[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03294492A - Recovering method for silver from photographic processing liquid - Google Patents

Recovering method for silver from photographic processing liquid

Info

Publication number
JPH03294492A
JPH03294492A JP9836890A JP9836890A JPH03294492A JP H03294492 A JPH03294492 A JP H03294492A JP 9836890 A JP9836890 A JP 9836890A JP 9836890 A JP9836890 A JP 9836890A JP H03294492 A JPH03294492 A JP H03294492A
Authority
JP
Japan
Prior art keywords
silver
solution
photographic processing
electrolytic cell
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9836890A
Other languages
Japanese (ja)
Inventor
Nobutaka Goshima
伸隆 五嶋
Shigeharu Koboshi
重治 小星
Takeshi Kajiya
加治屋 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP9836890A priority Critical patent/JPH03294492A/en
Publication of JPH03294492A publication Critical patent/JPH03294492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To recover silver as a silver ion-contg. soln. having comparatively high concn. by electrolyzing photographic processing liquid to deposit metallic silver on a cathode and impressing reverse current in an alkaline soln. and dissolving this metallic silver. CONSTITUTION:While supplying photographic processing liquid contg. silver ion and thiosulfate ion to an electrolyzer main body 2 via a base plate 8, electricity is conducted. Silver ion is reduced in the cathodically polarized part of a fixed bed 5 and deposited as metallic silver. The processing liquid is discharged from a cover body 7 and resupplied to the electrolyzer main body 2 from the bottom plate 8 via a circulation pipe 9. When recovery of metallic silver on the cathode is finished, processing liquid is substituted for an alkaline soln. having >=10pH. Polarities between the electrode terminals 3, 4 are reversed and electrolysis is performed. Metallic silver deposited to the upper part side of the fixed bed 5 is anodically polarized and dissolved in an electrolyte as silver ion. At this time, since silver sulfide deposited on the fixed bed 5 is converted into sodium sulfide or sodium hydrosulfide, a high-concn. silver ion soln. is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銀イオンとチオ硫酸イオンを含有する写真処
理液から電解反応によって銀回収を行う方法に関し、よ
り詳細には写真処理工程の銀イオンやチオ硫酸塩を含有
する定着液及び漂白定着液等から一旦銀イオンを電解反
応により銀回収用電解槽の陰極上に金属銀として電析さ
せ、次いで該電解槽に逆方向の起電力を印加して前記金
属銀を前記写真処理液と置換した銀溶解液中に溶解させ
て、比較的高濃度の銀イオン含有溶液として回収する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for recovering silver from a photographic processing solution containing silver ions and thiosulfate ions by electrolytic reaction. Silver ions are first deposited as metallic silver on the cathode of an electrolytic cell for silver recovery by an electrolytic reaction from a fixer, a bleach-fixer, etc. containing ions and thiosulfates, and then an electromotive force is applied in the opposite direction to the electrolytic cell. The present invention relates to a method in which the metallic silver is dissolved in a silver dissolving solution substituted with the photographic processing solution by applying an electric current, and recovered as a solution containing relatively high concentration of silver ions.

(従来技術) 感光材料は画像露光の後、例えばペーパー感光材料処理
においては、発色現像、漂白定着、水洗及び/又は安定
化の処理工程を経て処理される。
(Prior Art) After image exposure, a photosensitive material is processed through the processing steps of color development, bleach-fixing, washing and/or stabilization, for example in paper photosensitive material processing.

そしてこのような写真処理工程は、発色現像工程、漂白
工程、漂白定着工程、定着工程、安定化工程、水洗工程
等の工程を含み、各工程は別個の処理槽において行われ
る。各処理工程における処理液中には感光材料の乳剤中
等から溶解した銀イオンが存在し処理時間の経過に従っ
て該銀イオン濃度は徐々に上昇する。特に写真処理は感
光材料中のハロゲン化銀と処理液のいわゆる不均一系反
応であり、処理液中の各種処理薬剤がゼラチン膜中を移
動してはじめて反応が起こり、その副生成物が前記ゼラ
チン膜中を移動して処理液中に拡散していくという条件
の下で行われる。従って処理液中に反応副生成物が多量
に存在してくると、写真処理性能にも影響が生じてくる
ため、特に処理液中に銀イオンが蓄積した劣化処理液の
処理は、新規処理液の補充により、あるいは該劣化処理
液の抜出や交換、あるいは銀成分回収を目的とする電解
設備を処理槽に連絡し、処理液を該電解設備の電解槽と
処理槽の間で循環させ前記処理液中の銀イオンを前記電
解槽における電解反応により回収し除去するインライン
再生等の諸方法を用いて行われることが主流である。
Such photographic processing steps include steps such as a color development step, a bleaching step, a bleach-fixing step, a fixing step, a stabilizing step, and a washing step, and each step is performed in a separate processing tank. Silver ions dissolved from the emulsion of the light-sensitive material are present in the processing solution in each processing step, and the silver ion concentration gradually increases as processing time progresses. In particular, photographic processing is a so-called heterogeneous reaction between the silver halide in the light-sensitive material and the processing solution, and the reaction occurs only when the various processing chemicals in the processing solution move through the gelatin film, and the by-products are mixed with the gelatin film. This is carried out under the condition that it moves through the membrane and diffuses into the processing solution. Therefore, if a large amount of reaction by-products are present in the processing solution, it will affect the photographic processing performance. By replenishing the deterioration treatment liquid, or by extracting or replacing the deterioration treatment liquid, or by connecting an electrolytic equipment for the purpose of silver component recovery to the treatment tank, and circulating the treatment liquid between the electrolytic tank and the treatment tank of the electrolytic equipment, the above-mentioned The mainstream is to use various methods such as in-line regeneration in which silver ions in the treatment solution are recovered and removed by electrolytic reaction in the electrolytic cell.

(発明が解決しようとする問題点) この電解法により銀回収を行うと、写真処理液中の銀イ
オンが陰極上で還元されて金属銀とじて回収されるが、
回収操作を継続していくと前記写真処理液中の銀イオン
濃度が減少して電流効率も減少し、該処理液中に存在す
るチオ硫酸ナトリウムが電解により分解して硫化物イオ
ンに変換され該硫化物イオンが銀イオンと反応して不溶
性の硫化銀として既に陰極上に析出した比較的径の大き
い金属銀の周囲に微細粒子として電析したり、あるいは
陽極上に単独で析出したり、微粒子として電解槽内に沈
澱したり浮遊したりすることがある。
(Problems to be Solved by the Invention) When silver is recovered using this electrolytic method, silver ions in the photographic processing solution are reduced on the cathode and recovered as metallic silver.
As the recovery operation continues, the silver ion concentration in the photographic processing solution decreases and the current efficiency also decreases, and the sodium thiosulfate present in the processing solution is decomposed by electrolysis and converted to sulfide ions. Sulfide ions react with silver ions to form insoluble silver sulfide, which is deposited as fine particles around relatively large metallic silver that has already been deposited on the cathode, or deposited alone on the anode, or as fine particles. may precipitate or float in the electrolytic cell.

この硫化銀を含む写真処理液を写真処理工程に循環させ
ると、該処理液中の前記硫化銀が感光材料表面に付着し
印画紙上に斑点となって顕れるため、硫化銀を含む銀回
収後の写真処理液を写真処理工程に循環させることは絶
対に回避しなければならない。又写真処理液を循環させ
ない場合でも、前記電解槽内で生ずる硫化銀を金属銀と
ともに回収すると不純物として硫化銀が混入して不都合
を生ずることが多い。
When this photographic processing solution containing silver sulfide is circulated through the photographic processing process, the silver sulfide in the processing solution adheres to the surface of the photosensitive material and appears as spots on the photographic paper. Circulation of photographic processing solutions into the photographic processing process must be avoided at all costs. Further, even when the photographic processing solution is not circulated, if silver sulfide generated in the electrolytic cell is recovered together with metallic silver, silver sulfide is often mixed in as an impurity, causing problems.

写真処理工程における写真処理液は通常8g/l程度の
濃度の銀イオンを含有し、前記電解法により該写真処理
液からの銀回収を行うと、銀イオン濃度が約1g/#程
度までは硫化銀の発生は殆ど生ずることがないため、従
来は写真処理液中の銀イオン濃度が18/1程度に減少
した時点で電解を停止し硫化銀による上記問題点を回避
するようにしている。前記写真処理液中に残存する約1
g/lの銀を更に回収するために、従来は該写真処理液
をイオン交換樹脂で処理したり、キレート化合物として
回収したりあるいは残存する硫化物イオンをその写真処
理液に鉄イオン等の添加して硫化鉄と沈澱させ濾過した
り、更に水素ガスを吹き込んで硫化水素に変換すること
により該写真処理液から除去する等の手段が採用されて
いる。しかしながらいずれの手段も電解系とは別個の設
備を必要とする手間の掛かる煩雑な方法であるとともに
他の試薬や材料を使用するためコスト的にも不利である
The photographic processing solution used in the photographic processing process normally contains silver ions at a concentration of about 8 g/l. Since almost no silver is generated, conventionally the electrolysis is stopped when the silver ion concentration in the photographic processing solution decreases to about 18/1 in order to avoid the above-mentioned problems caused by silver sulfide. Approximately 1 remaining in the photographic processing solution
In order to recover more g/l of silver, conventional methods have been to treat the photographic processing solution with an ion exchange resin, recover it as a chelate compound, or add iron ions, etc. to the photographic processing solution to remove remaining sulfide ions. Measures have been adopted to remove the iron sulfide from the photographic processing solution by precipitating it with iron sulfide and filtering it, or by blowing hydrogen gas to convert it into hydrogen sulfide. However, both methods are time-consuming and complicated methods that require equipment separate from the electrolytic system, and are also disadvantageous in terms of cost because they use other reagents and materials.

