める必要性は益々高まっている。
When constructing structural pillars, it is important to improve their erection accuracy. Particularly recently, there has been a trend to implement structural pillars as steel-framed column-beam structures. Furthermore, due to the need to incorporate many factory processes, it is desired that the assembly accuracy of the column-beam frame be within about 1/1000, so there is an increasing need to improve the erection accuracy of the structural columns.

従来、一般に実施されている構真柱の構築工法は、杭孔
の孔底部にコンクリートを打設した後に、構真柱鉄骨を
杭孔へ挿入してコンクリート中へ突き立てる方法である
。しかし、構真柱鉄骨の形状、外形寸法の大きさ、長さ
によっては所定の位置に正しく設置することが困難であ
る場合が多い。
A conventional method for constructing structural pillars is to place concrete at the bottom of a pile hole, then insert a structural pillar steel frame into the pile hole and push it into the concrete. However, depending on the shape, external dimensions, and length of the structural column steel frame, it is often difficult to correctly install it in a predetermined position.

この点、特公昭54−12721号公報に記載された構
真柱の構築工法は、スタンドパイプを挿嵌した杭孔内に
計測管をその軸線が柱芯と同心状になるように挿入し、
この計測管の下端に装着した計測器によって杭孔の少な
くとも上下2個所でスタンドパイプの内周面と計測管と
の水平2方向の距離を測定して上下の計測箇所における
建込むべき構真柱鉄骨の外周面とスタンドパイプの内周
面との間の水平距離を求め、該水平距離と等しいスペー
サーを構真柱鉄骨の上下部に予め固着した後この構真柱
鉄骨を杭孔に挿入し、構真柱鉄骨の周側面をジヤツキな
との押圧部材により押圧して各スペーサーを前記スタン
ドパイプの計測個所の内周面に当接させ、この状態で孔
底部にコンクリートを打設して柱脚部を固定する内容に
なっている。
In this regard, the method for constructing structural pillars described in Japanese Patent Publication No. 54-12721 involves inserting a measuring pipe into a pile hole into which a stand pipe has been inserted so that its axis is concentric with the pillar core.
Using a measuring instrument attached to the lower end of this measuring tube, measure the distance in two horizontal directions between the inner circumferential surface of the standpipe and the measuring tube at at least two locations above and below the pile hole, and then measure the distances in two horizontal directions between the inner peripheral surface of the standpipe and the measuring tube at at least two locations above and below the pile hole. Determine the horizontal distance between the outer peripheral surface of the steel frame and the inner peripheral surface of the standpipe, and after fixing spacers equal to the horizontal distance to the upper and lower parts of the structural column steel frame in advance, insert this structural column steel frame into the pile hole. , press the peripheral side of the structural column steel frame with a rigid pressing member to bring each spacer into contact with the inner circumferential surface of the measurement point of the stand pipe, and in this state concrete is poured at the bottom of the hole to tighten the column. It is designed to fix the legs.

本発明が解決しようとする課題 地下30mもの深さに及ぶ構真柱の建入れ精度を高める
作業は、全て地上で行なわねばならない。
Problems to be Solved by the Invention Work to improve the accuracy of erection of structural pillars that extend to a depth of 30 meters underground must be performed entirely above ground.

そして、実際の精度は地盤の原剤後でしか把握できず、
その時は既に遅く修正ができないというのが大きな問題
である。
In addition, the actual accuracy can only be determined after the preparation of the ground material.
The big problem is that by then it's already too late to make corrections.

上述した公報記載の構築工法も構真柱の建入れ精度を高
めることに苦心した内容であることは明白であるが、第
一に当初計測管と計測器で測定した水平距離を前提とし
て以後の全ての施工を進めてゆく方法なので、測定工程
と構真柱鉄骨挿入等の実質工程とに工程が2段階に大別
され、手間と時間がかかる。その上、構真柱鉄骨の挿入
が計測管及び計測器による測定の仕様と同一に実施され
ているか否やの確認は不可能で、即ちリアルタイムの測
定によるものではないので、信頼性に欠ける。仮に構真
柱鉄骨の挿入が測定の仕様と同一でなければ、前もって
行なった測定の意義に欠けることは明かである。
It is clear that the construction method described in the above-mentioned gazette was a result of efforts taken to improve the accuracy of erection of the main pillars, but firstly, the subsequent construction method was based on the premise of the horizontal distance measured by the measuring pipe and measuring instrument. Since it is a method that proceeds with all construction, the process is roughly divided into two stages: the measurement process and the actual process such as inserting the structural column steel frame, which takes time and effort. Moreover, it is impossible to confirm whether the insertion of the structural column steel frame is carried out in accordance with the specifications of the measurement by the measuring pipe and the measuring instrument, that is, it is not based on real-time measurement, and therefore lacks reliability. It is clear that if the insertion of the structural column steel frame is not the same as the measurement specifications, the measurements made in advance would be meaningless.

第二に、測定された水平距離と等しい長さのスペーサー
を現場て構真柱鉄骨に固着して突設しなければならない
から、現場作業が増える。しかもジヤツキ等の押圧部材
を付設した上て構真柱鉄骨を杭孔内へ挿入する方法なの
で、前記スペーサーやジヤツキが孔壁に突っ掛かる障害
物となって挿入作業を行ない難い。仮に、スペーサー等
がスタンドバイブ内面に当たってその内面を傷つけたり
変形させると、前もって行なった測定の実効性が損なわ
れる。逆にスペーサーが曲がったり、押圧部材の位置が
ずれたりするおそれも多分にあるから、建入れ精度の信
頼性を期し難い。
Second, a spacer with a length equal to the measured horizontal distance must be fixed and protruded from the structural column steel frame on site, which increases the amount of on-site work. Moreover, since the method involves inserting the structural column steel frame into the pile hole with a pressing member such as a jack attached, the spacers and jacks become obstacles that catch on the hole wall, making it difficult to perform the insertion work. If the spacer or the like hits the inner surface of the stand vibe and damages or deforms the inner surface, the effectiveness of the measurements made in advance will be impaired. On the contrary, there is a high possibility that the spacer may be bent or the position of the pressing member may be shifted, so it is difficult to ensure reliability of construction accuracy.

