JPH03281725A - Production of high strength steel wire for use in sour environment - Google Patents
Production of high strength steel wire for use in sour environmentInfo
- Publication number
- JPH03281725A JPH03281725A JP8090990A JP8090990A JPH03281725A JP H03281725 A JPH03281725 A JP H03281725A JP 8090990 A JP8090990 A JP 8090990A JP 8090990 A JP8090990 A JP 8090990A JP H03281725 A JPH03281725 A JP H03281725A
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- wire
- reduction rate
- present
- ssc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 47
- 239000010959 steel Substances 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000012545 processing Methods 0.000 claims description 13
- 238000005482 strain hardening Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 2
- 238000007796 conventional method Methods 0.000 description 19
- 238000000137 annealing Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 244000154165 Ferocactus hamatacanthus Species 0.000 description 2
- 235000011499 Ferocactus hamatacanthus Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 235000011911 Echinocactus horizonthalonius horizonthalonius Nutrition 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/16—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Metal Extraction Processes (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は引張強さ50kgf/+nm2以上の高強度鋼
線の製造方法に関し、さらに詳しくはサワー環境(湿潤
硫化水素環境)で使用される寸法形状の良好な高強度鋼
線の製造方法に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing high-strength steel wire with a tensile strength of 50 kgf/+nm2 or more, and more specifically, to a method for manufacturing a high-strength steel wire with a tensile strength of 50 kgf/+nm2 or more, and more specifically, a method for manufacturing a high-strength steel wire with a tensile strength of 50 kgf/+nm2 or more, and more specifically, a method for manufacturing a high-strength steel wire with a tensile strength of 50 kgf/+nm2 or more. The present invention relates to a method for manufacturing a high-strength steel wire with a good shape.
従来、たとえば、ガス、原油等の高圧流体輸送用フレキ
シブルパイプの鎧装線などは、C0,2%以下の低炭素
鋼線祠を伸線後、異形引抜き、ローラーダイス加工、圧
延等の異形加工により所定の断面形状の異形鋼線(平圧
線や溝形線)とし、そのままないしは500℃未満の低
温焼鈍を行なったのち、非サワー環境の使用に供せられ
ていた。Conventionally, for example, armored wire for flexible pipes for transporting high-pressure fluids such as gas and crude oil has been produced by drawing low-carbon steel wire with a carbon content of 0.2% or less, and then processing it into irregular shapes, such as irregular drawing, roller die processing, and rolling. The steel wires were made into deformed steel wires (flat pressure wires or groove wires) with a predetermined cross-sectional shape, and then used as they were or after being annealed at a low temperature of less than 500° C. for use in a non-sour environment.
しかし、最近の深井戸化に伴って油井を取り巻く環境か
変化し、原油やカスの輸送環境も厳しくなってきた。す
なわち、硫化水素を伴ったサワ環境か多くなってきた。However, with the recent trend toward deeper wells, the environment surrounding oil wells has changed, and the environment for transporting crude oil and slag has become harsher. In other words, there are more and more environments in which hydrogen sulfide is present.
このため、異形鋼線に要求される特性の中でも、使用環
境から鋼線中に侵入する水素に対する安定性、すなわち
水素誘起割れ(以下、)(I Cという)および硫化物
応力腐食割れ(以下、SSCという)の発生しないこと
が特に要求されるようになった。ちなみに、HICは無
負荷状態の鋼線に水素が侵入することに伴って発生する
割れであり、一方、SSCは高負荷状態の鋼線に水素が
侵入し、これが原因となって起こる割れである。For this reason, among the properties required for deformed steel wires, stability against hydrogen penetrating into the steel wire from the usage environment, namely hydrogen-induced cracking (hereinafter referred to as IC) and sulfide stress corrosion cracking (hereinafter referred to as IC), are required. In particular, it has become necessary to avoid the occurrence of SSC (SSC). By the way, HIC is a crack that occurs when hydrogen enters a steel wire under no load, while SSC is a crack that occurs when hydrogen enters a steel wire under a high load. .
このような動向に対して、本発明者らは、すでに特開平
1−279710号公報に開示されているように、0.
40〜0.70%のCを含む高炭素鋼線材をパテンティ
ング後、断面減少率25〜75%の冷間加工を行なった
のち、500〜700℃で球状化焼鈍する方法を開発し
ている(以下、従来法lという)。In response to such trends, the present inventors have developed a method for reducing 0.0.