このように従来の電解法では、硫化銀が析出し始める銀
イオン濃度に達する前に電解を停止し、残存する銀イオ
ンは電解性以外の手段により回収するという手法以外に
は写真処理液からの銀イオンの回収は行われていない。
As described above, in the conventional electrolytic method, the electrolysis is stopped before reaching the silver ion concentration at which silver sulfide starts to precipitate, and the remaining silver ions are recovered from the photographic processing solution by means other than electrolysis. Silver ions were not recovered.

又陰極上に析出した金属銀は通常再度溶解して比較的高
濃度の銀イオンの溶液として再使用されるため、従来の
電解法では写真処理液中の銀イオンをほぼ完全に回収す
るためには、電解による銀イオンの析出−残存銀イオン
の電解以外での回収−析出銀の溶解の3工程を必要とし
ている。
In addition, the metallic silver deposited on the cathode is usually redissolved and reused as a solution of relatively high concentration of silver ions, so conventional electrolytic methods are difficult to recover almost completely of the silver ions in the photographic processing solution. requires three steps: precipitation of silver ions by electrolysis, recovery of residual silver ions by means other than electrolysis, and dissolution of the deposited silver.

(発明の目的) 本発明者らは、写真処理液からほぼ完全に銀イオンを回
収するための前記従来技術の煩雑さを解消して電解法に
より比較的簡単に銀イオンをほぼ完全に比較的高濃度の
銀イオン含有溶液として回収出来る方法を各種検討して
本発明方法に到達したものであり、従って本発明は写真
処理液中に蓄積された銀イオンをほぼ完全に比較的高濃
度の銀イオン含有溶液として回収する方法を捉供するこ
とを目的とする。
(Objective of the Invention) The present inventors have solved the complication of the above-mentioned conventional techniques for almost completely recovering silver ions from a photographic processing solution, and relatively easily and relatively easily recovering silver ions almost completely from a photographic processing solution. The method of the present invention was arrived at by studying various methods that can recover a solution containing silver ions at a high concentration.Therefore, the method of the present invention allows almost completely the silver ions accumulated in a photographic processing solution to be recovered as a solution containing silver ions at a relatively high concentration. The purpose is to provide a method for recovering ion-containing solutions.

(問題点を解決するための手段) 本発明は、銀イオン及び千オ硫酸イオンを含有する写真
処理液から電解反応によって銀を回収する方法において
、前記写真処理液を三次元電極型銀回収用電解槽で直流
電圧を印加して電解し、該写真処理液中の銀イオンを前
記電解槽の陰極上に金属銀として析出させた後、前記電
解槽内の前記写真処理液を銀溶解液と置換し更に逆方向
の直流電圧を印加して前記陰極上に析出した前記金属銀
を前記銀溶解液中に溶解させて比較的高濃度の銀イオン
含有溶液として回収することを特徴とする写真処理液か
らの銀回収方法である。
(Means for Solving the Problems) The present invention provides a method for recovering silver from a photographic processing solution containing silver ions and periosulfate ions by an electrolytic reaction. After electrolyzing by applying a DC voltage in an electrolytic cell and depositing silver ions in the photographic processing solution as metallic silver on the cathode of the electrolytic cell, the photographic processing solution in the electrolytic cell is converted into a silver dissolving solution. Photographic processing characterized in that the metallic silver deposited on the cathode is dissolved in the silver solution by displacing the metal, and further applying a DC voltage in the opposite direction to recover the silver ion-containing solution with a relatively high concentration. This is a method for recovering silver from liquid.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、銀イオンとチオ硫酸イオンを含有する写真処
理液から電解法により銀回収を行う際に、従来法では析
出を抑制していた硫化銀を金属銀とともに銀回収用電解
槽の電極上に析出させあるいは電解中の前記写真処理液
中に微粒子として沈澱又は浮遊させ、次いで前記写真処
理液を銀溶解液と置換した後、前記電解槽に逆方向の直
流起電力を印加することにより金属銀をより効率的に前
記銀溶解液に溶解させるとともに前記硫化銀も銀溶解液
中に溶解させることを特徴とする。従って逆方向の起電
力の印加によって析出した金属銀を溶解することにより
、高純度の銀イオン含有溶液を得ることが出来、更に置
換する銀溶解液の量を調節することにより任意の比較的
高濃度の溶液を生成することが可能になる。
The present invention enables silver sulfide, whose precipitation was suppressed in conventional methods, to be deposited on the electrodes of an electrolytic cell for silver recovery together with metallic silver when silver is recovered from a photographic processing solution containing silver ions and thiosulfate ions by an electrolytic method. The metal is precipitated or suspended as fine particles in the photographic processing solution during electrolysis, and then the photographic processing solution is replaced with a silver solution, and then a direct current electromotive force is applied in the opposite direction to the electrolytic cell. It is characterized in that silver is more efficiently dissolved in the silver solution and the silver sulfide is also dissolved in the silver solution. Therefore, by dissolving precipitated metallic silver by applying an electromotive force in the opposite direction, it is possible to obtain a highly pure silver ion-containing solution, and furthermore, by adjusting the amount of silver solution to be replaced, any relatively high-purity silver ion-containing solution can be obtained. It becomes possible to produce concentrated solutions.

前述の通り従来の電解法による銀回収では、硫化銀の析
出等を抑制するためほぼ完全に金属銀が析出するまで電
解を継続することは試みられなかった。本発明はこの従
来技術の常識に反して、写真処理液中の銀イオンのほぼ
完全な回収を意図するものである。
As mentioned above, in conventional silver recovery using electrolytic methods, in order to suppress the precipitation of silver sulfide, it has not been attempted to continue electrolysis until metallic silver is almost completely precipitated. Contrary to the common sense of the prior art, the present invention aims at almost complete recovery of silver ions in photographic processing solutions.

従来技術の欠点であった硫化銀の析出が本発明では欠点
とはならず、析出した硫化銀が効果的に他の無害な化合
物に変換される。本発明では写真処理液中の銀イオンを
ほぼ完全に回収する際にチオ硫酸塩特にチオ硫酸アンモ
ニウムに起因して生成する硫化銀を除去出来るだけでな
く、比較的銀イオン濃度の低い写真処理液から比較的高
濃度の銀イオン含有溶液を得ることが出来るという利点
が住する。
The precipitation of silver sulfide, which was a disadvantage of the prior art, is not a disadvantage in the present invention, and the precipitated silver sulfide is effectively converted into other harmless compounds. The present invention not only removes silver sulfide generated due to thiosulfate, especially ammonium thiosulfate, when almost completely recovering silver ions in a photographic processing solution, but also removes silver sulfide from a photographic processing solution with a relatively low silver ion concentration. An advantage lies in the fact that solutions containing relatively high concentrations of silver ions can be obtained.

本発明に使用する写真処理液は、現像液、漂白液、定着
液、漂白定着液等の銀イオンとチオ硫酸イオンを含有す
る写真処理工程で使用される液であり、好ましくは特に
銀イオン含有量の多い定着液及び漂白定着液である。
The photographic processing solution used in the present invention is a solution used in a photographic processing process containing silver ions and thiosulfate ions, such as a developing solution, a bleaching solution, a fixing solution, and a bleach-fixing solution. This is a large amount of fixer and bleach-fixer.

本発明の銀回収用電解槽の構造は三次元電極型電解槽と
し、例えば単極式固定床型電解槽、複極式固定床型電解
槽及び単極式流動床型電解槽等を使用することが出来る
。現在量も広く使用されている回転円筒式電解槽等の平
板電極型電解槽では、電極の表面積が小さいため電流密
度を小さくすることが出来ず従って金属銀の析出が進行
して銀イオン濃度が低くなった写真処理液中の銀イオン
を更に析出させてほぼ完全な銀回収を達成することが出
来ないため、本発明では採用しない。
The structure of the electrolytic cell for silver recovery of the present invention is a three-dimensional electrode type electrolytic cell, such as a monopolar fixed bed electrolytic cell, a bipolar fixed bed electrolytic cell, a monopolar fixed bed electrolytic cell, etc. I can do it. In flat plate electrode type electrolytic cells such as rotating cylindrical electrolytic cells which are currently widely used, the current density cannot be reduced because the surface area of the electrode is small, so the precipitation of metallic silver progresses and the silver ion concentration decreases. This method is not adopted in the present invention because it is impossible to achieve almost complete silver recovery by further precipitating the silver ions in the photographic processing solution, which has become low.