第三に、前記スペーサーやジヤツキなとの回収が出来な
いので大変に不経済である。
Thirdly, it is very uneconomical because the spacers and jacks cannot be recovered.

第四に、コンクリートを打設するとコンクリートの流動
圧力で構真柱鉄骨の先端位置がずれ易いにもかかわらず
、そうした位置ずれを[認し修正する手段をもたない方
法であるから、やはり最終的な建入れ精度の保証あるい
は信頼性に乏しい。
Fourthly, even though the tip position of the structural column steel frame tends to shift due to the flow pressure of concrete when concrete is poured, this method does not have a means to recognize and correct such positional shift, so the final There is insufficient guarantee or reliability of construction accuracy.

したがって、本発明の目的は、構真柱鉄骨を杭孔へ建入
れた後もリアルタイムに位置の誤差や傾きなとの測定 
及びそれに基く修正が出来、さらに孔底部へのコンクリ
ート打設中及び打設後も測定と修正が出来て高い建入れ
精度を達成できること、そして、傾斜計と修正ジヤツキ
装置は完全に回収できる構成に改良した構真柱の構築工
法を提供することにある。
Therefore, the purpose of the present invention is to measure positional errors and inclinations in real time even after the structural column steel frame is erected into the pile hole.
Furthermore, measurements and corrections can be made during and after pouring concrete at the bottom of the hole, achieving high construction accuracy.Also, the inclinometer and correction jacking device can be completely recovered. The purpose of this invention is to provide an improved construction method for structural pillars.

課題を解決するための手段 上記従来技術の課題を解決するための手段として、この
発明に係る構真柱の構築工法は、図面に好適な実施例を
示したとおり、 スタンドバイブ2を使用して杭孔lを掘削した後、前記
スタンドバイブ2の上端部に架台8を設置し、同スタン
ドバイブ2内のできるだけ下端寄り位置にリングを主体
とする修正ジヤツキ装置9を吊込み用意する段階と、 下端寄り位置に傾斜計15を付設した構真柱鉄骨10を
前記杭孔1に建入れ、同構真柱鉄骨1゜の上端は前記架
台8によって杭孔1の中心部に支持せしめ、#I斜計1
5によって計測される構真柱鉄骨10の傾きが零となる
ように前記修正ジヤツキ装置l19による構真柱鉄骨1
oの位置及び傾きの修正を行なう段階と、 構真柱鉄骨10の建入れ位置の修正と位置決めが出来た
後に孔底部にコンクリート16を打設し、そのコンクリ
ート打設中及び打設後の構真柱鉄骨10の位置の変化も
傾斜計10で確認し修正ジャ・シキ装置E9による構真
柱鉄骨の位置及び傾きの修正を行なってからコンクリー
ト養生を行ない柱脚部を固定する段階と、 より成ることを特徴とする。
Means for Solving the Problems As a means for solving the problems of the above-mentioned prior art, the method for constructing a structural pillar according to the present invention uses a stand vibe 2, as a preferred embodiment is shown in the drawings. After excavating the pile hole 1, a stage 8 is installed at the upper end of the stand vibe 2, and a correction jacking device 9 mainly consisting of a ring is suspended and prepared at a position as close to the bottom end of the stand vibe 2 as possible; A structural pillar steel frame 10 with an inclinometer 15 attached near the lower end is erected in the pile hole 1, and the upper end of the structural pillar steel frame 1° is supported at the center of the pile hole 1 by the mount 8. Inclinometer 1
The structural column steel frame 1 is adjusted by the correction jacking device l19 so that the inclination of the structural column steel frame 10 measured by 5 becomes zero.
After correcting the position and inclination of the structural column steel frame 10, and correcting and positioning the structural column steel frame 10, concrete 16 is poured at the bottom of the hole, and the structure is maintained during and after the concrete pouring. Changes in the position of the main column steel frame 10 are also confirmed with the inclinometer 10, and the position and inclination of the main column steel frame are corrected using the correction device E9, and then concrete curing is performed and the column base is fixed; It is characterized by becoming.