We have developed a method of patenting high carbon steel wire containing 40 to 0.70% C, cold working with a reduction in area of 25 to 75%, and then annealing it to spheroidize at 500 to 700°C. (Hereinafter referred to as conventional method 1).
従来法Iに従って製造された鋼線は耐Hr C特性は優
れている。しかし、実際の使用環境においては、鋼線に
は強い引張応力が作用していることから、耐HI C特
性以外に耐SSC特性にも優れていることが重要である
。そこで、本発明者は耐HIC特性のより一層の向上を
目的として多くの実験を行ない、その結果(以下、従来
法2という)をすでに特許出願している。従来法2は、
従来法lで製造された鋼線に0.3〜5%の引っ張りひ
ずみを与えることにより耐SSC特性の改善をはかった
ものである。これら二つの従来法に共通した特徴は、耐
HIC特性および耐SSC特性は優れているものの、寸
法精度や形状に関しては必ずしも十分ではないことであ
る。フレキシブルパイプを構成する異形線は相互にかん
ごうされた状態で使用されているため、異形線の寸法形
状のばらつきはフレキシブルパイプの成形ならびに使用
性能上重大な支障となる。すなわち、従来法1で製造さ
れた鋼線は、焼鈍時に発生する曲がりや捻れのために巻
き付は成形に支障をきたす場合がある。The steel wire manufactured according to Conventional Method I has excellent HrC resistance properties. However, in actual usage environments, steel wires are subjected to strong tensile stress, so it is important that they have excellent SSC resistance as well as HIC resistance. Therefore, the inventors of the present invention have conducted many experiments with the aim of further improving the HIC resistance characteristics, and have already filed a patent application for the results (hereinafter referred to as conventional method 2). Conventional method 2 is
The SSC resistance was improved by applying a tensile strain of 0.3 to 5% to the steel wire manufactured by the conventional method. A common feature of these two conventional methods is that although HIC resistance and SSC resistance are excellent, dimensional accuracy and shape are not necessarily sufficient. Since the deformed wires constituting the flexible pipe are used in a mutually interlocked state, variations in the dimensions and shapes of the deformed wires pose a serious hindrance to the molding and usability of the flexible pipe. That is, in the steel wire manufactured by Conventional Method 1, winding may interfere with forming due to bending and twisting that occur during annealing.
また、従来法2で製造された鋼線は、直線性は良好であ
るが、引っ張りひずみの不均一性に起因する異形線相互
間のがたつきが発生しやすく、そのような場合にはフレ
キシブルパイプの疲労特性が低下するので問題である。In addition, although the steel wire manufactured by conventional method 2 has good straightness, it tends to cause looseness between the deformed wires due to non-uniformity of tensile strain. This is a problem because it reduces the fatigue properties of the pipe.
すなわち、サワー環境用異形線には、強度や耐サワー特
性に加え高い寸法精度と形状の正しさが要求されている
。That is, the deformed wire for sour environments is required to have high dimensional accuracy and correct shape in addition to strength and sour resistance characteristics.
本発明の目的は、耐HIC特性および耐SSC特性が良
好であり、かつ寸法精度と形状に関しても、従来法より
優れたサワー環境用高強度鋼線の製造方法を提供するこ
とにある。An object of the present invention is to provide a method for manufacturing a high-strength steel wire for sour environments that has good HIC resistance and SSC resistance, and is also superior to conventional methods in terms of dimensional accuracy and shape.
本発明は、C:0゜40〜0.70%、Si:0.1〜
1%、Mn : 0.20〜1%、P : 0.025
%以下、S : 0.010%以丁を含有し、必要に応
してAl : 0.008%〜0.050%を含有し、
残部かFeおよび不可避的不純物からなる鋼を、断面減
少率25〜75%の冷間加工を行なった後500〜70
0℃で球状化焼鈍し、その後断面減少率で5〜15%で
引き抜き加工を行なうことを特徴とするサワー環境用高
強度鋼線の製造方法である。In the present invention, C: 0°40~0.70%, Si: 0.1~0.