本発明の銀回収用電解槽の陰陽両極のうち少なくとも一
方つまり少なくとも銀回収電解時に陰極として機能する
電極は三次元電極とする。固定床型電解槽の三次元電極
としては例えば炭素材料、鉄、ステンレス、ニッケル、
チタン及び白金被覆チタン等の導電性材料を繊維状又は
スポンジ状に成形した多孔質電極やガラスピーズを電解
槽内又は電極室内に充填したビーズ電極を、又流動床型
電解槽の三次元電極としては例えば微細粒子状、チップ
状あるいは短繊維状の導電性材料を電解槽内又は電極室
内に収容し供給する写真処理液で流動させる流動電極を
使用することが出来る。
At least one of the cathode and anode electrodes of the silver recovery electrolytic cell of the present invention, that is, at least the electrode that functions as a cathode during silver recovery electrolysis, is a three-dimensional electrode. Examples of three-dimensional electrodes for fixed bed electrolyzers include carbon materials, iron, stainless steel, nickel,
Porous electrodes made of conductive materials such as titanium and platinum-coated titanium molded into fibers or sponges, bead electrodes filled with glass beads in electrolytic cells or electrode chambers, and three-dimensional electrodes in fluidized bed electrolytic cells. For example, a fluidized electrode can be used in which a conductive material in the form of fine particles, chips, or short fibers is housed in an electrolytic bath or an electrode chamber and made to flow with a supplied photographic processing solution.

対極つまり銀回収時に陽極として機能する電極は三次元
電極とする必要はなく、銀回収電解時に該電極上には硫
化銀が析出し逆方向の起電力を印加する際に前記電極が
繊維状であると硫化銀の溶解が阻害されるためむしろ通
常の平板電極とすることが望ましく、その材質としては
グラファイト材、炭素材、寸法安定性電極(白金族酸化
物被覆チタン材)、白金被覆チタン材、ニッケル材等が
利用できる。
The counter electrode, that is, the electrode that functions as an anode during silver recovery, does not need to be a three-dimensional electrode; silver sulfide is deposited on the electrode during silver recovery electrolysis, and when an electromotive force in the opposite direction is applied, the electrode is in the form of a fiber. Since dissolution of silver sulfide is inhibited, it is preferable to use a regular flat plate electrode.The materials include graphite material, carbon material, dimensionally stable electrode (platinum group oxide coated titanium material), platinum coated titanium material. , nickel materials, etc. can be used.

複極式電解槽を使用する場合には固定床型電解槽とし、
写真処理液が透過可能な多孔質材料、例えば粒状、球状
、フェルト状、織布状、多孔質ブロック(スポンジ)状
等の形状を有する活性炭、グラファイト、炭素繊維等の
炭素系材料から、あるいは同形状を有するニッケル、銅
、ステンレス、鉄、チタン等の金属材料、更にそれら金
属材料に貴金属のコーティングを施した材料から形成さ
れた1個又は複数個の誘電体を直流電場内に置き、直流
電圧により分極させて該誘電体を分極させてその一端及
び他端に陽極及び陰極を形成させて成る三次元電極を収
容した固定床型複極式電解槽を使用することが可能であ
る。この誘電体を分極させた三次元電極を使用する場合
には、その両端の電極は電極機能を有しなくともよいが
、前記三次元電極に電圧を印加して分極させる機能つま
り給電機能を有しなければならない。いずれの形態の三
次元電極を使用する場合でも、処理すべき写真処理液が
流れる処理槽内に該写真処理液が三次元電極として機能
する前記誘電体に接触せずに流通できる空隙があると写
真処理液中の銀イオンの析出が阻害されるため、前記誘
電体は処理槽内の写真処理液の流れがショートパスしな
いように配置することが望ましい。
When using a bipolar electrolytic cell, use a fixed bed electrolytic cell,
Porous materials through which photographic processing liquids can pass, such as carbon-based materials such as activated carbon, graphite, and carbon fibers having shapes such as granules, spheres, felts, woven fabrics, and porous blocks (sponges); One or more dielectrics made of shaped metal materials such as nickel, copper, stainless steel, iron, titanium, etc., as well as materials coated with precious metals, are placed in a DC electric field, and a DC voltage is applied to the dielectric body. It is possible to use a fixed-bed bipolar electrolytic cell containing a three-dimensional electrode that is polarized to form an anode and a cathode at one end and the other end of the dielectric. When using a three-dimensional electrode made by polarizing this dielectric material, the electrodes at both ends do not need to have an electrode function, but they do have the function of applying a voltage to the three-dimensional electrode to polarize it, that is, a power supply function. Must. No matter which type of three-dimensional electrode is used, if there is a gap in the processing tank through which the photographic processing liquid to be processed flows without coming into contact with the dielectric that functions as the three-dimensional electrode. Since precipitation of silver ions in the photographic processing solution is inhibited, it is desirable that the dielectric material is arranged so that the flow of the photographic processing solution in the processing tank does not take a short path.

単極式電解槽を使用する場合には固定床型及び流動床型
の再電解槽の使用が可能である。固定床型電解槽を使用
する場合には、前記複極式固定床型電解槽とほぼ同様の
材質例えば炭素質微粒子を使用して三次元電極を構成す
ればよい。又流動床型電解槽を使用する場合には、流動
させる粒子としては給電用陰極に接触して負に帯電出来
る物質を使用し、従来法と同様の条件で流動させればよ
い。
When using a monopolar electrolyzer, fixed bed and fluidized bed re-electrolyzers can be used. When a fixed bed electrolytic cell is used, the three-dimensional electrode may be constructed using substantially the same material as the bipolar fixed bed electrolytic cell, such as carbonaceous particles. In addition, when a fluidized bed type electrolytic cell is used, the particles to be fluidized may be a substance that can be negatively charged by contacting the power supply cathode, and the particles may be fluidized under the same conditions as in the conventional method.

本発明に使用出来るこのような電解槽では隔膜を使用し
て該電解槽を陽極室と陰極室とに区画してもしなくとも
よいが、隔膜を使用する場合に該隔膜はチオ硫酸塩を含
有する写真処理液に耐性があれば特に限定されず、例え
ばイオン交換膜、素焼板、ポリプロピレン等の有機高分
子材料繊維の焼結板あるいは圧着板、各種織布、有機高
分子材料粒子の焼結板あるいは圧着板等を使用すること
ができる。又該隔膜のイオン透過に対する抵抗値が大き
くなると電解電圧が上昇して不経済になるばかりか、通
常の電解槽に使用する直流電源では電力許容値の制限を
受けて電圧上昇分だけ電流値が低下して必要量の電解反
応が生じなくなることがある。そのため前記隔膜の膜抵
抗は単位電流密度当たり200 (V/A/ca13以
下であることが好ましい。
In such an electrolytic cell that can be used in the present invention, a diaphragm may or may not be used to divide the electrolytic cell into an anode chamber and a cathode chamber, but if a diaphragm is used, the diaphragm may contain thiosulfate. For example, ion exchange membranes, unglazed plates, sintered plates or pressure-bonded plates of organic polymer fibers such as polypropylene, various woven fabrics, and sintered organic polymer particles. A plate or a crimp plate can be used. Furthermore, if the resistance value of the diaphragm against ion permeation increases, not only will the electrolytic voltage increase, making it uneconomical, but also the current value will increase by the voltage increase due to the limit on the allowable power value of the DC power supply used for ordinary electrolytic cells. This may cause the required amount of electrolytic reaction to not occur. Therefore, the membrane resistance of the diaphragm is preferably 200 (V/A/ca13 or less) per unit current density.

写真処理液中の銀イオンを還元して金属銀として回収す
る電解処理は、電解槽の陰極面の電解反応により行われ
る。従って電解槽内に隔膜を配置する場合に該隔膜を陽
極側に近付けて陰極室を大きくすることは電解槽の操業
効率を高めると共に銀回収に関与しない陽極液が少なく
なり銀の回収効率を高めることになる。しかしながら隔
膜を陽極に接近させて配置すると、前述の通りチオ硫酸
塩の陽極酸化により硫化銀が狭い陽極室中で発生して前
記隔膜を閉塞したり、陽極室内の溶液抵抗を高めること
により電解電圧を上昇させたりすることになるため、陽
極面と隔膜面の間隔を余り狭くしないようにすることが
好ましい。
Electrolytic treatment, which reduces silver ions in a photographic processing solution and recovers them as metallic silver, is performed by an electrolytic reaction on the cathode surface of an electrolytic cell. Therefore, when arranging a diaphragm in an electrolytic cell, moving the diaphragm closer to the anode side to enlarge the cathode chamber increases the operational efficiency of the electrolytic cell and reduces the amount of anolyte that does not participate in silver recovery, increasing silver recovery efficiency. It turns out. However, if the diaphragm is placed close to the anode, silver sulfide is generated in the narrow anode chamber due to the anodic oxidation of thiosulfate as described above, which may block the diaphragm or increase the electrolytic voltage by increasing the solution resistance in the anode chamber. Therefore, it is preferable not to make the distance between the anode surface and the diaphragm surface too narrow.

又写真処理液の前記電解槽への供給方式はいわゆるバッ
チ式及びフロー式のいずれでもよいが、銀イオン濃度を
ほぼ零にするためには前記写真処理液の電解槽内の電極
との接触時間を長くする必要があり、フロー式を採用す
る場合には一定量の写真処理液を循環させるようにする
ことが好ましい。
Further, the method of supplying the photographic processing solution to the electrolytic cell may be either a so-called batch method or a flow method, but in order to reduce the silver ion concentration to almost zero, the contact time of the photographic processing solution with the electrodes in the electrolytic cell is determined. If a flow type is used, it is preferable to circulate a certain amount of photographic processing solution.