本発明の構築工法はまた、修正ジヤツキ装置9は、構真
柱鉄骨10の外形寸法よりは十分に大きく、スタンドバ
イブ2の内径よりは小さい径のリング9a上に所要数の
ジヤツキ9b・・・をそれぞれ半径方向の向きに、かつ
起伏自在な構成で取り付けて成り(第9.10図)、リ
ング9aに正着したチェン12を利用してこの修正ジヤ
ツキ装置9をスタンドバイブ2内の所定位置へ吊込み、
各ジヤツキ9b・・・を伏せた状態において同リング9
a内へ構真柱鉄骨10の建入れを行ない、しかる後に予
め各ジヤツキ9bに止着したロー111を引張って各ジ
ヤツキ9b・・・を略水平姿勢に起立させ、構真柱鉄骨
10の位置及び傾きの修正を行ない、孔底部のコンクリ
ート16を養生後にチェン12で修正ジヤツキ装置9を
地上に引き上げ回収すること、 傾斜計15は複数個の電磁石17によって構真柱鉄骨1
0の先端寄りであって孔底部に打設されるコンクリート
16の天端よりは高い位置、しかも構真柱鉄骨10を平
面的に見て直角2方向の位置に少なくとも2個付設しく
第11.12図)、各傾斜計15は地上の記録表示計と
接続して構真柱鉄骨10の傾きをリアルタイムに計測表
示せしめ、孔底部のコンクリート16を養生後には電磁
石17を消磁し、予め傾斜計15に止着しであるロー1
18で傾斜計15を地上に引き上げ回収すること、 構真柱鉄骨10の先端部であって、同構真柱鉄骨10を
平面方向に見て放射方向りこ等配された複数箇所に1本
ずつ複数本のワイヤー20を止着しく第6図)、このワ
イヤー20の他端は地上に確保し、傾斜計15によって
計測される構真柱鉄骨10の位置及び傾きの修正は前記
ワイヤー20を地上で引張ることによって行なうこと、
もそれぞれ特徴とする。
In addition, in the construction method of the present invention, the correction jacking device 9 has a required number of jacks 9b on a ring 9a having a diameter sufficiently larger than the external dimension of the structural pillar steel frame 10 and smaller than the inner diameter of the stand vibe 2. The corrective jacking device 9 is attached to a predetermined position in the stand vibe 2 using a chain 12 that is properly attached to the ring 9a (Fig. 9.10). hang it to,
With each jack 9b facing down, the same ring 9
After that, the structural column steel frame 10 is erected into the interior a, and then the rows 111 fixed in advance to each jack 9b are pulled to raise each jack 9b to a substantially horizontal position, and the position of the structural column steel frame 10 is adjusted. After correcting the inclination and curing the concrete 16 at the bottom of the hole, the correction jacking device 9 is raised to the ground using the chain 12 and recovered.
11. At least two pieces are attached near the tip of the hole and higher than the top of the concrete 16 poured at the bottom of the hole, and at two positions perpendicular to the structural column steel frame 10 when viewed from above. (Fig. 12), each inclinometer 15 is connected to a record display meter on the ground to measure and display the inclination of the structural column steel frame 10 in real time. After curing the concrete 16 at the bottom of the hole, the electromagnet 17 is demagnetized and the inclinometer is connected in advance. Row 1 which is fixed at 15
At step 18, the inclinometer 15 is raised to the ground and recovered, and one inclinometer 15 is placed at the tip of the main pillar steel frame 10 of the structure, one at each of multiple locations evenly distributed in the radial direction when looking at the main pillar steel frame 10 in the plane direction. The other end of the wire 20 is secured on the ground (Fig. 6), and the position and inclination of the structural column steel frame 10 measured by the inclinometer 15 can be corrected by fixing the wire 20 on the ground (Fig. 6). To be done by pulling with
Each has its own characteristics.

作     用 構真柱鉄骨】0には、建入れの前にトレミー管21を付
設しく第7図)、あるいは梁鉄骨接合用のガゼ・ントプ
レートも予め工場加工で取り付けておくことができる。
The tremie pipe 21 (Fig. 7) can be attached to the true column steel frame 0 before erection (Fig. 7), or the gauze plate for joining the beam steel frame can be installed in advance at the factory.

建入れ後に上端を架台8によって杭孔1の中心部(柱芯
位置)に支持された構真柱鉄骨lOの傾きを、その下端
寄り位置に付設した傾斜計15で計測するので、構真柱
鉄骨10の建入れ精度は地上に居ながらにしてリアルタ
イムに正確にi!握てきる。しかも、前記の計測に基い
て、修正ジヤツキ装置9あるいはワイヤー20の操作に
より、構真柱鉄骨10の位置及び傾きの修正をリアルタ
イムに行える。それも建入れ直後だけでなく、孔底部へ
コンクリート16を打設する間及び打設もいまだコンク
リート16が固まらない間は、何時でも必要の都度修正
作業を行える。
After construction, the inclination of the structural column steel frame 10, whose upper end is supported by the frame 8 at the center of the pile hole 1 (column core position), is measured with the inclinometer 15 attached to the lower end position. The erection accuracy of steel frame 10 can be confirmed accurately in real time while on the ground using i! I can grab it. Moreover, based on the above measurements, the position and inclination of the structural column steel frame 10 can be corrected in real time by operating the correction jacking device 9 or the wire 20. Not only immediately after construction, but also while the concrete 16 is being poured into the bottom of the hole and while the concrete 16 has not hardened yet, correction work can be carried out whenever necessary.

リング9a上に自重量で伏せる(垂れる)ように取り付
けられた各ジヤツキ9b・・・は、それが伏せたままの
状態において構真柱鉄骨10の建入れを行なうので何ら
じゃまにならない。同鉄骨10の建入れ後、予め各ジヤ
ツキ9bに正着しであるロープ11を地上で引張ると、
ジヤツキ9bは水平姿勢に起立する。この水平姿勢でジ
ヤツキ9bを起動すると、スタンドバイブ2の内周面に
反力をとって構真柱鉄骨10を押し動かし、位置及び傾
きの修正が行なわれる。使用済み後にジヤツキ9bのピ
ストンロッド9gを収縮させると、鉄骨lOとスタンド
バイブ2との拘束間係は解放され、ジヤツキ9bは自重
作用で伏せる。よってチエン12で吊られた修正ジヤツ
キ装置9は地上へ引き上げて回収できる。
The jacks 9b, which are attached to the ring 9a so as to lie down (hang) under their own weight, do not pose any hindrance because the structural column steel frame 10 is erected while they are lying down. After the steel frame 10 is erected, if the rope 11, which is attached to each jack 9b, is pulled on the ground,
The jack 9b stands up in a horizontal position. When the jack 9b is activated in this horizontal position, a reaction force is applied to the inner circumferential surface of the stand vibe 2 to push and move the structural column steel frame 10, thereby correcting the position and inclination. When the piston rod 9g of the jack 9b is contracted after use, the restraint between the steel frame 1O and the stand vibe 2 is released, and the jack 9b is laid down by its own weight. Therefore, the correction jack device 9 suspended by the chain 12 can be pulled up to the ground and recovered.

