JPH03286132A - Air intake device for multiple cylinder engine - Google Patents
Air intake device for multiple cylinder engineInfo
- Publication number
- JPH03286132A JPH03286132A JP2091388A JP9138890A JPH03286132A JP H03286132 A JPH03286132 A JP H03286132A JP 2091388 A JP2091388 A JP 2091388A JP 9138890 A JP9138890 A JP 9138890A JP H03286132 A JPH03286132 A JP H03286132A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- intake passage
- valve
- passage
- air intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 abstract description 23
- 238000010586 diagram Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Characterised By The Charging Evacuation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、エンジンの吸気装置に関し、特に、動的効果
を利用して吸気を過給するようにしたものに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine, and particularly to one that supercharges intake air by utilizing dynamic effects.
(従来の技術)
近年、自動車用のエンジンの出力性能の向上のために、
吸気系内の吸気の慣性効果や共鳴効果を利用してその充
填効率を高めるようにすることは知られている。(Prior art) In recent years, in order to improve the output performance of automobile engines,
It is known to utilize the inertia effect and resonance effect of the intake air within the intake system to increase its filling efficiency.
吸気の慣性効果による過給では、エンジンが所定の回転
域(同調回転域)にあるとき、各気筒の吸気行程初期に
吸気弁の開弁に伴って吸気ボートで発生した吸気負圧波
を独立吸気通路内で上流側に向かって音速で伝播させ、
この負圧波を所定の容積部(ボリューム室)で正圧波に
反転させるとともに、この正圧波を同一の経路で下流側
に伝播させて吸気弁が閉弁する直前に同じ吸気ポートに
到達させ、この正圧波により吸気を燃焼室に押し込んで
その充填効率を高めるようになっている。In supercharging based on the inertia effect of intake air, when the engine is in a predetermined rotation range (synchronous rotation range), the intake negative pressure wave generated in the intake boat when the intake valve opens at the beginning of the intake stroke of each cylinder is used as an independent intake. Propagate at the speed of sound toward the upstream side in the passage,
This negative pressure wave is reversed into a positive pressure wave in a predetermined volume part (volume chamber), and this positive pressure wave is propagated downstream along the same path to reach the same intake port just before the intake valve closes. The positive pressure wave forces intake air into the combustion chamber, increasing its filling efficiency.
一方、吸気の共鳴効果による過給では、エンジンの複数
の気筒を吸気行程の等間隔となる気筒毎に分けて複数の
気筒群にグループ化し、この各気筒群の複数の気筒の独
立吸気通路を上流端で1つの集合吸気通路(共鳴吸気通
路)に集合させ、この集合吸気通路の所定位置に容積部
からなる圧力反転部を設ける。そして、エンジンの同調
回転域で気筒群の各気筒の吸気ボートで発生した吸気の
基本圧力波と圧力反転部で反転した反射圧力波との位相
を一致させることで、圧力反転部と各気筒との間を往復
伝播する吸気の圧力波を集合吸気通路内で共鳴させ、こ
の共鳴によって各気筒毎に個々に発生する圧力振動によ
り大きな振幅を有する共鳴圧力波を発生させ、この共鳴
圧力波によって吸気を気筒の燃焼室に押し込んで充填効
率を高めるようになされている。On the other hand, in supercharging using the resonance effect of intake air, multiple cylinders of the engine are divided into cylinders that are equally spaced on the intake stroke and grouped into multiple cylinder groups, and the independent intake passages of the multiple cylinders in each cylinder group are They are gathered into one collective intake passage (resonant intake passage) at the upstream end, and a pressure inversion section consisting of a volume part is provided at a predetermined position of this collective intake passage. By matching the phase of the basic intake pressure wave generated in the intake boats of each cylinder in the cylinder group and the reflected pressure wave reversed at the pressure inversion section in the synchronized rotation range of the engine, the pressure inversion section and each cylinder are The pressure waves of the intake air that propagate back and forth between the cylinders are caused to resonate in the collective intake passage, and due to this resonance, the pressure vibrations that occur individually in each cylinder generate a resonance pressure wave with a large amplitude. is forced into the combustion chamber of the cylinder to increase charging efficiency.
このような吸気装置として、従来、特開昭62−121
828号公報に示されるように、複数の気筒の各々に接
続される独立吸気通路をそれぞれサージタンク内に隔壁
によって区画形成された2つの容積室に接続し、一方の
気筒群の独立吸気通路の容積室への開口部を他方の気筒
群の独立吸気通路の容積室への開口部よりもサージタン
クの一端側に位置付けるとともに、両容積室をサージタ
ンクの一端側で連通路により連通させ、該連通路の一端
に開閉弁を配設することにより、開閉弁の開閉切換えに
よって吸気圧力波の反転部を変えて、エンジンの広い回
転域で動的効果が得られるようにしたものがある。Conventionally, as such an intake device, Japanese Patent Application Laid-Open No. 62-121
As shown in Publication No. 828, the independent intake passages connected to each of a plurality of cylinders are connected to two volume chambers defined by partition walls in a surge tank, and the independent intake passages of one group of cylinders are The opening to the volume chamber is positioned closer to one end of the surge tank than the opening to the volume chamber of the independent intake passage of the other cylinder group, and both volume chambers are communicated by a communication passage at one end of the surge tank. Some engines have an on-off valve disposed at one end of the communication passage to change the inversion part of the intake pressure wave by opening and closing the on-off valve, thereby achieving a dynamic effect over a wide rotation range of the engine.