このような構成から成る電解槽を使用する写真処理液中
の銀イオンの陰極への析出及び該析出銀の銀溶解液への
溶解は次のようにして行う。
Using an electrolytic cell constructed as described above, silver ions in a photographic processing solution are deposited on the cathode and the deposited silver is dissolved in a silver solution as follows.

6〜10g//程度の銀イオン濃度を有しかつチオ硫酸
塩を含有する定着液等の写真処理液を前記銀回収用電解
槽に供給し、2〜4■程度の電解電圧及び0.5〜5A
/dm2程度の電流密度で前記写真処理液の電解を行う
と当初は約30%の電流効率で銀イオンが金属銀として
陰極上に析出し、更に電解を継続すると銀イオン濃度の
減少につれて電流効率は減少するが前記写真処理液の銀
イオン濃度がほぼ零になるまで金属銀が析出する。銀イ
オン濃度の減少につれて前記チオ硫酸塩の分解に起因す
る硫化銀の析出が生じ始め、該硫化銀粒子は主として陽
極上に析出するが、その一部は前記金属銀の析出粒子に
付着したりあるいは粒子内に取り込まれたり、更に写真
処理液中に浮遊し又は電解槽内に沈澱している。
A photographic processing solution such as a fixing solution having a silver ion concentration of about 6 to 10 g// and containing thiosulfate is supplied to the electrolytic cell for silver recovery, and an electrolytic voltage of about 2 to 4 cm and an electrolytic voltage of about 0.5 ~5A
When the photographic processing solution is electrolyzed at a current density of about /dm2, silver ions are deposited as metallic silver on the cathode with a current efficiency of about 30% at first, and as the electrolysis continues, the current efficiency decreases as the silver ion concentration decreases. Although the amount decreases, metallic silver continues to precipitate until the silver ion concentration of the photographic processing solution becomes almost zero. As the silver ion concentration decreases, precipitation of silver sulfide due to the decomposition of the thiosulfate begins to occur, and the silver sulfide particles are mainly deposited on the anode, but some of them adhere to the precipitated particles of metallic silver. Alternatively, it may be incorporated into particles, suspended in a photographic processing solution, or precipitated in an electrolytic bath.

次にこのように銀イオンが電解によりほぼ完全に除去さ
れた前記電解槽内の写真処理液を任意の線溶解液と置換
する。この置換により前記写真処理液中に浮遊しあるい
は沈澱している硫化銀は除去される。次いで逆方向の起
電力を印加して電解を行うと、前記銀析出電解で陰極と
して機能した電極上に析出した金属銀がこの銀溶解電解
では陽極として機能する該電極上で電解酸化されて銀イ
オンとして電解液である前記銀溶解液中に溶解し、それ
とともに前記銀回収電解で陽極として機能した電極上に
析出した硫化銀が溶解して銀イオンと硫化物イオンが生
成する。該硫化物イオンは木根溶解電解で陰極として機
能する電極から発生する水素ガスと反応して硫化水素に
変換され系外に放出される。しかしこの硫化物イオンと
水素の反応は反応速度が遅く反応を促進するためには、
例えば前記線溶解液をアルカリ性としたり該線溶解液に
亜硫酸イオンを含有させたりすることが好ましい。硫化
物イオンは水酸化ナトリウムと反応して硫化ナトリウム
と水硫化ナトリウムに変換され、あるいは亜硫酸イオン
と反応してSOx化合物に変換されて、該銀溶解液中で
の硫化銀の生成が抑制される。
Next, the photographic processing solution in the electrolytic cell from which silver ions have been almost completely removed by electrolysis is replaced with an arbitrary line dissolving solution. By this substitution, silver sulfide floating or precipitated in the photographic processing solution is removed. Next, when electromotive force is applied in the opposite direction to perform electrolysis, the metallic silver deposited on the electrode that functioned as a cathode in the silver deposition electrolysis is electrolytically oxidized on the electrode that functions as an anode in the silver dissolution electrolysis, and becomes silver. The silver sulfide is dissolved as ions in the silver solution which is the electrolytic solution, and at the same time, the silver sulfide deposited on the electrode that functioned as an anode in the silver recovery electrolysis is dissolved to generate silver ions and sulfide ions. The sulfide ions react with hydrogen gas generated from the electrode functioning as a cathode in root dissolution electrolysis, are converted into hydrogen sulfide, and are released outside the system. However, the reaction rate of this sulfide ion and hydrogen is slow, and in order to accelerate the reaction,
For example, it is preferable that the linear solution is alkaline or that the linear solution contains sulfite ions. Sulfide ions react with sodium hydroxide and are converted to sodium sulfide and sodium hydrosulfide, or react with sulfite ions and are converted to SOx compounds, suppressing the production of silver sulfide in the silver solution. .

前記線溶解液の量を調節することによりこの銀溶解電解
で生成する線溶解液の銀イオン濃度を任意の値に設定す
ることが出来る。つまり少量の線溶解液を使用すると高
濃度の銀イオン含有溶液を得ることが出来、電解前の銀
イオン濃度が比較的低くかつ不純物を含む写真処理液が
ら高濃度の銀イオンを含む溶液が得られる。このように
しで得られた高濃度銀イオン溶液がら無電解メツキによ
りあるいは水素化硼素ナトリウム又はヒドラジン等の還
元剤を液中に投入する等の従来技術により更に高純度の
金属銀を生成することが可能である。
By adjusting the amount of the linear solution, the silver ion concentration of the linear solution produced by this silver dissolving electrolysis can be set to an arbitrary value. In other words, a solution containing a high concentration of silver ions can be obtained by using a small amount of linear solution, and a solution containing a high concentration of silver ions can be obtained from a photographic processing solution that has a relatively low silver ion concentration before electrolysis and contains impurities. It will be done. Metallic silver of even higher purity can be produced from the highly concentrated silver ion solution thus obtained by electroless plating or by conventional techniques such as adding a reducing agent such as sodium boron hydride or hydrazine to the solution. It is possible.

このように本発明方法によると、正方向及び逆方向の起
電力を印加しかつ電解液の置換を行うという簡単な操作
により析出する硫化銀の存在を考慮することなくほぼ完
全に写真処理液中の銀を回収することが出来る。
As described above, according to the method of the present invention, silver sulfide can be almost completely absorbed into the photographic processing solution by a simple operation of applying electromotive force in the forward and reverse directions and replacing the electrolyte, without considering the presence of precipitated silver sulfide. of silver can be recovered.

次に添付図面に基づいて本発明に使用できる銀回収用電
解槽の好ましい例を説明するが、本発明方法に使用され
る電解槽は、この電解槽に限定されるものではない。
Next, a preferred example of an electrolytic cell for silver recovery that can be used in the present invention will be described based on the accompanying drawings, but the electrolytic cell used in the method of the present invention is not limited to this electrolytic cell.

第1a図及び第1b図は、本発明の電解槽として使用可
能な複極式固定床型電解槽の一例を示す縦断面図であり
、第1a図は正方向の起電力を印加した状態の電解槽を
又第1b図は逆方向の起電力を印加した状態の電解槽を
それぞれ示すものである。
Figures 1a and 1b are longitudinal cross-sectional views showing an example of a bipolar fixed bed electrolytic cell that can be used as the electrolytic cell of the present invention, and Figure 1a is a vertical cross-sectional view showing an example of a bipolar fixed bed electrolytic cell that can be used as the electrolytic cell of the present invention. FIG. 1b shows the electrolytic cell with an electromotive force applied in the opposite direction.

上下にフランジ1を有する円筒形の電解槽本体2の内部
上端近傍及び下端近傍にはそれぞれメソシュ状の陽極タ
ーミナル3と陰極ターミナル4が設けられている。電解
槽本体2は、長期間の使用又は再での使用にも耐え得る
電気絶縁材料で形成することが好ましく、特に合成樹脂
であるポリエピクロルヒドリン、ポリビニルメタクリレ
ート、ポリエチレン、ポリプロピレン、ポリ塩化ビニル
、ポリ塩化エチレン、フェノール−ホルムアルデヒド樹
脂等が好ましく使用できる。正の直流電圧を与える前記
陽極ターミナル3は、例えば炭素材(例えば活性炭、炭
、コークス、石炭等)、グラファイト材(例えば炭素繊
維、カーボンクロス、グラファイト等)、炭素複合材(
例えば炭素に金属を粉状で混ぜ焼結したもの等)、活性
炭素繊維不織布(例えばKE−1000フエルト、東洋
紡株式会社)、又はこれに白金、白金、パラジウムやニ
ッケルを担持させた材料、更に寸法安定性電極(白金族
酸化物被覆チタン材)、白金被覆チタン材、ニッケル材
、ステンレス材、鉄材等で形成される。又陽極ターミナ
ル3に対向し負の直流電圧を与える陰極ターミナル4は
、例えば白金、ステンレス、チタン、ニッケル、ハステ
ロイ、グラファイト、炭素材、軟鋼あるいは白金族金属
をコーティングした金属材料等から形成されている。
A mesoche-shaped anode terminal 3 and a cathode terminal 4 are provided near the upper and lower ends of a cylindrical electrolytic cell body 2 having flanges 1 on the upper and lower sides, respectively. The electrolytic cell body 2 is preferably made of an electrically insulating material that can withstand long-term use or reuse, and is particularly made of synthetic resins such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, and polychloride. Ethylene, phenol-formaldehyde resin, etc. can be preferably used. The anode terminal 3 that provides a positive DC voltage is made of, for example, a carbon material (such as activated carbon, charcoal, coke, coal, etc.), a graphite material (such as carbon fiber, carbon cloth, graphite, etc.), or a carbon composite material (such as carbon fiber, carbon cloth, graphite, etc.).
(e.g. carbon mixed with metal in powder form and sintered), activated carbon fiber nonwoven fabric (e.g. KE-1000 felt, Toyobo Co., Ltd.), or material in which platinum, platinum, palladium or nickel is supported on it, and dimensions Stability electrode (platinum group oxide coated titanium material), platinum coated titanium material, nickel material, stainless steel material, iron material, etc. are formed. The cathode terminal 4, which faces the anode terminal 3 and applies a negative DC voltage, is made of, for example, platinum, stainless steel, titanium, nickel, Hastelloy, graphite, carbon material, mild steel, or a metal material coated with a platinum group metal. .