傾斜計15は、電磁石17・・・の吸着力で構真柱鉄骨
】Oに付設されているので、同電磁石】7を消磁せしめ
ると簡単に鉄骨10から解放される。
Since the inclinometer 15 is attached to the structural steel frame ]O by the attraction force of the electromagnets 17, it is easily released from the steel frame 10 when the electromagnet [7] is demagnetized.

したがって、ロー118で地上に引き上げて回収できる
Therefore, it can be pulled up to the ground by the row 118 and recovered.

実  施  例 次に、図示した本発明の詳細な説明する。Example The illustrated invention will now be described in detail.

第1図〜第8図は、本発明の構真柱構築工法の主要工程
のフローチャートを示している。まず第1図と第2図は
、例えばリバース工法の屈削機3で杭孔1の掘削とスタ
ンドバイブ2の押し込みを行ない、ざらに拡径掘削機4
で孔底部の拡径(拡底)Iii削を行なフた段階を示し
ている。杭孔1は通常1/200位の垂直精度で地下3
3m位まで戴削される。第3図は、スタンドバイブ2の
上端に孔壁測定機5を据え付け、同機から杭孔1の中心
部にセンサーケーブル6を下し、同ケーブル6の先端に
取り付けた孔壁センサー7で孔壁測定を行ない、杭孔1
の壁面傾向を調査する段階を示している。
1 to 8 show flowcharts of the main steps of the structural pillar construction method of the present invention. First, Figures 1 and 2 show a pile hole 1 being excavated using a bending machine 3 using the reverse method, a stand vibrator 2 being pushed in, and the diameter being roughly expanded using a drilling machine 4.
3 shows the final step in which the diameter of the bottom of the hole is enlarged (bottom enlargement) III. Pile hole 1 is usually underground with a vertical accuracy of about 1/200.
It is carved to a depth of about 3m. In Figure 3, a hole wall measuring device 5 is installed on the upper end of the stand vibrator 2, a sensor cable 6 is lowered from the device to the center of the pile hole 1, and a hole wall sensor 7 attached to the tip of the cable 6 is used to measure the hole wall. Measure the pile hole 1.
It shows the stage of investigating wall surface trends.

次に、第4図は、スタンドバイブ2の上端部に架台8を
設置し、また、同スタンドバイブ2内のできるだけ下端
寄り位置に修正ジヤツキ装置9を吊込んで用意した段階
を示している。この修正ジヤツキ装置9の構成の詳細は
第9図と第10図に示したとおり、内径が1.8m又は
2m程度のスタンドバイブ2に対し、外径が1.6m又
は1.8mぐらいでコ字状断面のリング9aに、4個の
油圧ジヤツキ9b・・・をそれぞれ直角4方向に半径方
向の向きに配置した構成とされている。各油圧ジヤツキ
9bは、リング9aの内側に固着されたブラケッ)9c
の支持ビン9dをジヤツキホルダ9eの基端寄りに設け
た長溝9f中に通して起伏自在な構成で取り付けられて
いる。したがって、油圧ジヤツキ9bは、通常は自重作
用で第9図に2点鎖線で示したように伏せた(垂れ下が
)た)状態となる。このため油圧ジヤツキ9bの自由端
寄りにロー111の一端を止着し、該ロープ11の他端
を地上に確保しておくと、必要に応じて同ロー111を
引くと油圧ジャッキ9bを水平姿勢に起立させることが
できる。水平姿勢の各油圧ジヤツキ9bを駆動すると、
ピストンロッド9gが伸長しスタンドバイブ2の内面に
当接して反力をとり、中央側の構真柱鉄骨】0を押し動
かし位置を修正する。リング9aには、第10図のよう
に円周を等分した4wI所の位置にチェン12の一端が
止着されており、その他端を地上に確保することにより
修正ジヤツキ装置9はスタンドバイブ2内の所定位置へ
吊り込まれる。したがって、チェン12により修正ジヤ
ツキ装置9を再び地上へ引き上げて回収することができ
る。
Next, FIG. 4 shows a stage in which a pedestal 8 is installed at the upper end of the stand vibe 2, and a correction jacking device 9 is suspended as close to the bottom end of the stand vibe 2 as possible. The details of the configuration of this correction jacking device 9 are shown in FIGS. 9 and 10, and the stand vibrator 2 has an inner diameter of about 1.8 m or 2 m, while the outer diameter is about 1.6 m or 1.8 m. The ring 9a has a letter-shaped cross section, and four hydraulic jacks 9b are arranged in the radial direction in four directions at right angles to each other. Each hydraulic jack 9b is a bracket (9c) fixed to the inside of the ring 9a.
The support bottle 9d is passed through a long groove 9f provided near the base end of the jack holder 9e, and is attached in a freely undulating configuration. Therefore, the hydraulic jack 9b normally lies down (hangs down) as shown by the two-dot chain line in FIG. 9 due to its own weight. For this reason, if one end of the rope 111 is fixed near the free end of the hydraulic jack 9b and the other end of the rope 11 is secured on the ground, when the rope 111 is pulled as necessary, the hydraulic jack 9b will be placed in a horizontal position. can be made to stand up. When each hydraulic jack 9b in a horizontal position is driven,
The piston rod 9g extends and comes into contact with the inner surface of the stand vibe 2 to take up a reaction force, and moves the structural pillar steel frame 0 on the center side to correct the position. One end of the chain 12 is fixed to the ring 9a at 4wI positions equally dividing the circumference as shown in FIG. It is suspended into a predetermined position inside. Therefore, the correction jacking device 9 can be pulled up to the ground again by the chain 12 and recovered.