(発明が解決しようとする課題)
ところで、上記の如きサージタンクを使用せず、各気筒
の吸気ポートに連通ずる吸気通路同士を吸気容積室とし
ての連通路で連通ずるとともに、この連通路と吸気通路
との連通を制御することで、上記と同様の効果を得るこ
とができる。その場合、連通路と吸気通路との接続部に
媒介からなる開閉弁を配設して、この開閉弁で連通路と
吸気通路との連通制御を行うようにすることが考えられ
るか、開弁時に開閉弁が吸気通路中に突出するため、こ
の開閉弁により吸気通路の有効断面積が小さくなるのは
避けられ得ない。しかも吸気の流れが開閉弁によって乱
されるため、吸気抵抗が大きくなり、トルクの増大を期
待できない。一方、連通路を吸気通路に対しそれぞれ分
岐通路で接続し、この各分岐通路に開閉弁を配設しても
よいが、開閉弁の閉弁時、吸気通路に分岐通路によるい
わゆる段部ができ、この段部により吸気の流れが乱れて
やはり吸気抵抗が生じる。(Problem to be Solved by the Invention) By the way, instead of using the surge tank as described above, the intake passages that communicate with the intake ports of each cylinder are communicated with each other by a communication passage serving as an intake volume chamber, and this communication passage and the intake Effects similar to those described above can be obtained by controlling communication with the passage. In that case, it may be possible to arrange an on-off valve made of an intermediary at the connection between the communication passage and the intake passage, and use this on-off valve to control the communication between the communication passage and the intake passage. Since the on-off valve sometimes protrudes into the intake passage, it is unavoidable that the effective cross-sectional area of the intake passage becomes smaller due to this on-off valve. Moreover, since the flow of intake air is disturbed by the on-off valve, intake resistance increases, and an increase in torque cannot be expected. On the other hand, the communication passage may be connected to the intake passage through a branch passage, and an on-off valve may be provided in each branch passage, but when the on-off valve is closed, a so-called stepped portion is created by the branch passage in the intake passage. This stepped portion disrupts the flow of intake air, resulting in intake resistance.
本発明は斯かる点に鑑みてなされたもので、その目的は
、吸気通路と容積室との連通を制御する開閉弁の構成を
変えることで、開閉弁の開弁時には吸気通路の容積室へ
の開口面積を大に確保して、容積室での吸気圧力波の反
転作用を強めるとともに、閉弁時には開閉弁により吸気
の乱れが生じ難くして、吸気の抵抗を低減することにあ
る。The present invention has been made in view of the above points, and its purpose is to change the configuration of the on-off valve that controls communication between the intake passage and the volume chamber, so that when the on-off valve is opened, the air flow from the intake passage to the volume chamber is changed. The objective is to ensure a large opening area to strengthen the reversal effect of the intake pressure wave in the volume chamber, and to reduce intake resistance by making it difficult for intake air to be disturbed by the on-off valve when the valve is closed.
(課題を解決するための手段)
上記の目的の達成のため、請求項(1)に係る発明では
、慣性同調時に吸気圧力波の反転部となる容積室を吸気
通路に設けて、該容積室内に回転可能なロータリバルブ
を配設し、このバルブにより吸気通路と容積室との連通
を制御するようにした。(Means for Solving the Problem) In order to achieve the above object, in the invention according to claim (1), a volume chamber which becomes an inversion part of the intake pressure wave at the time of inertial tuning is provided in the intake passage. A rotatable rotary valve is installed in the engine, and this valve controls communication between the intake passage and the volume chamber.
具体的には、この発明は、複数の気筒にそれぞれ接続さ
れた吸気通路の途中に慣性過給用の容積室が設けられ、
該容積室内には、回転により容積室と各吸気通路との連
通を制御するロークリバルブが配設され、該ロータリバ
ルブは閉弁時に外周部が吸気通路中に突出するように構
成されていることを特徴としている。Specifically, in the present invention, a volume chamber for inertial supercharging is provided in the middle of an intake passage connected to each of a plurality of cylinders,
A rotary valve is disposed within the volume chamber and controls communication between the volume chamber and each intake passage through rotation, and the rotary valve is configured such that its outer peripheral portion protrudes into the intake passage when the rotary valve is closed. It is a feature.
請求項(2)に係る発明では、複数の気筒を吸気行程が
等間隔になる気筒毎に複数の気筒群に分け、気筒に独立
吸気通路を介して連通ずる気筒群毎の集合吸気通路同士
を連通路で連通し、この連通路と集合吸気吸気通路との
連通をロータリバルブで制御するようにした。In the invention according to claim (2), the plurality of cylinders are divided into a plurality of cylinder groups in which the intake strokes are arranged at equal intervals, and the collective intake passages of each cylinder group that communicate with the cylinders via independent intake passages are arranged. They communicate through a communication passage, and the communication between this communication passage and the collective air intake passage is controlled by a rotary valve.
すなわち、この発明は、吸気行程が等間隔になるように
複数の気筒群に分けられた複数の気筒を有し、上記各気
筒群の独立吸気通路がそれぞれ集合されて気筒群毎の集
合吸気通路に接続され、該集合吸気通路が連通路で互い
に連通され、回転により上記連通路による集合吸気通路
同士の連通を制御するロータリバルブが設けられ、該ロ
ータリバルブは閉弁時に外周部が独立吸気通路中に突出
するように構成されていることを特徴とする。That is, the present invention has a plurality of cylinders divided into a plurality of cylinder groups so that the intake strokes are equally spaced, and the independent intake passages of each cylinder group are aggregated to form a collective intake passage for each cylinder group. A rotary valve is provided which connects the collective intake passages to each other through a communication passage and controls the communication between the collective intake passages through the communication passage through rotation, and when the rotary valve is closed, the outer periphery of the rotary valve is connected to the independent intake passage. It is characterized by being configured to protrude inward.
(作可)
上記の構成により、請求項(1)に係る発明では、吸気
通路途中の容積室内にロータリバルブが配設され、この
バルブを回転させて開閉することにより、吸気通路と容
積室との連通が制御される。このロータリバルブは閉弁
時に吸気通路に突出しているので、その開弁状態での吸
気通路との交差部分の面積が大きくなり、その吸気通路
への開口部を大きくすることができ、慣性同調時の容積
室での吸気圧力波の反転作用を強めることができる。(Can be made) With the above configuration, in the invention according to claim (1), a rotary valve is disposed in the volume chamber in the middle of the intake passage, and by rotating this valve to open and close, the intake passage and the volume chamber are connected. communication is controlled. Since this rotary valve protrudes into the intake passage when the valve is closed, the area of its intersection with the intake passage when the valve is open is large, making it possible to enlarge the opening to the intake passage. The inversion effect of the intake pressure wave in the volume chamber can be strengthened.