前記画電極ターミナル3.4間には複数個の図示の例で
は3個の固定床5が積層され、該固定床5間及び該固定
床5と前記画電極ターミナル3.4間に4枚の多孔質の
隔膜あるいはスペーサー6が挟持されている。各固定床
5は電解槽本体2の内壁に密着し固定床5の内部を通過
せず、固定床5と電解槽本体2の側壁との間を流れる写
真処理液の漏洩流が30%以下好ましくは10%以下に
なるように配置されている。隔膜を使用する場合には該
隔膜として織布、素焼板、粒子焼結プラスチック、多孔
板、イオン交換膜等が用いられ、スペーサーとして電気
絶縁性材料で製作された織布、多孔板、網、棒状材等が
使用される。
In the illustrated example, three fixed beds 5 are stacked between the picture electrode terminals 3.4, and four fixed beds 5 are stacked between the fixed beds 5 and between the fixed beds 5 and the picture electrode terminals 3.4. A porous diaphragm or spacer 6 is sandwiched therebetween. Each fixed bed 5 is in close contact with the inner wall of the electrolytic cell main body 2 and does not pass through the inside of the fixed bed 5, and the leakage flow of the photographic processing solution flowing between the fixed bed 5 and the side wall of the electrolytic cell main body 2 is preferably 30% or less. is arranged so that it is 10% or less. When a diaphragm is used, a woven fabric, an unglazed plate, a particle sintered plastic, a perforated plate, an ion exchange membrane, etc. are used as the diaphragm, and a woven fabric, a perforated plate, a mesh, etc. made of an electrically insulating material are used as the spacer. A rod-shaped material is used.

前記上下の両フランジ1にはそれぞれ蓋体7及び底板8
が締着され、該蓋体7及び底板8間は循環バイブ9によ
り連結され図示を省略したタンクに貯溜された電解液で
ある写真処理液等を同様に図示を省略したポンプを使用
して循環を行えるようにしである。
A lid body 7 and a bottom plate 8 are provided on both the upper and lower flanges 1, respectively.
The lid 7 and the bottom plate 8 are connected by a circulation vibrator 9, and a photographic processing solution, which is an electrolytic solution stored in a tank (not shown), is circulated using a pump (not shown). This allows you to do this.

このような構成から成る電解槽に第1a図中に矢印で示
すように例えば写真処理工程の定着工程からの定着液を
底板8を通して供給しながら通電を行うと、前記各固定
床5が図示の如く下面が正に上面が負に分極して固定床
5内及び固定床5間に電位が生じ、該電解槽内を流通す
る定着液中の銀イオンは前記固定床5の陰分極された部
分で還元されて金属銀として析出し、銀イオン濃度の低
下した前記定着液が蓋体7から排出され循環パイプ9を
通って再度底板9から電解槽2内に供給され、前記定着
液の銀イオン濃度がほぼ零に達するまで銀回収が継続さ
れる。
When the electrolytic cell constructed as described above is energized while supplying a fixing solution from the fixing step of a photographic processing process through the bottom plate 8 as shown by the arrow in FIG. 1a, each of the fixed beds 5 becomes As shown in FIG. The fixer solution is reduced and precipitated as metallic silver, and the silver ion concentration is reduced. The fixer solution is discharged from the lid 7, passes through the circulation pipe 9, and is again supplied from the bottom plate 9 into the electrolytic cell 2, where the silver ions in the fixer solution are reduced. Silver recovery continues until the concentration reaches near zero.

銀イオン濃度がほぼ零になった前記定着液を、水酸化ナ
トリウム等のアルカリ性溶液で置換し、かつ第1b図に
示すように第1a図の電極ターミナル3.4間の極性が
逆になるような方向の起電力を印加しながら電解を行う
と、各固定床5の上部側に析出した金属銀が該析出部分
が陽分極することにより酸化されて銀イオンとして電解
液中に溶解する。そして該析出銀と同時に前記固定床5
上等に析出していた硫化銀も同様に電解により銀イオン
と硫化物イオンとして溶解し、該硫化物イオンは存在す
る水酸化ナトリウムと反応して硫化ナトリウム又は水硫
化ナトリウムに変換される。
The fixing solution whose silver ion concentration has become almost zero is replaced with an alkaline solution such as sodium hydroxide, and the polarity between the electrode terminals 3 and 4 in FIG. 1a is reversed as shown in FIG. 1b. When electrolysis is carried out while applying an electromotive force in a certain direction, the metallic silver deposited on the upper side of each fixed bed 5 is oxidized by positive polarization of the deposited portion, and dissolved in the electrolytic solution as silver ions. At the same time as the precipitated silver, the fixed bed 5
The silver sulfide precipitated on top is similarly dissolved as silver ions and sulfide ions by electrolysis, and the sulfide ions react with the sodium hydroxide present and are converted into sodium sulfide or sodium bisulfide.

従ってこの銀溶解により硫化物イオンを殆ど含有しない
高濃度銀イオン溶液を得ることが出来る。
Therefore, by dissolving the silver, a highly concentrated silver ion solution containing almost no sulfide ions can be obtained.

第2図は、本発明に使用できる電解槽の他の例を示すも
ので、液流により電解槽内の導電性粒子を流動させるタ
イプの流動床型単極式電解槽の概略縦断面図である。
Figure 2 shows another example of an electrolytic cell that can be used in the present invention, and is a schematic vertical cross-sectional view of a fluidized bed type monopolar electrolytic cell that uses a liquid flow to fluidize conductive particles in the electrolytic cell. be.

拡径段部11を有するほぼ円筒形でありかつ給食用陰極
としても機能し、ニッケルや炭素材やグラファイト材、
鋼材、軟鋼材やチタン材等の導電製材料で形成された電
解槽本体12は電解液タンク13を有する銀回収用循環
系14に配置され、該循環系14の循環ラインに設置さ
れたポンプ15により定着液等の写真処理液が循環する
ようになっている。
It has a substantially cylindrical shape with an enlarged diameter stepped portion 11 and also functions as a cathode for school meals, and is made of nickel, carbon material, graphite material,
The electrolytic cell body 12 made of a conductive material such as steel, mild steel, or titanium is placed in a silver recovery circulation system 14 having an electrolyte tank 13, and a pump 15 installed in the circulation line of the circulation system 14. This allows photographic processing liquids such as fixer to circulate.

前記電解槽本体12の内下部には写真処理液の分散板1
6が設置され該分散板16の上方には筒状の隔膜17に
包囲された棒状の陽極18が設置されている。
A dispersion plate 1 for photographic processing liquid is provided in the inner lower part of the electrolytic cell body 12.
6 is installed, and a rod-shaped anode 18 surrounded by a cylindrical diaphragm 17 is installed above the dispersion plate 16.

前記分散板16、隔膜17及び電解槽本体12の内壁間
には導電性の微粒子19が充填され、該微粒子19が前
記ポンプ15により電解槽本体12内に供給されかつ分
散板16を通して供給される写真処理液により流動して
流動床が形成される。電解槽本体12の前記拡径段部1
1より上部は写真処理液と導電性微粒子19の分離部2
0を構成し、内径が大きくなるため流動性が低下して電
解により微量発生するガスと液成分が分離され、微量発
生したガスは電解槽本体12の開口部21から排出され
、液成分は前記電解液タンク13に循環される。
Conductive fine particles 19 are filled between the dispersion plate 16, the diaphragm 17, and the inner wall of the electrolytic cell body 12, and the fine particles 19 are supplied into the electrolytic cell body 12 by the pump 15 and through the dispersion plate 16. A photographic processing solution causes fluidization to form a fluidized bed. The enlarged diameter stepped portion 1 of the electrolytic cell body 12
Above 1 is a separation section 2 between the photographic processing solution and conductive fine particles 19.
0, and as the inner diameter increases, the fluidity decreases, and the gas and liquid components generated in small amounts by electrolysis are separated.The gas generated in small amounts is discharged from the opening 21 of the electrolytic cell body 12, and the liquid components are separated from the liquid components as described above. It is circulated to the electrolyte tank 13.