次に、第5図は長さ26m位の構真柱鉄骨1゜を杭孔1
へ建入れる途中の段階を示し、第6図は建入れた構真柱
鉄骨10の上端を架台8によって杭孔1の中心部に芯合
わせをして固定し支持せしめた段階を示している。構真
柱鉄骨1oはヤットコ26とトラバーサ−26を使用し
クレーン等で垂直シこ吊って建入れを行なう(第5図)
、この構真柱鉄骨10には、工場加工として先端部にシ
ャーコネクター28を突設し、あるいは鉄骨梁接合用の
ガゼツトプレートなどを取り付けておく、また、現地で
の建入れに先立ち、サイトで構真柱鉄骨10の下端寄り
位置であって特に第8図のように孔底部に打設されるコ
ンクリ−)160天端より少し上の位置に傾斜計15が
付設される。さらに必要があれば、構真柱鉄骨lOの先
端部に同鉄骨lOを平面的に見て4又は6又は8等分の
ように等配された位置に各1本ずつワイヤー20(第6
図)を止着した後に建入れが行なわれ、前記のワイヤー
20の他端は地上に確保される。傾斜計15の付設態様
は、第11図と第12図に詳示したように、平面形状が
正方形(又は円形、H形状等でも可)の構真柱鉄骨10
を第11図のように平面的に見て直角2方向の位置に2
a付設されている。!sく長い円筒状をなす公知の傾斜
計16の上部には、両側に2本の腕19.19を突設し
て各々に各1個ずつ合計2個のブロック状をなす電磁石
17.17が対称的配置で取り付けられている。また下
部にも1本の腕19を突設して一個のブロック状をなす
電磁石17が取り付けられている。したがって、傾斜計
15を構真柱鉄骨10の所定位置へ所定の態様で押し当
て、切換えスイッチにより各電磁石17・・・を励磁す
ることにより、直ちに傾斜計15の位置決め固定(付設
)ができる、傾斜計15の上部にはロー118の一端が
正着されており、構真柱鉄骨1oの建入れに際しては前
記ロー118及び電気ケーブル24の他端が地上に確保
される。電気ケーブル24は、地上の記録表示計(図示
せず)と接続される。
Next, Figure 5 shows a 1° structural steel frame with a length of about 26 m, with a pile hole of 1.
Fig. 6 shows the stage in which the upper end of the erected structural column steel frame 10 is aligned and fixed to the center of the pile hole 1 by the frame 8 and supported. The structural pillar steel frame 1o will be erected by vertically lifting it using a crane, etc. using Yatco 26 and Traverser 26 (Figure 5).
The structural column steel frame 10 has a shear connector 28 protruding from its tip as a factory process, or a gusset plate for joining the steel beams is attached. An inclinometer 15 is attached at a position near the lower end of the structural column steel frame 10, and in particular at a position slightly above the top of the concrete 160 poured at the bottom of the hole as shown in FIG. If necessary, one wire 20 (sixth
After fixing the wire 20 (see Figure), construction is carried out, and the other end of the wire 20 is secured on the ground. As shown in FIGS. 11 and 12 in detail, the inclinometer 15 is attached to a structural pillar steel frame 10 whose planar shape is square (or circular, H-shaped, etc.).
As shown in Figure 11, there are two
a is attached. ! On the top of the known inclinometer 16, which has a long cylindrical shape, there are two block-shaped electromagnets 17.17 with two arms 19.19 protruding from each side, one on each side. Installed in a symmetrical arrangement. Furthermore, a block-shaped electromagnet 17 with one arm 19 protruding from the bottom is attached. Therefore, by pressing the inclinometer 15 to a predetermined position on the structural column steel frame 10 in a predetermined manner and energizing each electromagnet 17 with a changeover switch, the inclinometer 15 can be immediately positioned and fixed (attached). One end of a row 118 is properly attached to the upper part of the inclinometer 15, and the other end of the row 118 and the electric cable 24 are secured on the ground when the main column steel frame 1o is erected. The electric cable 24 is connected to a ground recording and display meter (not shown).