1%, Mn: 0.20-1%, P: 0.025
% or less, S: contains 0.010% or more, and optionally contains Al: 0.008% to 0.050%,
After cold working the steel, the remainder of which is Fe and unavoidable impurities, with a reduction in area of 25 to 75%,
This is a method for manufacturing a high-strength steel wire for use in a sour environment, which is characterized by performing spheroidizing annealing at 0° C. and then drawing at a reduction in area of 5 to 15%.
以下、本発明について詳細に説明する。 The present invention will be explained in detail below.
Cは、0.40%未満では、球状化焼鈍後、所定の強度
が得られない。また、CO,70%を超えると冷間加工
で強加工か困難となり、加工中に鋼線中心部に微細クラ
ックが発生してf(I C特性が劣化するため、0.7
0%を上限とした。If C is less than 0.40%, the desired strength cannot be obtained after spheroidizing annealing. In addition, if CO exceeds 70%, it will be difficult to perform strong cold working, and fine cracks will occur in the center of the steel wire during processing, resulting in f (0.7
The upper limit was 0%.
Siは脱酸剤として最低0.10%以上必要である。Si is required as a deoxidizing agent in an amount of at least 0.10%.
その量が多くなるに従って強度が向上する。しかし、1
%を超えると脱炭が激しくなり、これが原因となって冷
間加工時に鋼線に割れが多発する。As the amount increases, the strength improves. However, 1
%, decarburization becomes severe and this causes frequent cracking of the steel wire during cold working.
Mnは熱間脆性を防止するため0.2%以上必要である
。また、Mnは焼入性を向上させるため、パテンティン
グによって均一なパーライト系且織をjrIるためには
その量は多いほど望ましいが、1%を超えると中心偏析
に起因するII I Cの発生頻度が高くなるため1%
を1−隅とする。0.2% or more of Mn is required to prevent hot brittleness. Furthermore, since Mn improves hardenability, a large amount of Mn is desirable in order to create a uniform pearlite texture through patenting, but if it exceeds 1%, the formation of IIIC due to center segregation may occur. 1% due to higher frequency
Let be the 1-corner.
次に、■)は粒界に偏析しやすいため加工性を低下させ
る。したかって、その量は少ないほうが好ましい。しか
し、連続鋳造で製造する場合、溶製温度を高くするため
復■)が起こるので、上限のみを0.025%に規定し
た。Next, (2) tends to segregate at grain boundaries, reducing workability. Therefore, the smaller the amount, the better. However, when manufacturing by continuous casting, the melting temperature is increased, which causes the recurrence (1) to occur, so only the upper limit was set at 0.025%.
Sはpと同様な弊害のほか、Fa4蝕性の点で少ないほ
ど好ましいが、現在経済的に製造できるo、ot。In addition to the same disadvantages as p, S is preferable as it is less in terms of Fa4 corrosivity, but o and ot can be produced economically at present.
%を上限とした。なお、Sは0.o旧%までは工業的生
産か十分可能である。The upper limit was %. Note that S is 0. Industrial production is fully possible up to o%.
A1は脱酸剤および結晶細粒化元素上して必要に応じて
使用する。Ae添加の場6、細粒化に必要なAl量の下
限は0.008%である。一方、Alか0.050%を
超えると非金属介在物屯が増加するため、表面欠陥起因
の歩留低下を惹起する。A1 is used as a deoxidizing agent and a crystal grain refining element as required. In the case of Ae addition 6, the lower limit of the amount of Al required for grain refinement is 0.008%. On the other hand, if Al exceeds 0.050%, the number of nonmetallic inclusions increases, resulting in a decrease in yield due to surface defects.
」−二連の各元素のほかに、異形鋼線の肉厚が厚いため
に焼入性が不足する場合には0.6%以下のC「を添加
することが有効である。さらに、0.3%以下のCoお
よび0.02%以下のWは鋼中への水素侵入を抑制する
効果があるので、必要に応じてこれらを添加すれば、よ
り一層耐HI C特性を向上させることができる。- In addition to each of the two elements, it is effective to add 0.6% or less of C if the hardenability is insufficient due to the thick wall thickness of the deformed steel wire. .3% or less Co and 0.02% or less W have the effect of suppressing hydrogen intrusion into the steel, so if these are added as necessary, the HIC resistance can be further improved. can.