また、この構造では、閉弁時にロータリバルブが吸気通
路に突出した分だけ吸気通路の有効面積が小さくなるも
のの、ロータリバルブの外周は円弧面であるので、媒介
と比べ、吸気はスムーズに流れ、その剥離等は生し難く
なり、よって吸気抵抗が大きく増大することはない。In addition, with this structure, although the effective area of the intake passage is reduced by the amount that the rotary valve protrudes into the intake passage when the valve is closed, the outer periphery of the rotary valve is an arcuate surface, so the intake air flows more smoothly than with a medium. Such peeling is less likely to occur, and therefore, the intake resistance does not increase significantly.
また、請求項(2)に係る発明では、気筒群間の集合吸
気通路同士が連通路で連通され、この連通路と集合吸気
通路との連通制御がロータリバルブで行われるため、ロ
ータリバルブの開弁時には集合吸気通路同士は連通路で
連通され、この連通路を容積室として共鳴効果が得られ
る。このとき、上記と同様に、ロータリバルブの開弁状
態での集合吸気通路への開口部か大きくなり、連通路で
の吸気圧力波の反転作用が増大する。また、閉弁時には
ロータリバルブの円弧状外周面に沿って吸気がスムーズ
に流れ、吸気抵抗は小さい。Further, in the invention according to claim (2), the collective intake passages between the cylinder groups are communicated with each other by a communication passage, and communication control between the communication passage and the collective intake passage is performed by a rotary valve, so that the rotary valve is opened. At the time of valve operation, the collective intake passages are communicated with each other through a communication passage, and this communication passage is used as a volume chamber to obtain a resonance effect. At this time, similarly to the above, the opening to the collective intake passage when the rotary valve is open becomes larger, and the reversal effect of the intake pressure wave in the communication passage increases. Further, when the valve is closed, intake air flows smoothly along the arcuate outer peripheral surface of the rotary valve, and intake resistance is small.
(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
第1図〜第3図は本発明の第1実施例を示し、1は直列
4気筒エンジンで、このエンジン1は、シリンダブロッ
ク2と、該シリンダブロック2の上面に組み付けられた
シリンダヘッド3とを有する。上記シリンダブロック2
には第1〜第4の4つの気筒C】〜C4がバンク長さ方
向に直列に形成され、これら気筒C1〜C4は例えば、
第1気筒C1−第3気筒C3−第4気筒c4−第2気筒
C2の順序で吸気行程が進行するようになっている。1 to 3 show a first embodiment of the present invention. Reference numeral 1 denotes an in-line four-cylinder engine, and the engine 1 includes a cylinder block 2, a cylinder head 3 assembled on the upper surface of the cylinder block 2, and a cylinder block 2. has. Above cylinder block 2
The first to fourth four cylinders C] to C4 are formed in series in the bank length direction, and these cylinders C1 to C4 are, for example,
The intake stroke progresses in the order of first cylinder C1 - third cylinder C3 - fourth cylinder C4 - second cylinder C2.
上記シリンダヘッド3の左側側面には各気筒C1〜C4
に吸気バルブ5を介して連通する吸気ポート6か開口さ
れ、この各吸気ポート6にはそれぞれ断面円形状の独立
吸気通路7の下流端が接続されている。この各独立吸気
通路7は上方に彎曲してサージタンク8に接続されてい
る。Each cylinder C1 to C4 is provided on the left side of the cylinder head 3.
Intake ports 6 communicating through the intake valves 5 are opened, and each intake port 6 is connected to a downstream end of an independent intake passage 7 having a circular cross section. Each independent intake passage 7 is curved upward and connected to a surge tank 8.
上記サージタンク8のシリンダ列の一端には集合吸気通
路9か接続され、該集合吸気通路9は図外のスロットル
ボディに接続されている。A collective intake passage 9 is connected to one end of the cylinder row of the surge tank 8, and the collective intake passage 9 is connected to a throttle body (not shown).
上記各独立吸気通路7において上方に彎曲した部分の内
側にはシリンダ列と平行に延びるロータリバルブ10が
配設されている。このロータリバルブ10は、独立吸気
通路7の吸気管7aに一体に形成されかつ前後端の独立
吸気通路7.7の位置までシリンダ列と平行に延びる円
筒形状のケーシング11を有し、二〇ケーシング11内
は上記各独立吸気通路7に対し吸気ポート6から等長の
位置に開口する連通孔12を介して連通している。A rotary valve 10 is disposed inside the upwardly curved portion of each independent intake passage 7 and extends parallel to the cylinder row. This rotary valve 10 has a cylindrical casing 11 that is integrally formed with the intake pipe 7a of the independent intake passage 7 and extends parallel to the cylinder row to the position of the independent intake passage 7.7 at the front and rear ends. 11 communicates with each of the independent intake passages 7 through communication holes 12 that open at positions of equal length from the intake port 6.
また、第3図に示すように、ケーシング11内には支持
軸15によって支持された密閉円筒状の弁体13か回転
可能に嵌挿され、この弁体13内に連通路17が形成さ
れている。弁体13の外周壁には弁体13の内外を連通
ずる複数の弁孔14゜14、・・・が開口され、この弁
孔14.14 ・・・は弁体13の回転軸心と平行に
かつ上記各連通孔12と対応する位置に配置されている
。そして、上記支持軸15にはレバー16か取り付けら
れ、このレバー16は図外のアクチュエータに連結され
ており、アクチュエータで弁体13を回転させることに
より、各弁孔14を対応する連通孔12にそれぞれ同時
に合致させてロータリバルブ1oを開弁状態とし、4つ
の独立吸気通路7,7.・・・同士を弁体ユ3内の連通
路17を介して同時に連通して、気筒C1〜C4での慣
性同調時の吸気圧力波の反転部となる容積室をサージタ
ンク8又は連通路17に切り換えるようになっている。Further, as shown in FIG. 3, a closed cylindrical valve body 13 supported by a support shaft 15 is rotatably fitted into the casing 11, and a communication passage 17 is formed within the valve body 13. There is. A plurality of valve holes 14, 14, . It is arranged at a position corresponding to each of the communication holes 12 described above. A lever 16 is attached to the support shaft 15, and this lever 16 is connected to an actuator (not shown).By rotating the valve body 13 with the actuator, each valve hole 14 is connected to the corresponding communication hole 12. The rotary valves 1o are opened by aligning the four independent intake passages 7, 7 . . . . are simultaneously communicated with each other via the communication passage 17 in the valve body unit 3, and the volume chamber that becomes the inversion part of the intake pressure wave during inertial tuning in the cylinders C1 to C4 is connected to the surge tank 8 or the communication passage 17. It is now possible to switch to .