このような構成から成る循環系14の電解液タンク13
に所定量の定着液等を収容し該定着液を分散板16を通
して前記電解槽に供給すると、前記流動微粒子19が電
解槽本体12と接触して負に帯電し、前記定着液中の銀
イオンは表面積が非常に大きくかつ負に帯電された流動
微粒子19と接触して還元され金属銀として該微粒子1
9上に析出する。
Electrolyte tank 13 of circulation system 14 having such a configuration
When a predetermined amount of a fixer or the like is contained in the fixer and the fixer is supplied to the electrolytic cell through the dispersion plate 16, the flowing fine particles 19 come into contact with the electrolytic cell main body 12 and become negatively charged, and the silver ions in the fixer are is reduced by contacting with the negatively charged flowing fine particles 19 having a very large surface area, and the fine particles 1 are reduced as metallic silver.
9.

前記電解槽12内、循環ライン内及び電解液タンク13
内の定着液をW&溶解液に置換しかつ第2図の電解槽に
逆方向の起電力を印加すると、第1a図及び第1b図の
場合と同様に析出金属銀が電解液である前記銀溶解液に
溶解して高濃度銀イオン水溶液を得ることが出来る。特
に置換して電解液タンク13に収容する銀溶解液の量を
適宜調節することにより得られる銀イオン溶液の濃度を
算出することが出来る。
Inside the electrolytic cell 12, inside the circulation line and the electrolyte tank 13
When the fixing solution in the solution is replaced with the W & dissolving solution and an electromotive force in the opposite direction is applied to the electrolytic cell shown in FIG. A highly concentrated silver ion aqueous solution can be obtained by dissolving in a solution. In particular, the concentration of the silver ion solution obtained can be calculated by appropriately adjusting the amount of the silver solution to be replaced and stored in the electrolyte tank 13.

第3図は、本発明に使用出来る他の銀回収用電解槽であ
る単極式固定床型電解槽を示す概略縦断面図である。
FIG. 3 is a schematic vertical sectional view showing a monopolar fixed bed type electrolytic cell which is another silver recovery electrolytic cell that can be used in the present invention.

箱型電解槽31は、多孔質隔壁32により陽極室33と
陰極室34に区画され、それぞれの電極室には陽極35
及び給電用陰極36が設置されている。陰極室34の該
給電用陰極36と前記隔壁32間には繊維状に成形され
た炭素質材料37が陽極35と接触しないように充填さ
れて銀回収用の多表面積三次元電極が形成されている。
The box-shaped electrolytic cell 31 is divided into an anode chamber 33 and a cathode chamber 34 by a porous partition wall 32, and each electrode chamber has an anode 35.
and a power feeding cathode 36 are installed. A fibrous carbonaceous material 37 is filled between the power feeding cathode 36 of the cathode chamber 34 and the partition wall 32 so as not to come into contact with the anode 35, thereby forming a multi-surface area three-dimensional electrode for silver recovery. There is.

なお38は電解槽31の底面に形成された電解液取出口
である。
Note that 38 is an electrolytic solution outlet formed on the bottom surface of the electrolytic cell 31.

この電解槽31に第1図及び第2図の場合と同様に銀イ
オンとチオ硫酸塩を含む写真処理液を供給して電解を行
うと、前記炭素質材料37上で銀イオンが還元されて金
属銀として析出する。はぼ完全に銀イオンが回収された
写真処理液を前記電解液取出口38から取り出した後に
、所定濃度の銀イオン溶液が得られるように算出された
量の水酸化アルカリ水溶液等の銀溶解液を加え、逆方向
の起電力を印加して電解を行うと前述した通り析出した
金属銀が溶解して所定濃度の銀イオン水溶液を得ること
が出来る。
When a photographic processing solution containing silver ions and thiosulfate is supplied to this electrolytic cell 31 as in the case of FIGS. 1 and 2 and electrolysis is performed, the silver ions are reduced on the carbonaceous material 37. Precipitates as metallic silver. After taking out the photographic processing solution in which silver ions have been almost completely recovered from the electrolytic solution outlet 38, add a silver dissolving solution such as an aqueous alkali hydroxide solution in an amount calculated to obtain a silver ion solution with a predetermined concentration. When electromotive force is applied in the opposite direction and electrolysis is performed, the precipitated metallic silver is dissolved as described above, and an aqueous silver ion solution having a predetermined concentration can be obtained.

第4図は、本発明に使用出来る銀回収用電解槽である複
極式固定床型電解槽の他の例を示す縦断面図である。こ
の電解槽は第1a図及び第1b図に示した電解槽の改良
に関するものであり、第1a図及び第1b図の電解槽と
同一部材には同一符号を付して説明を省略する。
FIG. 4 is a longitudinal sectional view showing another example of a bipolar fixed bed type electrolytic cell which is an electrolytic cell for silver recovery that can be used in the present invention. This electrolytic cell is an improvement on the electrolytic cell shown in FIGS. 1a and 1b, and the same members as those in the electrolytic cell shown in FIGS. 1a and 1b are given the same reference numerals and their explanations will be omitted.

第4図の電解槽は、第1a図及び第1b図の電解槽の電
解槽本体2内の3個の固定床5及び4枚の多孔質の隔膜
あるいはスペーサに代えて、両電極ターミナル3.4間
にほぼ均一に混合されて存在する多数の導電性粒子31
と該導電性粒子41より少数で前記両電極ターミナル3
.4間の短鉱を防止するための絶縁粒子42と充填した
ものである。
The electrolytic cell of FIG. 4 has two electrode terminals 3. instead of three fixed beds 5 and four porous membranes or spacers in the electrolytic cell body 2 of the electrolytic cells of FIGS. 1a and 1b. A large number of conductive particles 31 are present almost uniformly mixed between the conductive particles 31.
and said both electrode terminals 3 with a smaller number than said conductive particles 41.
.. It is filled with insulating particles 42 to prevent short ore formation between the holes.

この電解槽に図示の通りの正方向の起電力を印加すると
、前記導電性粒子31が正負に分極して該粒子31の負
に帯電した側で供給される定着液等の写真処理液中の銀
イオンの還元による金属銀の析出が生じる。該金属銀は
第1a図及び第1b図の電解槽の場合と同様にして高濃
度の銀イオン水溶液として回収される。
When a positive electromotive force is applied to this electrolytic cell as shown in the figure, the conductive particles 31 are polarized in positive and negative directions, and the negatively charged side of the particles 31 causes a drop in the photographic processing liquid such as a fixer to be supplied. Precipitation of metallic silver occurs due to reduction of silver ions. The metallic silver is recovered as a highly concentrated silver ion aqueous solution in the same manner as in the electrolytic cells shown in FIGS. 1a and 1b.

(実施例) 以下に本発明方法による銀イオン及びチオ硫酸塩を含有
する写真処理液からの銀回収の実施例を記載するが、該
実施例は本発明を限定するものではない。
(Example) Examples of silver recovery from photographic processing solutions containing silver ions and thiosulfate by the method of the present invention will be described below, but the examples are not intended to limit the present invention.

ス」1粗1 第1a図に示しかつ下記に示す仕様を有する銀回収用電
解槽を使用して次の組成の漂白定着液のランニング液か
ら下記に示す電解条件で電解銀回収試験を行った。
Using an electrolytic cell for silver recovery shown in Figure 1a and having the specifications shown below, an electrolytic silver recovery test was conducted under the electrolytic conditions shown below from a running solution of a bleach-fix solution with the following composition. .

(漂白定着ランニング液の組成) チオ硫酸アンモニウム       70g/l亜硫酸
アンモニウム        18g/j!EDTA 
 Fe−NH4150g/j!銀イオン       
    8.32g/l(銀回収用電解槽仕様) 槽サイズ:内径50m5、高さ100鰭の円筒形(塩化
ビニル製) 陽極ターミナル:直径48mm、厚さ1.51■の白金
メソキチクン製メソシュ板 陰極ターミナル:直径4B+sm、厚さ1.5鰭の白金
メツキチタン製メソシュ板 固定床二開孔率45%の炭素繊維から成る直径50am
、厚さl Q amの固定床3個を開口率85%で直径
4811、厚さ1.5mmのポリエチレン製スペーサ4
枚に挟み込んだ。
(Composition of bleach-fix running liquid) Ammonium thiosulfate 70g/l Ammonium sulfite 18g/j! EDTA
Fe-NH4150g/j! silver ion
8.32 g/l (electrolytic cell specifications for silver recovery) Tank size: Cylindrical shape with inner diameter of 50 m5 and height of 100 fins (made of vinyl chloride) Anode terminal: Mesoche board cathode made of platinum mesochikun with a diameter of 48 mm and a thickness of 1.51 mm Terminal: Diameter 4B+sm, 1.5 fin thickness, platinum plated titanium mesoche board fixed bed, 2 carbon fibers with 45% porosity, diameter 50am
, 3 fixed beds with thickness l Q am and polyethylene spacer 4 with diameter 4811 and thickness 1.5 mm with an aperture ratio of 85%.
It was sandwiched between sheets.

(電解条件) 印加電流:直流2OA 電解液量ニア0j!、全量を電解槽に流量1.5#/分
で供給しかつ循環パイプを通して循環させながら固定床
上に金属銀を析出させた。
(Electrolysis conditions) Applied current: DC 2OA Electrolyte amount near 0j! Metallic silver was deposited on a fixed bed while supplying the entire amount to the electrolytic cell at a flow rate of 1.5 #/min and circulating it through a circulation pipe.