以上の組成からなる線材を加工して鋼線とする。A wire rod having the above composition is processed into a steel wire.
本発明で鋼線とは、線材を異形引抜き、ローラーダイス
加工、あるいは圧延等の加工により、断面形状が円また
は異形(矩形や溝形)としたものを総称している。また
、ここでは球状化焼鈍後の引張強さが50〜80kgf
/++n+”のものを高強度鋼線と称している。すなわ
ち、引張強さが50kg【711m2以上ないと内圧お
よび外圧に耐えられず、鎧装線としての効果がない。一
方、引張強さが80kgf/mm2を超えると硬度がH
RC22以上となり、SSCか低応力で発生するように
なるため、上限を80kgf/mm2とした。In the present invention, the steel wire is a general term for wire rods that have a circular or irregular cross-sectional shape (rectangular or grooved) by processing such as irregular drawing, roller die processing, or rolling. In addition, the tensile strength after spheroidizing annealing is 50 to 80 kgf.
/++n+" is called high-strength steel wire. In other words, unless the tensile strength is 50 kg [711 m2 or more, it cannot withstand internal and external pressure and is not effective as an armored wire. On the other hand, If it exceeds 80kgf/mm2, the hardness will be H.
The upper limit was set to 80 kgf/mm2 because the RC is 22 or more and SSC occurs under low stress.
次に、本発明にかかわる加工方法に関して説明する。Next, the processing method according to the present invention will be explained.
通常、線材は加工前に熱処理をおこなうが、本発明にお
いてはパテンティング処理を行なう。これにより線材の
組織を均一な微細パーライト組織とし、断面減少率25
〜75%の加工に耐え得る性能を付与する。Usually, wire rods are heat treated before processing, but in the present invention, a patenting treatment is performed. As a result, the structure of the wire becomes a uniform fine pearlite structure, and the cross-section reduction rate is 25.
Provides performance that can withstand up to 75% processing.
本発明で断面減少率を25〜75%の範囲に限定した理
由は、断面減少率25%未満では、加工後の焼鈍でセメ
ンタイトの球状化か不十分となり、HICが発生し、断
面減少率が75%を超えると、例えば平圧線の端面およ
び内部に加工による割れか発生し、特に内部割れはHI
Cを誘発するためである。なお、本発明の断面減少率は
次式で定義する。The reason why the area reduction rate is limited to a range of 25 to 75% in the present invention is that if the area reduction rate is less than 25%, the cementite will not be sufficiently spheroidized during annealing after processing, HIC will occur, and the area reduction rate will decrease. If it exceeds 75%, for example, cracks will occur on the end face and inside of the flat tension wire due to processing, and internal cracks in particular will cause HI.
This is to induce C. Note that the cross-sectional reduction rate of the present invention is defined by the following formula.
断面減少率(%’) = (1−−”−’) X 1’
OO8゜
S :異形加工された鋼線の断面積
So =素線(線材)の断面積
本発明は、断面減少率25〜75%の冷間加工後、球状
化焼鈍を行ない、加工ひずみを除去するとともに、パー
ライト組織をフェライト(マトリックス)中に微細な球
状化セメンタイトの分散した組織に変える。すなわち、
焼鈍によって得られた球状化セメンタイト組織は、従来
の層状パーライト組織に比べてHIC特性が著しく優れ
ている。鋼中に侵入した水素原子はセメンタイト/フェ
ライト界面に集積し、そこにHICの核を形成するが、
球状化セメンタイトの場合には応力集中か小さいため、
耐HI C特性が優れていると考えられる。Area reduction rate (%') = (1--"-') X 1'
OO8゜S: Cross-sectional area of shaped steel wire So = Cross-sectional area of strand (wire rod) In the present invention, after cold working with a cross-section reduction rate of 25 to 75%, spheroidizing annealing is performed to remove processing strain. At the same time, the pearlite structure is changed to a structure in which fine spheroidized cementite is dispersed in ferrite (matrix). That is,
The spheroidized cementite structure obtained by annealing has significantly better HIC properties than the conventional layered pearlite structure. Hydrogen atoms that penetrate into the steel accumulate at the cementite/ferrite interface and form HIC nuclei there.
In the case of spheroidized cementite, stress concentration is small, so
It is considered to have excellent HIC resistance.