そして、ロータリバルブ10の閉弁時、第1図に示す如
く、上記弁体13の外周部が独立吸気通路7に部分的に
突出するようになされている。When the rotary valve 10 is closed, the outer peripheral portion of the valve body 13 partially protrudes into the independent intake passage 7, as shown in FIG.
尚、第1図中、31は排気弁32により開閉される排気
ボート、33はインジェクタである。In FIG. 1, 31 is an exhaust boat that is opened and closed by an exhaust valve 32, and 33 is an injector.
したがって、この実施例においては、エンジン1の低速
回転域で、ロータリバルブ10は閉弁状態となり、気筒
C1〜C4の吸気ポート6で生じた吸気の圧力波がサー
ジタンク8で反転する慣性同調が生じる。Therefore, in this embodiment, in the low speed rotation range of the engine 1, the rotary valve 10 is in a closed state, and inertial tuning is achieved in which the pressure waves of the intake air generated at the intake ports 6 of the cylinders C1 to C4 are reversed at the surge tank 8. arise.
その際、上記閉弁状態のロータリバルブ10の弁体13
が独立吸気通路7に突出するため、従来のように連通路
を分岐通路で接続する必要はなく、段部による吸気の乱
れは生じない。At that time, the valve body 13 of the rotary valve 10 in the closed state
protrudes into the independent intake passage 7, there is no need to connect the communication passage with a branch passage as in the conventional case, and the intake air is not disturbed by the stepped portion.
また、弁体13の独立吸気通路7への突出により独立吸
気通路7の有効断面積が減少するが、この弁体13の突
出部分は円弧面であるため、独立吸気通路7の吸気は円
弧面に沿ってスムーズに流れ、その剥離等は生ぜず、よ
って吸気抵抗の増大か回避される。Further, the effective cross-sectional area of the independent intake passage 7 is reduced due to the protrusion of the valve body 13 into the independent intake passage 7, but since the protruding portion of the valve body 13 is an arcuate surface, the intake air in the independent intake passage 7 is The air flows smoothly along the air, and no separation occurs, thereby avoiding an increase in intake resistance.
一方、エンジン1の高速回転域では、ロータリバルブ1
0の弁体13が支持軸18回りに回転し、その各弁孔1
4がケーシング11の対応する連通孔12にそれぞれ合
致してロータリバルブ10は開弁状態となり、各気筒C
1〜C4Rの独立吸気通路7,7.・・・同士は連通孔
12、弁体13の弁孔14及び弁体13内の連通路17
を介して互いに連通ずる。この状態では、気筒C1〜C
4の吸気ポート6で生した吸気の圧力波が連通路17で
反転するようになり、慣性同調回転数かエンジン1の高
速回転域に移行する。On the other hand, in the high speed range of engine 1, rotary valve 1
0 valve body 13 rotates around the support shaft 18, and its respective valve holes 1
4 coincide with the corresponding communication holes 12 of the casing 11, the rotary valve 10 becomes open, and each cylinder C
1 to C4R independent intake passages 7, 7. ...They are the communication hole 12, the valve hole 14 of the valve body 13, and the communication passage 17 in the valve body 13.
communicate with each other via. In this state, cylinders C1 to C
The pressure wave of the intake air generated at the intake port 6 of No. 4 is reversed in the communication passage 17, and the inertia-tuned rotation speed shifts to the high speed rotation range of the engine 1.
その際、ロータリバルブ10の弁体13が独立吸気通路
7内に突出する構造であるので、必然的に弁体13の独
立吸気通路7との交差部分の面積が大きくなり、その弁
孔14の開口が大きく確保される。このため、上記慣性
同調時の吸気の圧力波は弁体13内の連通路17に確実
に伝播されて反転することとなり、よって良好な慣性効
果を確実に得ることができる。At this time, since the valve body 13 of the rotary valve 10 has a structure that protrudes into the independent intake passage 7, the area of the intersection of the valve body 13 with the independent intake passage 7 inevitably becomes large, and the area of the valve hole 14 of the valve body 13 inevitably becomes large. A large opening is ensured. Therefore, the pressure wave of the intake air during the inertial tuning is reliably propagated to the communication passage 17 in the valve body 13 and reversed, so that a good inertial effect can be reliably obtained.
尚、第4図に示すように、ロータリバルブ10を独立吸
気通路7の彎曲部外側に配置してもよい。Incidentally, as shown in FIG. 4, the rotary valve 10 may be arranged outside the curved portion of the independent intake passage 7.
この場合、独立吸気通路7の彎曲方向外側に配設されて
いるロータリバルブ10の弁体13の弁孔14は、各気
筒C1〜C4の吸気ポート6から上流側に向かう吸気圧
力波の進行方向に対向することとなり、慣性効果をより
一層増大させることかできる。In this case, the valve hole 14 of the valve body 13 of the rotary valve 10 disposed on the outside of the independent intake passage 7 in the curving direction The inertia effect can be further increased.