杭孔1の中へ建て入れた構真柱鉄骨10の上部を支持す
る架台8の構造詳細は第13図と第14図に示したとお
りである。架台8の上に2本の受梁30.30を用意し
、構真柱鉄骨1θの建入れを完了する直前にトラバーサ
−2Gで同鉄骨1゜の垂直度が確認される。そして、ヤ
ットコ25のアングル31の直下に前記の受梁30.3
0を移動させ、架台8ヘボルト止めして固定した上で同
受梁30に予め設置しであるジヤツキ32.32でアン
グル31.31を受は止めさせ、構真柱鉄骨lOを柱芯
位置に支持せしめる。前記ジヤツキ32の操作により構
真柱鉄骨1oの高さ位置が微調整される。しかる後に下
方の2個の傾斜計15゜15によって計測された構真柱
鉄骨1oの位置すれ又は傾きが零となるように、修正ジ
ヤツキ装置9の該当する油圧ジヤツキ9bを制御装置を
通じて地上から制御し修正作業を行なう。
The structural details of the frame 8 that supports the upper part of the structural column steel frame 10 built into the pile hole 1 are as shown in FIGS. 13 and 14. Two support beams 30 and 30 are prepared on the frame 8, and just before completing the erection of the main column steel frame 1θ, the verticality of the steel frame 1° is confirmed using the traverser 2G. Then, directly below the angle 31 of the Yatco 25 is the support beam 30.3.
After moving the frame 8 and fixing it with bolts, fix the angle 31.31 with the jack 32.32 that was previously installed on the support beam 30, and move the structural column steel frame 1O to the column center position. Support. By operating the jack 32, the height position of the structural column steel frame 1o is finely adjusted. Thereafter, the corresponding hydraulic jack 9b of the correction jack device 9 is controlled from the ground through the control device so that the positional deviation or inclination of the structural column steel frame 1o measured by the two lower inclinometers 15° 15 becomes zero. and perform correction work.

その後tこ、構真柱鉄骨10に先付けして建入れである
トレミー管21の上部にマス33を設置し、孔底部にコ
ンクリート】6の打設を行なう(第7図)、このコンク
リート打設の間及び打設後もコンクリート16が固まる
までの間は、構X社鉄骨lOの位置ずれや傾きの有篇を
傾斜計15で継続的に計測し、位置ずれや頷きが発生す
れば直ちに修正ジヤツキ装置9を制御し、又は必要があ
れば地上からワイヤー20を各方向へ引張ることによっ
て修正を行なう、コンクリート16の打設は、孔底部に
およそ5〜6mの深さ行い、構真柱鉄骨IOの下端部を
十分な深さ埋設させる。したがって、コンクリート16
の養生が完了すれば柱脚部の強固な固定が完成するので
ある。
After that, a mass 33 is installed on top of the tremie pipe 21 which is installed in advance of the structural column steel frame 10, and concrete is poured at the bottom of the hole (Fig. 7). During the construction period and until the concrete 16 hardens after pouring, the positional deviation and inclination of the steel frame 10 of the Company Corrections are made by controlling the jacking device 9 or by pulling wires 20 from the ground in various directions if necessary. Concrete 16 is placed at a depth of approximately 5 to 6 m at the bottom of the hole, and the concrete 16 is placed at the bottom of the hole to a depth of approximately 5 to 6 m. Bury the lower end of the IO to a sufficient depth. Therefore, concrete 16
Once the curing is complete, the column base will be firmly fixed.

コンクリート16の養生を終えた後は、まず修正ジヤツ
キ装置9の油圧ジヤツキ9bをゆるめて外し、チェン1
2で地上に引き上げて回収する。
After curing the concrete 16, first loosen and remove the hydraulic jack 9b of the correction jack device 9, and then remove the chain 1.
2 to raise it to the ground and collect it.

つづいて傾斜計15の電磁石17を消磁し、ロー118
で地上に引き上げて回収する。
Next, the electromagnet 17 of the inclinometer 15 is demagnetized, and the row 118
Raise it to the ground and collect it.

最後にスタンドバイブ2の上端にホッパー40を取り付
は砂利41を投入して杭孔lを埋め戻しく第8図)、構
真柱を完成するのである。
Finally, a hopper 40 is attached to the upper end of the stand vibrator 2, and gravel 41 is thrown in to backfill the pile hole l (Fig. 8), completing the structure pillar.

本発明が奏する効果 以上に実施例と併せて詳述したとおりであって、この発
明に係る構真柱の構築工法は、構真柱鉄骨lOの建入れ
後、孔底部に打設したコンクリート16が固まるまでの
rrnm続して建入れ精度を傾斜計15でリアルタイム
に計測し、かつ修正ジヤツキ装置9又はワイヤー20に
よる修正を行なえるので、およそ1/1000程度の極
めて高い建入れ精度を地上において完璧に把握した構築
が行なわれる。したがって、工場加工を採用した鉄骨造
の柱梁架構による逆打ち工法の実施を容易に可能ならし
める。
As described in detail in conjunction with the examples above and beyond the effects of the present invention, the method for constructing a structural column according to the present invention is as follows: After the construction of a structural column steel frame 1O, concrete 16 Since the construction accuracy can be measured in real time with the inclinometer 15 and corrections can be made using the correction jack device 9 or the wire 20, extremely high construction accuracy of approximately 1/1000 can be achieved on the ground. Construction is carried out with perfect understanding. Therefore, it is possible to easily implement the reverse construction method using a column-beam frame of a steel frame that has been processed in a factory.

また、施工用の附属機器である修正ジヤツキ装置9や傾
斜計15は完全に回収して転用できるのて経済性が高い
Moreover, the correction jacking device 9 and the inclinometer 15, which are auxiliary equipment for construction, can be completely recovered and reused, which is highly economical.