適正な球状化焼鈍温度範囲を求めるために、鉛パテンテ
イング処理された直径9.5mmの線材(成分を第1表
に示す)を伸線加工および平圧延で平圧線としたのち、
球状化焼鈍を実施した。球状化焼鈍は昇温2時間、保温
4時間の条件で行なった。In order to find the appropriate spheroidizing annealing temperature range, a lead patented wire rod with a diameter of 9.5 mm (components are shown in Table 1) was drawn and rolled to make it a flat wire.
Spheroidizing annealing was performed. Spheroidizing annealing was performed under the conditions of heating for 2 hours and keeping the temperature for 4 hours.
結果を第1図に示す。50kgf/nm2以上の引張強
さが得られるのは、CO,42%の鋼線では690℃以
下、またC O,65%では700℃以下である。一方
、引張強さを80kgf/w2以下に抑えられる球状化
焼鈍温度は、CO,42%では500℃以上、CO,6
5%では540℃以上必要である。したがって、本発明
の球状化焼鈍温度範囲は500〜700℃となる。しか
し、成分範囲および炉内温度のばらつき等を考慮すると
工業的には550〜680℃が最適である。The results are shown in Figure 1. A tensile strength of 50 kgf/nm2 or more can be obtained at 690° C. or lower for a steel wire containing 42% CO, and at 700° C. or lower for a steel wire containing 65% CO. On the other hand, the spheroidizing annealing temperature that suppresses the tensile strength to 80 kgf/w2 or less is 500°C or higher for CO, 42%, CO, 6
At 5%, a temperature of 540°C or higher is required. Therefore, the spheroidizing annealing temperature range of the present invention is 500 to 700°C. However, considering the range of ingredients and variations in furnace temperature, etc., 550 to 680°C is industrially optimal.
第
表
本発明は、耐SSC特性を向−トさせ、かつ寸法精度や
形状性を向上させるために、以」二の方法で製造した球
状化焼鈍鋼線に、さらに断面減少率で5〜15%の引き
抜き加工を付与する。SSCの原因は、サワー環境から
鋼材中に侵入した水素が、負荷応力により生した微小降
伏領域に拡散してそこに凝集する結果、降伏現象が加速
されてマイクロクラックが生じるためと考えられる。従
って、耐SSC特性を向上させるためには、マクロ的な
降伏現象かはしまる前の局部的な微小降伏現象を阻止す
ることが重要である。すなわち、鋼材の降伏強度を高め
ることが効果的であり、本発明者はその目的のために球
状化焼鈍後の鋼線に塑性ひずみを与えることが効果的で
あることを見いだした。Table 1: In order to improve the SSC resistance and improve the dimensional accuracy and formability, the present invention further improves the spheroidized annealed steel wire produced by the following two methods with an area reduction rate of 5 to 15. % drawing processing is applied. The cause of SSC is thought to be that hydrogen that has entered the steel material from the sour environment diffuses into the micro-yield region created by the applied stress and aggregates there, accelerating the yielding phenomenon and generating micro-cracks. Therefore, in order to improve the SSC resistance characteristics, it is important to prevent local minute breakdown phenomena before macroscopic breakdown phenomena occur. That is, it is effective to increase the yield strength of the steel material, and the present inventor has found that it is effective to apply plastic strain to the steel wire after spheroidizing annealing for that purpose.
一方、鋼線の寸法精度や形状に関しては、ダイスあるい
はタークスヘツトを用いた引抜き加工が最も優れている
。したがって、球状化焼鈍後の鋼線に引抜き加工を付与
することは、寸法形状の改善のみならず、耐SSC特性
の向上という好ましい結果が得られる。引抜き加工にお
ける断面減少率5%未満では寸法形状改善効果が不十分
であり、反対に15%を超えるとHI Cが発生しやす
くなる。On the other hand, with regard to the dimensional accuracy and shape of steel wire, drawing using a die or Turks head is the best. Therefore, by drawing the steel wire after spheroidizing annealing, favorable results such as not only improvement in size and shape but also improvement in SSC resistance properties can be obtained. If the cross-sectional area reduction rate during drawing is less than 5%, the effect of improving the size and shape will be insufficient, whereas if it exceeds 15%, HIC will easily occur.
したがって、断面減少率は5〜15%とする。Therefore, the area reduction rate is set to 5 to 15%.