この条件で前記漂白定着液を前記電解槽を供給して電解
を行ったところ、前記固定床の給電用陽極ターミナルに
近い側に徐々に銀色の析出物が形成された。電解液であ
る定着液中の銀イオン濃度の銀析出電解の経時変化を測
定したところ、第1表に示すような結果が得られ、銀電
析電圧は約14■であった。又約120分経過後から硫
化銀析出に起因すると思われる黒色粒子の生成が認めら
れた。
When the bleach-fix solution was supplied to the electrolytic cell under these conditions and electrolysis was performed, a silver precipitate was gradually formed on the side of the fixed bed near the power supply anode terminal. When the change in silver ion concentration in the fixing solution, which is an electrolytic solution, over time during silver deposition electrolysis was measured, the results shown in Table 1 were obtained, and the silver electrodeposition voltage was about 14. Further, after about 120 minutes, the formation of black particles, which was thought to be caused by silver sulfide precipitation, was observed.

次に前記漂白定着液を電解槽から抜き出し、同量の10
重量%の水酸化ナトリウム水溶液(pH約14)50f
fiを加え、逆方向の8.5vの起電力を印加して電解
を行い、前記水酸化ナトリウム水溶液中東    1 
   表 の銀イオン濃度の銀溶解電解の経時変化を測定したとこ
ろ、第1表に示すような結果が得られた。
Next, the bleach-fix solution was extracted from the electrolytic bath, and the same amount of 10
Weight% sodium hydroxide aqueous solution (pH approximately 14) 50f
fi and apply an electromotive force of 8.5 V in the opposite direction to perform electrolysis, and the sodium hydroxide aqueous solution Middle East 1
When the change in silver ion concentration over time during silver dissolution electrolysis shown in the table was measured, the results shown in Table 1 were obtained.

第1表から銀析出電解開始後約90分で漂白定着液中の
銀イオン濃度が零になり、かつ析出した金属銀は約50
分で水酸化ナトリウム水溶液中に完全に溶解したことが
判る。
From Table 1, the silver ion concentration in the bleach-fix solution becomes zero approximately 90 minutes after the start of silver precipitation electrolysis, and the amount of precipitated metallic silver is approximately 50 minutes.
It can be seen that it was completely dissolved in the sodium hydroxide aqueous solution within minutes.

電解停止後の前記水酸化ナトリウム水溶液を分析したと
ころ、硫化ナトリウム0.12g/I!及び水硫化ナト
リウム0.06g/j!の硫黄化合物が検出された。
When the aqueous sodium hydroxide solution was analyzed after stopping the electrolysis, it was found that sodium sulfide was 0.12 g/I! and sodium hydrosulfide 0.06g/j! of sulfur compounds were detected.

スJL[L影 実施例1の電解槽を使用しかつ実施例1の電解条件で2
時間電解を行い、漂白定着液から銀析出を行った。次い
で実施例1の水酸化ナトリウム水溶液のpHを第2表に
示すように8.9.10.11.12.13及び14に
変化させて1時間経過後及び2時間経過後の前記水酸化
ナトリウム水溶液中の銀濃度と電解電流値を測定した。
Using the electrolytic cell of Example 1 and under the electrolysis conditions of Example 1,
Time electrolysis was performed to deposit silver from the bleach-fix solution. Next, the pH of the sodium hydroxide aqueous solution of Example 1 was changed to 8.9.10.11.12.13 and 14 as shown in Table 2, and the sodium hydroxide solution was changed after 1 hour and 2 hours. The silver concentration and electrolytic current value in the aqueous solution were measured.

その結果を第2表に示した。The results are shown in Table 2.

第2表から銀溶解液がアルカリ性であると銀再第   
 2    表 FiDTA−Fe  −NH4140g/ 1(定着液
の主成分) チオ硫酸塩アンモニウム     200 g / 1
亜硫酸アンモニウム       15g/l溶解の効
果を示し、特にpH10以上で2時間経過後にはほぼ全
ての析出銀を再溶解させることが出来ることが判る。
From Table 2, if the silver solution is alkaline, the silver
2 Table FiDTA-Fe-NH4140g/1 (main component of fixer) Ammonium thiosulfate 200g/1
It shows the effect of dissolving 15 g/l of ammonium sulfite, and it can be seen that almost all of the precipitated silver can be re-dissolved after 2 hours especially at pH 10 or higher.

尖施班盈 銀溶解液として水酸化ナトリウム水溶液の代わりに、次
の組成の漂白定着液あるいは定着液を使用して銀の再溶
解を試みたところ、前記水酸化ナトリウム水溶液の場合
とほぼ同様に析出した銀の再溶解が生じた。
When an attempt was made to redissolve the silver by using a bleach-fix solution or a fixing solution with the following composition instead of the sodium hydroxide aqueous solution as the silver dissolving solution, the results were almost the same as in the case of the sodium hydroxide aqueous solution. Re-dissolution of the precipitated silver occurred.

(漂白定着液の主成分) チオ硫酸アンモニウム      75g/l亜硫酸ア
ンモニウム       22g/l(発明の効果) 本発明は、銀イオン及びチオ硫酸イオンを含有する写真
処理液を電解してほぼ完全に該写真処理液中の銀イオン
を三次元電極型銀回収用電解槽の陰極上に析出させ、更
に前記写真処理液を銀溶解液と置換した後、逆方向の直
流起電力を印加して前記陰極上に析出した前記金属銀を
電解液中に溶解させて比較的高濃度の銀イオン含有溶液
として回収する方法である(請求項1)。
(Main component of bleach-fix solution) Ammonium thiosulfate 75 g/l Ammonium sulfite 22 g/l (Effects of the invention) The present invention electrolyzes a photographic processing solution containing silver ions and thiosulfate ions to almost completely remove the photographic processing solution. The silver ions contained therein are deposited on the cathode of a three-dimensional electrode type silver recovery electrolytic cell, and after the photographic processing solution is replaced with a silver dissolving solution, a direct current electromotive force in the opposite direction is applied to deposit on the cathode. In this method, the metallic silver is dissolved in an electrolytic solution and recovered as a solution containing relatively high concentration of silver ions (Claim 1).

写真処理液中の銀イ、オンをほぼ完全に電解法により還
元して陰極上に析出させると硫化銀粒子の析出が不可避
であり、写真処理液に悪影響を与える該硫化銀粒子の析
出を抑制するためにかなりの量の銀イオンを残したまま
で金属銀の析出を停止してしまう従来の電解銀回収法で
は、更に銀を回収するためにイオン交換樹脂処理等の煩
雑な操作を引き続き行うことを余儀なくされている。
When the silver ion in the photographic processing solution is almost completely reduced by electrolytic method and deposited on the cathode, the precipitation of silver sulfide particles is inevitable, and the precipitation of silver sulfide particles that adversely affect the photographic processing solution is suppressed. In the conventional electrolytic silver recovery method, which stops the precipitation of metallic silver while leaving a considerable amount of silver ions behind, complicated operations such as ion exchange resin treatment must be continued to recover further silver. are forced to do so.

本発明方法により写真処理液中の銀イオンをほぼ完全に
陰極上に析出させると、前記硫化銀粒子も一旦は陽極上
や陰極上等に析出するが、前記写真処理液をチオ硫酸塩
を含有しない銀溶解液に置換した後に逆方向の起電力を
印加すると、該銀溶解液中に析出した金属銀がほぼ完全
に溶解し、析出硫化銀は硫化物イオンに変換され該硫化
物イオンは通常の水電解により発生する水素ガスと反応
して硫化水素ガスとなって系外に放散されるため、硫化
物イオンを殆ど含有しない銀イオン水溶液を得ることが
出来る。
When the silver ions in the photographic processing solution are almost completely deposited on the cathode by the method of the present invention, the silver sulfide particles are also deposited on the anode, the cathode, etc., but the photographic processing solution contains thiosulfate. When an electromotive force is applied in the opposite direction after replacing the solution with a silver solution that does not contain silver, the metallic silver precipitated in the silver solution is almost completely dissolved, the precipitated silver sulfide is converted to sulfide ions, and the sulfide ions are normally The silver ion aqueous solution containing almost no sulfide ions can be obtained because it reacts with hydrogen gas generated by water electrolysis to become hydrogen sulfide gas and is dissipated out of the system.

更に前記析出金属銀を溶解させる銀溶解液の量を加減す
ることにより任意濃度の銀イオン水溶液を得ることが出
来る。従って前記銀溶解液の量を少なくして同一量の析
出金属銀を溶解させるとより高濃度の銀イオン水溶液を
得ることが出来る。
Further, by adjusting the amount of the silver dissolving solution in which the precipitated metallic silver is dissolved, an aqueous silver ion solution having an arbitrary concentration can be obtained. Therefore, if the same amount of precipitated metallic silver is dissolved by reducing the amount of the silver dissolving solution, an aqueous silver ion solution with a higher concentration can be obtained.