第5図は第2実施例を示しく尚、以下の各実施例では、
第1実施例の各図と同じ部分については同じ符号を付し
てその詳細な説明は省略する)、連通路17をロータリ
バルブ10の弁体13内ではなく、別個に設けたもので
ある。この実施例では、独立吸気通路7の彎曲部外側に
はシリンダ列方向に延びる連通路17が配設され、この
連通路17は独立吸気通路7とそれぞれ分岐通路18を
介して連通している。上記分岐通路18には、分岐通路
18を開閉して連通路17と独立吸気通路7との連通を
制御するロータリバルブ10’が配設されている。この
ロータリバルブ10′は、上記実施例のものとは異なり
、分岐通路18を開閉する弁孔14′が直径方向に貫通
形成されており、この弁孔14′を分岐通路18と合致
させることで開弁するようになっている。この実施例で
も、上記実施例と同様の効果を得ることかできる。FIG. 5 shows the second embodiment. In each of the following embodiments,
The same parts as those in the figures of the first embodiment are given the same reference numerals, and detailed explanations thereof are omitted), and the communication passage 17 is provided separately rather than within the valve body 13 of the rotary valve 10. In this embodiment, a communication passage 17 extending in the cylinder row direction is provided outside the curved portion of the independent intake passage 7, and this communication passage 17 communicates with the independent intake passage 7 via branch passages 18, respectively. The branch passage 18 is provided with a rotary valve 10' that opens and closes the branch passage 18 to control communication between the communication passage 17 and the independent intake passage 7. This rotary valve 10' is different from that of the above embodiment in that a valve hole 14' for opening and closing the branch passage 18 is formed through the valve hole 14' in the diametrical direction. The valve is now open. In this embodiment as well, the same effects as in the above embodiment can be obtained.
第6図及び第7図は第3実施例を示し、この実施例では
、ロータリバルブ10の弁体13′に、閉弁時に独立吸
気通路7に突出する外周部分を独立吸気通路7に沿うよ
うに切り欠いた切欠部13a′が形成されている。この
実施例の場合、弁体13′外周の切欠部13a′が独立
吸気通路7に沿った形状であるので、閉弁時、弁体13
′の独立吸気通路7に突出する部分がなくなり、吸気抵
抗をさらに低減することができる。6 and 7 show a third embodiment. In this embodiment, the outer peripheral portion of the valve body 13' of the rotary valve 10, which protrudes into the independent intake passage 7 when the valve is closed, is arranged along the independent intake passage 7. A notch 13a' is formed in the. In this embodiment, since the notch 13a' on the outer periphery of the valve body 13' is shaped along the independent intake passage 7, when the valve is closed, the valve body 13'
Since there is no longer a portion projecting into the independent intake passage 7, intake resistance can be further reduced.
尚、第8図に示すように、独立吸気通路′7の断面を楕
円形状としても同様の効果が得られる。Incidentally, as shown in FIG. 8, the same effect can be obtained even if the independent intake passage '7 has an elliptical cross section.
第9図は第4実施例を示し、■型6気筒エンジン1′に
適用したものである。すなわち、この実施例では、前後
のバンクBF、BRを有するV型6気筒エンジン1′に
おいて、前バンクBF (図で左側のもの)のシリン
ダブロック2には第1、第3及び第5の奇数番号の6つ
の気筒cl、C3゜C5が、また後バンクBR(図で右
側のもの)のシリンダブロック2には第2、第4及び第
6の偶数番号の6つの気筒C2,C4,C6がそれぞれ
バンク長さ方向(図の紙面と直交する方向)に直列に形
成され、これら気筒C】〜C6は例えば気筒番号順で吸
気行程が進行するようになっている。FIG. 9 shows a fourth embodiment, which is applied to a type 6 six-cylinder engine 1'. That is, in this embodiment, in a V-type six-cylinder engine 1' having front and rear banks BF and BR, the cylinder block 2 of the front bank BF (the one on the left side in the figure) has the first, third, and fifth odd-numbered cylinder blocks. There are six numbered cylinders cl, C3 and C5, and the second, fourth and sixth even numbered six cylinders C2, C4 and C6 are in the cylinder block 2 of the rear bank BR (the one on the right in the figure). The cylinders C] to C6 are formed in series in the bank length direction (direction perpendicular to the plane of the drawing), and the intake strokes of the cylinders C] to C6 proceed in the order of cylinder numbers, for example.
そして、この実施例では、6つの気筒C1〜C6は吸気
行程が互いに等間隔になるように各バンクBF、BRの
3つの気筒毎に前後2つの気筒群に分けられている。In this embodiment, the six cylinders C1 to C6 are divided into two groups of front and rear cylinders for each bank of three cylinders, BF and BR, so that the intake strokes are equally spaced from each other.
上記各シリンダヘッド3においてバンクBFBR間側の
側面に吸気ポート6が開口され、各バンクBF、BR毎
の3つの独立吸気通路7,7゜・・・はそれぞれ上方に
向かった後、後方に彎曲して後バンクBRのシリンダヘ
ッド3上方に延び、各バンクBF、BRに対応するサー
ジタンク8E8Rに接続されている。そして、前側バン
クBFの各独立吸気通路7の彎曲部外側(前側)及び後
側バンクBRの各独立吸気通路7の彎曲部内側(後側)
にそれぞれロータリバルブ10.10が配設されている
。In each cylinder head 3, an intake port 6 is opened on the side surface between the banks BFBR, and the three independent intake passages 7, 7°, for each bank BF, BR each go upward and then curve backward. It extends above the cylinder head 3 of the rear bank BR, and is connected to a surge tank 8E8R corresponding to each bank BF, BR. Then, the outside (front side) of the curved portion of each independent intake passage 7 of the front bank BF and the inside (rear side) of the curved portion of each independent intake passage 7 of the rear bank BR.
A rotary valve 10.10 is disposed at each of the rotary valves 10.10.
したがって、この実施例では、エンジン1′の回転域に
応じて両ロータリバルブ10.10が同期して開閉され
、バンクBF、BRの気筒群での慣性同調回転数が切り
換えられる。この実施例でも、上記実施例と同様の作用
効果が得られる。Therefore, in this embodiment, both rotary valves 10, 10 are opened and closed synchronously depending on the rotational range of the engine 1', and the inertia-tuned rotational speeds of the cylinder groups of banks BF and BR are switched. This embodiment also provides the same effects as those of the above embodiment.
尚、図で仮想線にて示すように、両ロータリバルブ10
.10の位置をそれぞれ前側バンクBFの各独立吸気通
路7の彎曲部内側(後側)及び後側バンクBRの各独立
吸気通路7の彎曲部外側(前側)に変えてもよい。また
、第10図に示すように、両ロータリバルブ10.10
をいずれも各バンクBF、BRの独立吸気通路7の彎曲
部内側(後側)に配置してもよく、さらには第11図に
示す如く独立吸気通路7の彎曲部外側(前側)に配置し
てもよい。これらの場合でも同様の効果か得られる。In addition, as shown by virtual lines in the figure, both rotary valves 10
.. 10 may be changed to the inside (rear side) of the curve of each independent intake passage 7 of the front bank BF and the outside (front side) of the curve of each independent intake passage 7 of the rear bank BR. In addition, as shown in Fig. 10, both rotary valves 10.10
may be arranged inside the curved part (rear side) of the independent intake passage 7 of each bank BF, BR, or furthermore, as shown in FIG. It's okay. Similar effects can be obtained in these cases as well.
第12図及び第13図は第5実施例を示し、両バンクB
F、BRのロータリバルブを共用化したものである。こ
の実施例では、第12図に示す如く、第2実施例と同様
の構成において、前側バンクBFの各独立吸気通路7の
彎曲部内側(後側)及び後側バンクBRの各独立吸気通
路7の彎曲部外側(前側)に1つのロータリバルブ10
か配設されている。このロータリバルブ10には、各バ
ンクBF、BRの独立吸気通路7,7.・・・に連通ず
る3対の連通孔12,12.・・・が6対を略直径方向
に対向せしめて形成されている。また、第13図に示す
ように、円筒状の弁体13には上記各連通孔12にそれ
ぞれ同時に合致する3対の弁孔1414、・・が開口さ
れており、弁体13の連通路17て、各バンクBF、B
Rの独立吸気通路7.7.・・・同士、及びバンクBF
、BR間の独立吸気通路7,7.・・・を連通路17に
より互いに連通させるようになっている。12 and 13 show the fifth embodiment, in which both banks B
The F and BR rotary valves are shared. In this embodiment, as shown in FIG. 12, in the same configuration as the second embodiment, the inside curved portion (rear side) of each independent intake passage 7 of the front bank BF and each independent intake passage 7 of the rear bank BR are used. One rotary valve 10 on the outside (front side) of the curved part of
or has been set up. This rotary valve 10 includes independent intake passages 7, 7 . Three pairs of communication holes 12, 12 . ... are formed by making six pairs of them face each other in a substantially diametrical direction. Further, as shown in FIG. 13, the cylindrical valve body 13 is opened with three pairs of valve holes 1414, which coincide with the communication holes 12, respectively, and the communication passages 17 of the valve body 13 are opened. , each bank BF, B
R independent intake passage 7.7. ...each other and bank BF
, BR between the independent intake passages 7, 7. ... are made to communicate with each other through a communication path 17.
したかって、この実施例では、バンクBF、BR間でロ
ータリバルブ10を共用できるので、構造が簡単になる
利点がある。Therefore, in this embodiment, the rotary valve 10 can be shared between the banks BF and BR, which has the advantage of simplifying the structure.
第14図は第6実施例を示し、第11図に示す実施例の
構成において、両バンクBF、BR間の独立吸気通路7
,7.・・・同士を連通ずるようにしている。すなわち
、この実施例においては、両ロータリバルブ1010の
ケーシング1111は、各々の一端で連通路19により
互いに連通されている。また、弁体13には、各弁孔1
4がそれぞれケーシング11の連通孔12に連通したと
きに上記連通路19に連通する開口20が形成されてお
り、各バンクBF、BRの独立吸気通路77、・・・同
士を弁体13の連通路17で連通ずると同時に、バンク
BF、BR間の独立吸気通路77、・・・をも連通路1
9により互いに連通させるようになっている。この実施
例でも、同様の効果か得られる。FIG. 14 shows a sixth embodiment, and in the configuration of the embodiment shown in FIG. 11, an independent intake passage 7 between both banks BF and BR
,7. ...I try to communicate with each other. That is, in this embodiment, the casings 1111 of both rotary valves 1010 are communicated with each other through the communication passage 19 at one end of each. In addition, each valve hole 1 is provided in the valve body 13.
4 is formed with an opening 20 that communicates with the communication passage 19 when the banks BF and BR communicate with the communication hole 12 of the casing 11. At the same time, the independent intake passages 77, . . . between the banks BF and BR are communicated through the passage 17.
9 to communicate with each other. Similar effects can be obtained in this embodiment as well.
第15図及び第16図は第7実施例を示し、共鳴効果の
切換えをロータリバルブ10で行うようにしたものであ
る。すなわち、上記第4実施例と同様に、V型6気筒エ
ンジン1′において、6つの気筒C1〜C6は吸気行程
が等間隔になるようにバンクBF、BR毎の2つの気筒
群に分けられ、各気筒群の独立吸気通路7,7.・・・
は集合されて気筒群毎の集合吸気通路9,9に接続され
、再集合吸気通路9.9は上流端で互いに集合されてい
る。そして、再集合・吸気通路9.9の中間部には再集
合吸気通路9.9同士の連通を制御する円筒状のロータ
リバルブ10が配設されている。FIGS. 15 and 16 show a seventh embodiment, in which a rotary valve 10 is used to switch the resonance effect. That is, similarly to the fourth embodiment, in the V-type six-cylinder engine 1', the six cylinders C1 to C6 are divided into two cylinder groups for each bank BF and BR so that the intake strokes are equally spaced. Independent intake passages 7, 7 for each cylinder group. ...
are gathered together and connected to the collective intake passages 9, 9 for each cylinder group, and the recollected intake passages 9.9 are gathered together at the upstream end. A cylindrical rotary valve 10 for controlling communication between the regathering intake passages 9.9 is disposed in the middle of the regathering intake passages 9.9.