鉛パテンテイングによって微細なパーライト組織にされ
た直径9.5rnnの線材を伸線加工により直径5Mの
鋼線とし、ついで平圧延にて厚み0.9〜2、85Mの
平線と[7た。これを球状化焼鈍したのち、タークスヘ
ッドを用いて引抜き加工を実施した。A wire rod with a diameter of 9.5 rnn made into a fine pearlite structure by lead patenting was made into a steel wire with a diameter of 5 M by wire drawing, and then flat-rolled into a flat wire with a thickness of 0.9 to 2.85 M [7]. After this was annealed to form a spheroid, drawing was performed using a Turk's head.
I−i 1 C特性は、上述の平線を長さ 100帥に
切断し、5%NaCj7−0.5%CH3CO0H−H
,S飽和溶液に25℃で96時間浸漬後、3箇所研磨し
、ミクロクラックの有無を光学顕微鏡で観察して評価し
た。The I-i 1C characteristics were obtained by cutting the above-mentioned flat wire into lengths of 100 squares, 5% NaCj7-0.5% CH3CO0H-H
, S saturated solution at 25° C. for 96 hours, polished at three locations, and evaluated by observing with an optical microscope the presence or absence of microcracks.
SSC特性は、上述の平線をそのままの状態で試験片と
し、両端をつかんで実際の降伏強度の80〜110%の
引張応力を与え、試験片の中央部200 mmをサワー
環境、すなわち上述のHIC試験と同じ組成の溶液中に
浸漬し、溶液の温度は25℃とし、このような状態で7
20時間の負荷試験を実施し、破断の生じない最大応力
、すなわちSSC発生下限応力を測定して評価し、た。The SSC characteristics are determined by using the above-mentioned flat wire as a test piece, grasping both ends to apply a tensile stress of 80 to 110% of the actual yield strength, and placing the central 200 mm of the test piece in a sour environment, that is, as described above. It was immersed in a solution with the same composition as the HIC test, and the temperature of the solution was 25°C.
A 20-hour load test was conducted, and the maximum stress at which no breakage occurred, that is, the lower limit stress for SSC generation, was measured and evaluated.
使用した鋼線の化学成分、冷間加工、焼鈍温度、引抜き
加工時の断面減少率などの製造条件、ならびに製品の機
械的性質、耐サワー特性、製品幅のばらつきを第2表に
示す。Table 2 shows the manufacturing conditions such as the chemical composition of the steel wire used, cold working, annealing temperature, and cross-section reduction rate during drawing, as well as the mechanical properties, sour resistance characteristics, and variations in product width.
No1〜4、NO,lOおよび1]、、 No、18〜
21. No、24〜27は本発明法と従来法の比較を
行なったもので、同一製造工程で球状化焼鈍鋼線を製造
したのち、本発明法では7.4〜12.2%の断面減少
率で引抜き加工を施した。一方、従来法1は球状化焼鈍
のままであり、従来法2は0.8〜4.4%のストレッ
チング加工を付与したものである。従来法lで製造され
た鋼線はいずれも引張強さは60kg f/rnm 2
以上あり、HI Cの発生もないが、SSC発生下限応
力は55kgf/mm’未満と本発明法で製造されたも
のに比べて低い。従来法2に従って製造された鋼線は引
張強さ、耐HI C特性ともに従来法1で製造されたも
のとほとんど変わらないが、SSC発生下限応力は58
〜60kgf/ff1m7と従来法lに比べて改善され
ている。しかし、製品の寸法精度は従来法1および本発
明法にしたがって製造された鋼線に比べ著しく劣ってい
る。これに対して、本発明法で製造された鋼線はHI
Cの発生はなく、SSC発生下限応力は60kgf/I
Im’以上と従来法で製造されたものより高く、さらに
製品の寸法精度は従来のいずれの方法でもなし得ない優
れたものとなっている。No. 1-4, NO, 1O and 1], No. 18-
21. Nos. 24 to 27 are comparisons between the method of the present invention and the conventional method. After producing spheroidized annealed steel wires in the same manufacturing process, the method of the present invention achieved a cross-section reduction rate of 7.4 to 12.2%. A drawing process was performed. On the other hand, in Conventional Method 1, the spheroidizing annealing is still performed, and in Conventional Method 2, a stretching process of 0.8 to 4.4% is applied. All steel wires manufactured using the conventional method have a tensile strength of 60 kg f/rnm 2
Although there is no occurrence of HIC, the lower limit stress for SSC occurrence is less than 55 kgf/mm', which is lower than that produced by the method of the present invention. The steel wire manufactured according to Conventional Method 2 has almost the same tensile strength and HIC resistance properties as those manufactured according to Conventional Method 1, but the lower limit stress for SSC occurrence is 58
~60kgf/ff1m7, which is improved compared to the conventional method. However, the dimensional accuracy of the product is significantly inferior to the steel wires manufactured according to Conventional Method 1 and the method of the present invention. On the other hand, the steel wire manufactured by the method of the present invention has HI
There is no occurrence of C, and the lower limit stress for SSC occurrence is 60 kgf/I.
Im' or higher, which is higher than those produced by conventional methods, and the dimensional accuracy of the product is superior to that which could not be achieved by any conventional method.
Na 5〜9、No、13〜17は引抜き加工時の断面
減少率が異形線の特性におよぼす影響を調べたものであ
る。適切な断面減少率で引抜き加工を施すことにより、
HICの発生がなく、SSC発生下限応力が60kgf
/n+o”以上と高く、かつ寸法形状性に優れたサワー
環境用異形線を製造することができた。Na 5 to 9, No. 13 to 17 were obtained by examining the influence of the area reduction rate during drawing on the characteristics of the deformed wire. By performing drawing processing with an appropriate area reduction rate,
No HIC occurs, SSC generation minimum stress is 60kgf
It was possible to manufacture a deformed wire for use in a sour environment with a high resistance value of /n+o'' or more and excellent dimensional and shape properties.
以4二に説明したように、本発明法によれば、耐HI
C特性、耐SSC特性がともに良好で、かつ寸法粘度や
形状性が従来よりも格段に改善されたサワー環境用高強
度鋼線を製造することが可能である。As explained in 42 below, according to the method of the present invention, the HI
It is possible to produce a high-strength steel wire for sour environments that has good C properties and SSC resistance properties, and has significantly improved dimensional viscosity and shape properties compared to conventional ones.
第1図は焼鈍温度と引張強さの関係を示す図である。 FIG. 1 is a diagram showing the relationship between annealing temperature and tensile strength.
Claims (1)
%、Mn:0.20〜1%、P:0.025%以下、S
:0.010%以下を含有し、必要に応じてAl:0.
008〜0.050%を含有し、残部がFeおよび不可
避的不純物からなる鋼を、断面減少率25〜75%の冷
間加工を行なった後500〜700℃で球状化焼鈍し、
その後断面減少率5〜15%で引き抜き加工を行なうこ
とを特徴とするサワー環境用高強度鋼線の製造方法。(1) C: 0.40-0.70%, Si: 0.10-1
%, Mn: 0.20-1%, P: 0.025% or less, S
:0.010% or less, and if necessary, Al:0.010% or less.