さらに本発明の構築工法は、構真柱鉄骨10の建入れ及
び孔底部へのコンクリート打設とその建入れ精度の確認
釜ひに修正作業とをリアルタイムに並行して行なうので
工期の短縮にも寄与するのである。
Furthermore, the construction method of the present invention can shorten the construction period because the erection of the main column steel frame 10, the pouring of concrete at the bottom of the hole, and the confirmation and correction of the erection accuracy are carried out in parallel in real time. It contributes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明に係る構真柱構築工法の枢要な
工程図、第9図と第10図は修正ジヤツキ装置の使用状
態を一部分拡大して示した断面図と平面図、第11図と
第12図は傾斜計の構真柱鉄骨への付設状態を示した平
面図と正面図であり、第13図と第14図は架台部分の
平面図と断面図である 2・・・スタンドバイブ   1・・・杭孔8・・・架
台       9a・・・リング9・・・修正ジヤツ
キ装置 15・・・傾斜計10・・・構真柱鉄骨   
 16・・・コンクリート9b・・・油圧ジヤツキ 12・・・チェン 11・・・ロープ 17・・・電磁石 20・・・ワイヤー 第10図 第 1 図 第 図 第 図 第 図 第 11 図 第 2 図
Figures 1 to 8 are important process diagrams of the structural pillar construction method according to the present invention, Figures 9 and 10 are a partially enlarged cross-sectional view and a plan view showing the state in which the correction jacking device is used; Figures 11 and 12 are a plan view and a front view showing how the inclinometer is attached to the structural column steel frame, and Figures 13 and 14 are a plan view and a cross-sectional view of the pedestal. ... Stand vibe 1 ... Pile hole 8 ... Frame 9a ... Ring 9 ... Correction jacking device 15 ... Inclinometer 10 ... Structure pillar steel frame
16...Concrete 9b...Hydraulic jack 12...Chain 11...Rope 17...Electromagnet 20...Wire Fig. 10 Fig. 1 Fig. Fig. Fig. 11 Fig. 2 Fig.

Claims (1)

【特許請求の範囲】 【1】スタンドパイプを使用して杭孔を掘削した後、前
記スタンドパイプの上端部に架台を設置し、同スタンド
パイプ内のできるだけ下端寄り位置にリングを主体とす
る修正ジャッキ装置を吊込み用意する段階と、 下端寄り位置に傾斜計を付設した構真柱鉄骨を前記杭孔
に建入れ、同構真柱鉄骨の上端は前記架台によって杭孔
の中心部に支持せしめ、傾斜計によって計測される構真
柱鉄骨の傾きが零となるように前記修正ジャッキ装置に
よる構真柱鉄骨の位置及び傾きの修正を行なう段階と、 構真柱鉄骨の建入位置の修正と位置決めが出来た後に孔
底部にコンクリートを打設し、コンクリート打設中及び
打設後の構真柱鉄骨の位置の変化を傾斜計で確認し修正
ジャッキ装置による構真柱鉄骨の位置及び傾きの修正を
行なつてからコンクリート養生を行ない柱脚部を固定す
る段階と、より成ることを特徴とする構真柱の構築工法
。 【2】修正ジャッキ装置は、構真柱鉄骨の外形寸法より
は十分に大きく、スタンドパイプの内径よりは小さい径
のリング上に所要数のジャッキをそれぞれ半径方向の向
きに、かつ起伏自在な構成で取り付けて成り、リングに
止着したチエンを利用してこの修正ジャッキ装置をスタ
ンドパイプ内の所定位置へ吊込み、各ジャッキを伏せた
状態において同リング内へ構真柱鉄骨の建入れを行ない
、しかる後に予め各ジャッキに止着したロープを引張っ
て各ジャッキを略水平姿勢に起立させ、構真柱鉄骨の位
置及び傾きの修正を行ない、孔底部のコンクリートを養
生後にチエンで修正ジャッキ装置を地上に回収すること
を特徴とする特許請求の範囲第1項に記載した構真柱の
構築工法。 【3】傾斜計は複数個の電磁石によって構真柱鉄骨の下
端寄りであって孔底部に打設されるコンクリートの天端
よりは高い位置、しかも構真柱鉄骨を平面的に見て直角
2方向の位置に少なくとも2個付設し、各傾斜計は地上
の記録表示計と接続して構真柱鉄骨の傾きをリアルタイ
ムに計測表示せしめ、孔底部のコンクリートを養生後に
電磁石を消磁し、予め傾斜計に止着してあるロープで傾
斜計を地上に回収することを特徴とする特許請求の範囲
第1項に記載した構真柱の構築工法。 【4】構真柱鉄骨の下端部であって同構真柱鉄骨を平面
方向に見て放射方向に等配された複数箇所に1本ずつ複
数本のワイヤーを止着し、このワイヤーの他端は地上に
確保し、傾斜計によって計測される構真柱鉄骨の位置及
び傾きの修正は前記ワイヤーを引張ることによって行な
うことを特徴とする特許請求の範囲第1項に記載した構
真柱の構築工法。
[Scope of Claims] [1] After excavating a pile hole using a stand pipe, a pedestal is installed at the upper end of the stand pipe, and a ring is mainly installed at a position as close to the lower end of the stand pipe as possible. The step of preparing for lifting the jack device is to erect a structural pillar steel frame with an inclinometer attached near the lower end into the pile hole, and the upper end of the structural pillar steel frame is supported by the mount at the center of the pile hole. , correcting the position and inclination of the structural column steel frame using the correction jack device so that the inclination of the structural column steel frame measured by the inclinometer becomes zero; and correcting the erection position of the structural column steel frame. After positioning, concrete is placed at the bottom of the hole, and changes in the position of the main column steel frame during and after concrete pouring are checked with an inclinometer, and the position and inclination of the main column steel frame are checked using a correction jack device. A construction method for structural pillars characterized by the following steps: After making corrections, concrete curing is performed and the column bases are fixed. [2] The modified jacking device has a structure in which the required number of jacks are oriented in the radial direction on a ring whose diameter is sufficiently larger than the external dimension of the structural column steel frame and smaller than the internal diameter of the stand pipe, and can be raised and lowered freely. Using the chain fixed to the ring, this modified jack device was suspended to a predetermined position inside the stand pipe, and with each jack lying down, the structural column steel frame was erected inside the ring. After that, each jack was erected in a substantially horizontal position by pulling the rope attached to each jack in advance, the position and inclination of the structural column steel frame was corrected, and after curing the concrete at the bottom of the hole, the corrective jack device was installed using a chain. A method for constructing a structure pillar as set forth in claim 1, characterized in that the structure pillar is recovered on the ground. [3] The inclinometer is installed using multiple electromagnets at a position near the bottom end of the main column steel frame, higher than the top of the concrete poured at the bottom of the hole, and at a right angle to the main column steel frame when viewed from above. At least two inclinometers are installed in the same direction, and each inclinometer is connected to a record display meter on the ground to measure and display the inclination of the structural column steel frame in real time. After curing the concrete at the bottom of the hole, the electromagnet is demagnetized and the inclination meter is The method for constructing a structural column as claimed in claim 1, characterized in that the inclinometer is recovered to the ground using a rope fixed to the gage. [4] A plurality of wires are fixed, one at a time, at multiple locations at the lower end of the main column steel frame, which are equally distributed in the radial direction when looking at the main column steel frame in the plane direction. The structural column steel frame according to claim 1, wherein the end thereof is secured on the ground, and the position and inclination of the structural column steel frame measured by an inclinometer are corrected by pulling the wire. Construction method.
JP2097333A 1990-04-12 1990-04-12 Construction method of straight pillar Expired - Fee Related JP2747566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097333A JP2747566B2 (en) 1990-04-12 1990-04-12 Construction method of straight pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097333A JP2747566B2 (en) 1990-04-12 1990-04-12 Construction method of straight pillar