したがって、この実施例では、ロータリバルブ10を開
閉切換えすることによって気筒群間の集合吸気通路9,
9の連通部分が変わり、エンジン1′の低速回転域では
、ロータリバルブ10が閉弁して、再集合吸気通路9,
9は上流端集合部で連通する。このため、この上流端集
合部を吸気圧力波の反転部とする気筒群間の共鳴同調が
生じる。Therefore, in this embodiment, by switching the rotary valve 10 open/close, the common intake passage 9 between the cylinder groups,
9 changes, and in the low speed rotation range of the engine 1', the rotary valve 10 closes and the intake passages 9, 9 are reunited.
9 communicates at the upstream end gathering part. Therefore, resonance tuning occurs between the cylinder groups, with this upstream end gathering portion serving as a reversal portion of the intake pressure wave.
この場合、上記第1実施例と同様に、閉弁状態のロータ
リバルブ10の弁体13が集合吸気通路9に突出して、
集合吸気通路9の有効断面積が減少するが、この弁体1
3の突出部分は円弧面であるため、集合吸気通路9の吸
気は円弧面に沿ってスムーズに流れ、その吸気抵抗は増
大しない。In this case, similarly to the first embodiment, the valve body 13 of the rotary valve 10 in the closed state protrudes into the collective intake passage 9,
Although the effective cross-sectional area of the collective intake passage 9 is reduced, this valve body 1
Since the protruding portion 3 is an arcuate surface, the intake air in the collective intake passage 9 flows smoothly along the arcuate surface, and its intake resistance does not increase.
一方、エンジン1′の高速回転域では、ロータリバルブ
10が開弁して、再集合吸気通路9,9はロータリバル
ブ10の弁体13内の連通路17でも連通する。このこ
とにより、この連通路17を吸気圧力波の反転部とする
共鳴同調が生じ、共鳴同調回転数が高速回転域に切り換
えられる。On the other hand, in the high-speed rotation range of the engine 1', the rotary valve 10 opens and the recollected intake passages 9, 9 also communicate with the communication passage 17 in the valve body 13 of the rotary valve 10. This causes resonance tuning in which the communication passage 17 serves as an inversion part of the intake pressure wave, and the resonance tuning rotation speed is switched to a high speed rotation range.
その際、ロータリバルブ10の弁体13の集合吸気通路
9との交差部分の面積が大きくなり、その弁孔14の開
口が大きく確保される。このため、上記共鳴同調時の吸
気の圧力波は弁体13内の連通路17に確実に伝播され
て反転することとなり、良好な共鳴効果を確実に得るこ
とができる。At this time, the area of the intersection of the valve body 13 of the rotary valve 10 with the collective intake passage 9 is increased, and the opening of the valve hole 14 is ensured to be large. Therefore, the pressure wave of the intake air during the resonance tuning is reliably propagated to the communication passage 17 in the valve body 13 and reversed, so that a good resonance effect can be reliably obtained.
(発明の効果)
以上説明したように、請求項(1)係る発明によれば、
エンジンの気筒にそれぞれ接続された吸気通路の途中に
慣性効果用の容積室を設け、この容積室と吸気通路との
連通制御をロータリバルブで行うようにしたことにより
、ロータリバルブの開弁時には容積室の吸気通路への開
口面積を大にして容積室での吸気圧力波の反転作用を強
めることができ、良好な慣性効果か得られる一方、閉弁
時に吸気通路で吸気をスムーズに流して吸気抵抗を低減
することができる。(Effect of the invention) As explained above, according to the invention claimed in claim (1),
A volume chamber for inertial effect is provided in the middle of the intake passage connected to each cylinder of the engine, and communication control between this volume chamber and the intake passage is controlled by a rotary valve.When the rotary valve opens, the volume increases. By increasing the opening area of the chamber to the intake passage, the reversal effect of the intake pressure wave in the volume chamber can be strengthened, and a good inertia effect can be obtained.At the same time, when the valve is closed, the intake air flows smoothly through the intake passage and the intake air is increased. Resistance can be reduced.
また、請求項(2)に係る発明によれば、吸気行程が等
間隔になる気筒毎に複数の気筒群に分けられた多気筒エ
ンジンにおいて、各気筒群毎の集合吸気通路同士を連通
ずる連通路を設け、この連通路による集合吸気通路同士
の連通制御をロータリバルブによって行うようにしたこ
とにより、連通路を共鳴同調時の吸気圧力波の反転部と
しなから、上記と同様の効果を得ることができる。Further, according to the invention according to claim (2), in a multi-cylinder engine that is divided into a plurality of cylinder groups in which the intake strokes are arranged at equal intervals, the collective intake passages of each cylinder group are connected to each other. By providing a passage and using a rotary valve to control the communication between the collective intake passages through this communication passage, the same effect as above can be obtained without using the communication passage as an inversion part of the intake pressure wave during resonance tuning. be able to.