A steel containing 008 to 0.050%, with the remainder consisting of Fe and unavoidable impurities, is subjected to cold working with an area reduction rate of 25 to 75%, and then spheroidizing annealed at 500 to 700 °C,
A method for producing a high-strength steel wire for use in a sour environment, which comprises thereafter performing drawing processing at a cross-section reduction rate of 5 to 15%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090990A JPH03281725A (en) | 1990-03-30 | 1990-03-30 | Production of high strength steel wire for use in sour environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8090990A JPH03281725A (en) | 1990-03-30 | 1990-03-30 | Production of high strength steel wire for use in sour environment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03281725A true JPH03281725A (en) | 1991-12-12 |
Family
ID=13731513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8090990A Pending JPH03281725A (en) | 1990-03-30 | 1990-03-30 | Production of high strength steel wire for use in sour environment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03281725A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2731371A1 (en) * | 1995-03-10 | 1996-09-13 | Inst Francais Du Petrole | METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE |
WO1998010113A1 (en) * | 1996-09-09 | 1998-03-12 | Institut Français Du Petrole | Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct |
EP3674425A1 (en) * | 2018-12-31 | 2020-07-01 | GE Oil & Gas UK Limited | Steel wire |
CN111672918A (en) * | 2020-06-01 | 2020-09-18 | 江阴市利盟金属制品有限公司 | High-strength flexible shaft core drawing process for motor vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145712A (en) * | 1986-12-09 | 1988-06-17 | Nippon Steel Corp | Production of high-strength steel wire having excellent hydrogen induced cracking resistance characteristic |
JPH01279710A (en) * | 1988-04-30 | 1989-11-10 | Nippon Steel Corp | Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen |
-
1990
- 1990-03-30 JP JP8090990A patent/JPH03281725A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63145712A (en) * | 1986-12-09 | 1988-06-17 | Nippon Steel Corp | Production of high-strength steel wire having excellent hydrogen induced cracking resistance characteristic |
JPH01279710A (en) * | 1988-04-30 | 1989-11-10 | Nippon Steel Corp | Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2731371A1 (en) * | 1995-03-10 | 1996-09-13 | Inst Francais Du Petrole | METHOD FOR MANUFACTURING STEEL WIRE - SHAPE WIRE AND APPLICATION TO A FLEXIBLE PIPE |
WO1996028575A1 (en) * | 1995-03-10 | 1996-09-19 | Institut Francais Du Petrole | Method for making steel wires and shaped wires, and use thereof in flexible ducts |
WO1998010113A1 (en) * | 1996-09-09 | 1998-03-12 | Institut Français Du Petrole | Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct |
FR2753206A1 (en) * | 1996-09-09 | 1998-03-13 | Inst Francais Du Petrole | PROCESS FOR MANUFACTURING SELF-PRIMING STEEL YARNS, SHAPE YARNS AND APPLICATION TO A FLEXIBLE PIPE |
EP3674425A1 (en) * | 2018-12-31 | 2020-07-01 | GE Oil & Gas UK Limited | Steel wire |
WO2020141067A1 (en) * | 2018-12-31 | 2020-07-09 | Ge Oil & Gas Uk Limited | Steel wire |
CN113330124A (en) * | 2018-12-31 | 2021-08-31 | 贝克休斯能源科技英国有限公司 | Steel wire |
CN111672918A (en) * | 2020-06-01 | 2020-09-18 | 江阴市利盟金属制品有限公司 | High-strength flexible shaft core drawing process for motor vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5257082B2 (en) | Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability | |
JP5195009B2 (en) | Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof | |
JPH0730394B2 (en) | Method for manufacturing steel wire | |
JP2005206853A (en) | High carbon steel wire rod having excellent wire drawability, and production method therefor | |
JP2004091912A (en) | Steel wire, method of manufacturing the same, and method of manufacturing steel wire using the steel wire | |
JP2009275250A (en) | Steel wire rod excellent in cold-workability, and producing method thereof | |
JPH01279732A (en) | High-strength steel wire with excellent hydrogen-induced cracking resistance | |
JP2008208450A (en) | Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility | |
JP2005232549A (en) | High-strength pc steel wire superior in twisting characteristics | |
JPH03281725A (en) | Production of high strength steel wire for use in sour environment | |
JPH0583611B2 (en) | ||
JP2840977B2 (en) | Manufacturing method of high strength steel wire for sour environment | |
JP2000309849A (en) | Steel wire, steel wire, and method of manufacturing the same | |
JPH03274227A (en) | Production of high strength steel wire for use in sour environment | |
JPH08283867A (en) | Manufacturing method of hyper-eutectoid steel wire rod for wire drawing | |
JP2004011002A (en) | Wire and wire for wire drawing | |
JP2001131697A (en) | Steel wire rod, steel wire, and method for producing them | |
JPH11269607A (en) | Wire drawing reinforced high strength steel wire and method of manufacturing the same | |
JP5503516B2 (en) | High carbon steel wire rod excellent in dry drawing and method for producing the same | |
JPH03281724A (en) | Manufacturing method of high strength steel wire for sour environment | |
JP3009558B2 (en) | Manufacturing method of thin high-strength steel sheet with excellent sour resistance | |
CN114032372A (en) | Wire rod, heat treatment method and production method thereof and galvanized steel wire | |
JPH0949018A (en) | Production of steel wire for reinforcing rubber | |
JPH04346618A (en) | drawn steel wire rod | |
CN115679059B (en) | A uniform steel belt for needle making and its preparation method |