従って本発明によると比較的低濃度の銀イオンを含有す
る写真処理液から高濃度でしかも硫化物イオンが除去さ
れた銀イオン水溶液を得ることが出来、更に本発明方法
は電解液の交換という操作は必要であるものの、正方向
及び逆方向の直流起電力を印加するという電解操作のみ
であるため、従来の電解法による銀回収と比較して迩か
に簡単に写真処理液中の銀イオンをほぼ完全に回収する
ことを可能にする。
Therefore, according to the present invention, it is possible to obtain a silver ion aqueous solution with a high concentration and from which sulfide ions have been removed from a photographic processing solution containing silver ions at a relatively low concentration, and furthermore, the method of the present invention includes an operation of exchanging the electrolyte. However, since it is only an electrolytic operation of applying direct current electromotive force in the forward and reverse directions, silver ions in the photographic processing solution can be removed much more easily than silver recovery using conventional electrolytic methods. Enables almost complete recovery.

本発明方法は写真処理液を対象とするが、特に他の写真
処理液より銀イオンの蓄積が多くかつチオ硫酸塩を含む
定着液や漂白定着液の処理に使用するとより有効である
Although the method of the present invention is directed to photographic processing solutions, it is particularly effective when used to treat fixers and bleach-fix solutions that accumulate more silver ions than other photographic processing solutions and contain thiosulfates.

又銀溶解液として定着液や漂白定着液を使用することが
出来(請求項2)、本発明によると該定着液や漂白定着
液の銀濃度を所定値に調整することが出来る。
Further, a fixing solution or a bleach-fixing solution can be used as the silver dissolving solution (claim 2), and according to the present invention, the silver concentration of the fixing solution or bleach-fixing solution can be adjusted to a predetermined value.

析出した硫化銀を銀溶解液に溶解させる際に該銀溶解液
の液性が中性あるいは酸性であっても発生する水素ガス
等との反応により硫化物イオンの分解は生ずるが、前記
銀溶解液が水酸化ナトリウム水溶液等のアルカリ性溶液
特にpH10以上のアルカリ性溶液であると(請求項3
)、該硫化物イオンの前記水酸化ナトリウムとの反応に
よる硫化ナトリウムあるいは水硫化ナトリウムへの変換
が促進されて迅速に処理を行うことが可能になる。
When precipitated silver sulfide is dissolved in a silver solution, decomposition of sulfide ions occurs due to reaction with generated hydrogen gas even if the silver solution is neutral or acidic. When the liquid is an alkaline solution such as an aqueous sodium hydroxide solution, particularly an alkaline solution with a pH of 10 or more (Claim 3)
), the reaction of the sulfide ions with the sodium hydroxide promotes conversion to sodium sulfide or sodium hydrosulfide, making it possible to perform the treatment quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図及び第1b図は、本発明方法に使用出来る複極
式固定床型電解槽の断面図であり、第1a図は正方向の
起電力を又第1b図は逆方向の起電力を印加した状態を
示すそれぞれの断面図であり、第2図は、本発明方法に
使用出来る単極式流動床型電解槽の断面図であり、第3
図は、本発明方法に使用出来る単極式固定床型電解槽の
断面図であり、第4図は、本発明方法に使用出来る複極
式固定床型電解槽の他の例を示す断面図である。 11・ 13・ 14・ 16・ 18・ 20・ 31・ 33・ 35・ 37・ 41・ 拡径段部 12・・・電解槽本体 電解液タンク 銀回収用循環系 15・・・ポンプ 分散板 17・・・隔膜 陽極 19・・・微粒子 分離部 21・・・開口部 電解槽本体 32・・・隔壁 陽極室 34・・・陰極室 陽極 36・・・陰極 炭素質材料 38 導電性粒子 42 ・電解液取出口 ・絶縁粒子 ・フランジ 2・・・電解槽本体 ・陽極ターミナル ・陰極ターミナル 5・・・固定床 ・スペーサー 7・・・蓋体 ・底板 9・・・循環パイプ 第1a図 第1b図 第2図 第3図 ス2
Figures 1a and 1b are cross-sectional views of a bipolar fixed bed electrolytic cell that can be used in the method of the present invention. Figure 1a shows the electromotive force in the forward direction, and Figure 1b shows the electromotive force in the reverse direction. FIG. 2 is a cross-sectional view of a monopolar fluidized bed electrolytic cell that can be used in the method of the present invention, and FIG.
The figure is a sectional view of a monopolar fixed bed electrolytic cell that can be used in the method of the present invention, and FIG. 4 is a sectional view showing another example of a bipolar fixed bed electrolytic cell that can be used in the method of the present invention. It is. 11・ 13・ 14・ 16・ 18・ 20・ 31・ 33・ 35・ 37・ 41・ Expanding diameter step portion 12... Electrolytic cell body electrolyte tank Silver recovery circulation system 15... Pump distribution plate 17. ...Diaphragm anode 19...Particle separation section 21...Opening electrolytic cell body 32...Partition wall anode chamber 34...Cathode chamber anode 36...Cathode carbonaceous material 38 Conductive particles 42 -Electrolyte solution Outlet/insulating particles/flange 2... Electrolytic cell body/anode terminal/cathode terminal 5... Fixed bed/spacer 7... Lid/bottom plate 9... Circulation pipe Figure 1a Figure 1b Figure 2 Figure 3 S2

Claims (3)

【特許請求の範囲】[Claims] (1)銀イオン及びチオ硫酸イオンを含有する写真処理
液から電解反応によって銀を回収する方法において、前
記写真処理液を三次元電極型銀回収用電解槽で直流電圧
を印加して電解し、該写真処理液中の銀イオンを前記電
解槽の陰極上に金属銀として析出させた後、前記電解槽
内の前記写真処理液を銀溶解液と置換し更に逆方向の直
流電圧を印加して前記陰極上に析出した前記金属銀を前
記銀溶解液中に溶解させて比較的高濃度の銀イオン含有
溶液として回収することを特徴とする写真処理液からの
銀回収方法。
(1) In a method for recovering silver from a photographic processing solution containing silver ions and thiosulfate ions by electrolytic reaction, the photographic processing solution is electrolyzed by applying a DC voltage in a three-dimensional electrode type silver recovery electrolytic cell, After the silver ions in the photographic processing solution are deposited as metallic silver on the cathode of the electrolytic cell, the photographic processing solution in the electrolytic cell is replaced with a silver solution, and a DC voltage in the opposite direction is applied. A method for recovering silver from a photographic processing solution, characterized in that the metallic silver deposited on the cathode is dissolved in the silver dissolving solution and recovered as a relatively highly concentrated silver ion-containing solution.
(2)銀溶解液が、写真処理工程の漂白定着液又は定着
液である請求項1に記載の銀回収方法。
(2) The silver recovery method according to claim 1, wherein the silver dissolving solution is a bleach-fixing solution or a fixing solution in a photographic processing step.
(3)銀溶解液がpHが10以上のアルカリ性である請
求項1又は2に記載の銀回収方法。
(3) The silver recovery method according to claim 1 or 2, wherein the silver solution is alkaline with a pH of 10 or more.
JP9836890A 1990-04-13 1990-04-13 Recovering method for silver from photographic processing liquid Pending JPH03294492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9836890A JPH03294492A (en) 1990-04-13 1990-04-13 Recovering method for silver from photographic processing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9836890A JPH03294492A (en) 1990-04-13 1990-04-13 Recovering method for silver from photographic processing liquid

Publications (1)

Publication Number Publication Date
JPH03294492A true JPH03294492A (en) 1991-12-25

Family

ID=14217940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9836890A Pending JPH03294492A (en) 1990-04-13 1990-04-13 Recovering method for silver from photographic processing liquid

Country Status (1)

Country Link
JP (1) JPH03294492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086733A (en) * 1998-10-27 2000-07-11 Eastman Kodak Company Electrochemical cell for metal recovery
US6149797A (en) * 1998-10-27 2000-11-21 Eastman Kodak Company Method of metal recovery using electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086733A (en) * 1998-10-27 2000-07-11 Eastman Kodak Company Electrochemical cell for metal recovery
US6149797A (en) * 1998-10-27 2000-11-21 Eastman Kodak Company Method of metal recovery using electrochemical cell

Similar Documents

Publication Publication Date Title
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
CA1037417A (en) Process and apparatus for removal of contaminants from wastes
US4585539A (en) Electrolytic reactor
US5162079A (en) Process and apparatus for control of electroplating bath composition
US5894077A (en) Radioactive effluent treatment
JPS6119319B2 (en)
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
CA2054252A1 (en) Process for replenishing metals in aqueous electrolyte solutions
MXPA02008974A (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof.
CA1065272A (en) Treatment of dilute cyanide solutions
US4619747A (en) Electrofilter process using recirculating electrolyte
JPH03294492A (en) Recovering method for silver from photographic processing liquid
US5578191A (en) Process for extracting tin from organic solutions by electrolysis
US5464506A (en) Electrolytic device and method having a porous and stirring electrode
US7794582B1 (en) Method of recovering metal ions recyclable as soluble anode from waste plating solutions
EP0483332A1 (en) Electrolytic cell for waste water treatment.
JPH11158681A (en) Treatment of selenium-containing water to be treated
EP0329275A1 (en) Method of recovering silver from photographic processing solution and apparatus therefor
JPH0417691A (en) Bipolar fixed bed type electrolyzer recovering silver
US5554270A (en) Electrolytic desilvering method
JP2898039B2 (en) Method and apparatus for recovering silver from photographic processing solution
JP7565338B2 (en) Metal recovery from lead-containing electrolytes
JPH032959B2 (en)
JP2799607B2 (en) Processing method of photographic processing solution
JP3020549B2 (en) Treatment of liquid to be treated