第1図〜第4図は本発明の第1実施例を示し、第1図は
エンジン及び吸気系の断面図、第2図は同模式平面図、
第3図はロータリバルブの概略斜視図、第4図はロータ
リバルブの配置構造の変形例を示す第1図相当図である
。第5図は第2実施例を示す第1図相当図である。第6
図〜第8図は第3実施例を示し、第6図は第1図相当図
、第7図は第6図の■−■線断面図、第8図は変形例を
示す第7図相当図である。第9図〜第11図は第4実施
例を示し、第9図は第1図相当図、第10図及び第11
図はそれぞれロータリバルブの配置構造の変形例を示す
第1図相当図である。第12図及び第13図は第5実施
例を示し、第12図は第1図相当図、第13図は第3図
相当図である。
第14図は第6実施例を示す第3図相当図である。
第15図及び第16図は第7実施例を示し、第15図は
エンジン及び吸気系の模式平面図、第16図は第15図
のXVI−XVI線断面図である。
1.1′・・・エンジン
C1〜C12・・・気筒
6・・・吸気ポート
7・・・独立吸気通路
9・・・集合吸気通路
10.10’ ・・・ロータリバルブ
17・・・連通路
第7区
帛8区1 to 4 show a first embodiment of the present invention, FIG. 1 is a sectional view of the engine and intake system, FIG. 2 is a schematic plan view of the same,
FIG. 3 is a schematic perspective view of the rotary valve, and FIG. 4 is a view corresponding to FIG. 1 showing a modification of the arrangement structure of the rotary valve. FIG. 5 is a diagram corresponding to FIG. 1 showing the second embodiment. 6th
Figures to Figures 8 show the third embodiment, Figure 6 is a view equivalent to Figure 1, Figure 7 is a sectional view taken along the line ■-■ of Figure 6, and Figure 8 is equivalent to Figure 7 showing a modification. It is a diagram. Figures 9 to 11 show the fourth embodiment; Figure 9 is a diagram equivalent to Figure 1; Figures 10 and 11 are equivalent to Figure 1;
Each figure is a view corresponding to FIG. 1 showing a modification of the arrangement structure of the rotary valve. 12 and 13 show the fifth embodiment, in which FIG. 12 is a diagram equivalent to FIG. 1, and FIG. 13 is a diagram equivalent to FIG. 3. FIG. 14 is a diagram corresponding to FIG. 3 showing the sixth embodiment. 15 and 16 show a seventh embodiment, FIG. 15 is a schematic plan view of the engine and intake system, and FIG. 16 is a sectional view taken along the line XVI-XVI in FIG. 15. 1.1'...Engine C1 to C12...Cylinder 6...Intake port 7...Independent intake passage 9...Common intake passage 10.10'...Rotary valve 17...Communication passage 7th ward, 8th ward
Claims (2)
に慣性過給用の容積室が設けられ、該容積室内には、回
転により容積室と各吸気通路との連通を制御するロータ
リバルブが配設され、該ロータリバルブは閉弁時に外周
部が吸気通路中に突出するように構成されていることを
特徴とする多気筒エンジンの吸気装置。(1) A volume chamber for inertial supercharging is provided in the middle of each intake passage connected to a plurality of cylinders, and a rotary valve is installed in the volume chamber to control communication between the volume chamber and each intake passage through rotation. 1. An intake system for a multi-cylinder engine, wherein the rotary valve is configured such that an outer circumferential portion thereof protrudes into an intake passage when the rotary valve is closed.
けられた複数の気筒を有し、上記各気筒群の独立吸気通
路がそれぞれ集合されて気筒群毎の集合吸気通路に接続
され、上記気筒群間の集合吸気通路が連通路で互いに連
通され、回転により上記連通路による集合吸気通路同士
の連通を制御するロータリバルブが設けられ、該ロータ
リバルブは閉弁時に外周部が集合吸気通路中に突出する
ように構成されていることを特徴とする多気筒エンジン
の吸気装置。(2) It has a plurality of cylinders divided into a plurality of cylinder groups so that the intake strokes are equally spaced, and the independent intake passages of each cylinder group are collected and connected to a collective intake passage for each cylinder group. The collective intake passages between the cylinder groups are communicated with each other by a communication passage, and a rotary valve is provided which controls communication between the collective intake passages through the communication passage through rotation, and when the rotary valve is closed, the outer peripheral portion thereof is connected to the collective intake passage. An intake device for a multi-cylinder engine, characterized in that it is configured to protrude into a passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2091388A JPH03286132A (en) | 1990-03-30 | 1990-03-30 | Air intake device for multiple cylinder engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2091388A JPH03286132A (en) | 1990-03-30 | 1990-03-30 | Air intake device for multiple cylinder engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03286132A true JPH03286132A (en) | 1991-12-17 |
Family
ID=14024996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2091388A Pending JPH03286132A (en) | 1990-03-30 | 1990-03-30 | Air intake device for multiple cylinder engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03286132A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0669455A1 (en) * | 1994-02-25 | 1995-08-30 | Regie Nationale Des Usines Renault S.A. | Intake device for internal combustion engine |
CN111212972A (en) * | 2017-10-13 | 2020-05-29 | 五十铃自动车株式会社 | Air inlet conduit |
-
1990
- 1990-03-30 JP JP2091388A patent/JPH03286132A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0669455A1 (en) * | 1994-02-25 | 1995-08-30 | Regie Nationale Des Usines Renault S.A. | Intake device for internal combustion engine |
FR2716697A1 (en) * | 1994-02-25 | 1995-09-01 | Renault | Intake device for internal combustion engine. |
CN111212972A (en) * | 2017-10-13 | 2020-05-29 | 五十铃自动车株式会社 | Air inlet conduit |
CN111212972B (en) * | 2017-10-13 | 2022-07-12 | 五十铃自动车株式会社 | Air inlet conduit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0192518A (en) | Engine intake-air device | |
JPH03286129A (en) | Air intake device for multiple cylinder engine | |
JPH03281927A (en) | Air intake device of engine | |
KR920010121B1 (en) | Intake manifold in v-type engine | |
US5085178A (en) | Intake piping structure for multi-cylinder engine | |
JPH03286132A (en) | Air intake device for multiple cylinder engine | |
JPH06280576A (en) | Intake device of engine | |
JPH0388913A (en) | Suction control method for six-cylinder internal combustion engine | |
JP2808312B2 (en) | Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine | |
JP2772674B2 (en) | Intake device for V-type multi-cylinder internal combustion engine | |
JPH0720344Y2 (en) | Multi-cylinder engine intake system | |
JP2724750B2 (en) | Intake device for multi-cylinder internal combustion engine | |
JP2583529B2 (en) | Engine intake system | |
JP2779253B2 (en) | Multi-cylinder engine intake system | |
JPH0649864Y2 (en) | Intake device for V-type multi-cylinder internal combustion engine | |
JP2543906B2 (en) | Engine intake system | |
JP2771176B2 (en) | Engine intake system | |
JPH0392534A (en) | Intake device for multi-cylinder engine | |
JPH0629559B2 (en) | Multi-cylinder engine intake system | |
JPH03281922A (en) | Air intake device of engine | |
JP2001227348A (en) | Variable intake device of in-line four-cylinder internal combustion engine | |
JPH03286128A (en) | Air intake device for multiple cylinder engine | |
JPH03926A (en) | Intake system for multicylinder internal combustion engine | |
JPH109071A (en) | Intake device of multiple cylinder internal combustion engine | |
JPH03275932A (en) | Intake device for engine |