Publications (2)

Publication Number Publication Date
JPH03295931A true JPH03295931A (en) 1991-12-26
JP2747566B2 JP2747566B2 (en) 1998-05-06

Family

ID=14189560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097333A Expired - Fee Related JP2747566B2 (en) 1990-04-12 1990-04-12 Construction method of straight pillar

Country Status (1)

Country Link
JP (1) JP2747566B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281145A (en) * 2009-06-05 2010-12-16 Nippon Steel & Sumikin Metal Products Co Ltd Fixing device for measuring instrument for investigating vertical shaft inner wall
JP2011214307A (en) * 2010-03-31 2011-10-27 Ohbayashi Corp Perpendicular accuracy measuring system for reversely driven column
CN102400473A (en) * 2011-08-08 2012-04-04 南京大学 Construction method and collection device of landfill gas extraction vertical shaft
JP2014020116A (en) * 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
CN111379275A (en) * 2020-03-30 2020-07-07 中铁第四勘察设计院集团有限公司 System and method for positioning steel pipe column of cover-excavation top-down construction underground structure
CN113818501A (en) * 2021-11-02 2021-12-21 北京奥博斯工程技术有限公司 Coke tower centering method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701495B1 (en) * 2015-09-08 2017-02-09 (주)더나은구조엔지니어링 Top-down construction method using steel tube column with horizontal and vertical reinforcement
CN110207644B (en) * 2018-02-28 2021-04-09 中国航发商用航空发动机有限责任公司 Rotor disc stack assembly method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281145A (en) * 2009-06-05 2010-12-16 Nippon Steel & Sumikin Metal Products Co Ltd Fixing device for measuring instrument for investigating vertical shaft inner wall
JP2011214307A (en) * 2010-03-31 2011-10-27 Ohbayashi Corp Perpendicular accuracy measuring system for reversely driven column
CN102400473A (en) * 2011-08-08 2012-04-04 南京大学 Construction method and collection device of landfill gas extraction vertical shaft
JP2014020116A (en) * 2012-07-18 2014-02-03 Taisei Corp Pile concrete placing method
CN111379275A (en) * 2020-03-30 2020-07-07 中铁第四勘察设计院集团有限公司 System and method for positioning steel pipe column of cover-excavation top-down construction underground structure
CN113818501A (en) * 2021-11-02 2021-12-21 北京奥博斯工程技术有限公司 Coke tower centering method

Also Published As

Publication number Publication date
JP2747566B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
CN104264902B (en) Steel pipe concrete column and pile foundation connection structure
JP5585059B2 (en) Measuring method of steel pipe installation error
US7530176B2 (en) Method and apparatus for monitoring element alignment
CN113293869A (en) Construction method for rear insertion of steel upright post
JPH03295931A (en) Construction method for frame straight pillar
CN111851517A (en) Accurate installation method of steel lattice column applied to foundation pit supporting engineering
JP2867080B2 (en) Basement building construction method
JPH08120673A (en) Accurate erection method and equipment for steel frame column under ground surface of reverse construction method
JPH09203041A (en) Structural center column erection method and guide pipe used therefor
CN110080271B (en) Construction method for embedded quality control of foundation bolt embedded part
JPH09291545A (en) Joining method of column and pile
JP2556215B2 (en) Construction method
JP2002097718A (en) Erection method for steel-pipe column
JP3616895B2 (en) Construction pillar erection device
JPH0531631B2 (en)
JP3750042B2 (en) Construction pillar erection device
JPH055391A (en) Structural stud erection holder
JP3053296B2 (en) Pillar hanging jig
JP2556216B2 (en) Construction pillar installation jig
JP5060894B2 (en) Construction method
JP3030374B2 (en) Construction method and equipment for trussed pillar
CN217150251U (en) Digital verticality adjusting system for reverse steel stand column
JPH0532536B2 (en)
JPH0452378A (en) Construction method and device for setting anchor bolt for steel frame pole
JPH0649976B2 (en) How to build a true pillar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees