[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03278407A - Composite magnetic material - Google Patents

Composite magnetic material

Info

Publication number
JPH03278407A
JPH03278407A JP2150989A JP15098990A JPH03278407A JP H03278407 A JPH03278407 A JP H03278407A JP 2150989 A JP2150989 A JP 2150989A JP 15098990 A JP15098990 A JP 15098990A JP H03278407 A JPH03278407 A JP H03278407A
Authority
JP
Japan
Prior art keywords
substance
magnetic
powder
composite
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150989A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Yasuhiro Sugaya
康博 菅谷
Osamu Inoue
修 井上
Takeshi Hirota
健 廣田
Mitsuo Satomi
三男 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH03278407A publication Critical patent/JPH03278407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To heighten electric resistance by covering a grain surface of a magnetic material with an extremely thin dielectric or an insulating material. CONSTITUTION:A first material 1 of a magnetic metal such as iron, nickel and an alloy containing at least one kind of these and a second material 2 different from the first material 1 either in the number, the kind or the valency number of its constituent elements or constituent ions or in the crystal constitution are mixed to be heated generally at not less than 300 deg.C and impressed with high pressure not less than 100kg/cm<2> for being molded to high density so as to be in a state where the grains of the first material 1 are encircled by the continuation of the material 2. In the case the material 2 is dielectric or insulating, high saturation magnetic flux density is attained due to an overwhelmingly high rate of the material 1 and the dielectric or insulating material 2 encircules the material 1 so that electric resistance is high and eddy current loss is little in a high frequency region.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(ヨトラン乙 磁気ヘッド等に使用される磁性材
料に関し 特に複合体の磁性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to magnetic materials used in magnetic heads and the like, and particularly to composite magnetic materials.

従来の技術 従来より電子部& 電子機器に使用する磁性材料として
、高磁束密度が必要な場合には磁性金属が用いられてい
る。しかし高周波領域で使用する場合には 磁性金属で
は電気抵抗が小さいため渦電流損失が大きく、従って高
電気抵抗のフェライトや、第9図に示したような磁性金
属からなる磁性粒子101と、セラミックス等の絶縁材
料からなる絶縁体102とを複合することによって、電
気抵抗を大きくした複合磁性材料が用いられていも 発明が解決しようとする課題 磁性金属は電気抵抗が小さいた取 高周波領域で使用す
ると渦電流損失が大きくなる。そのため高飽和磁束密度
という特長がありなか叡 高周波領域で使用することが
困難であも −X  酸化物磁性体のフェライトは電気抵抗が磁性金
属材料の101倍以上あり、高周波領域における渦電流
損失の低減という点で磁性金属より格段に優れたもので
ある力叉 飽和磁束密度が磁性金属の約1/2以下とい
う点で、高飽和磁束密度が要求される電子部品や機器に
は使用出来ないという課題があった 又 従来の磁性金属と絶縁材料との複合磁性材料は 単
に両者を混合したように複合化させたものであるた八 
複合磁性材料の特性(友 単に各成分材料の特性を平均
的に複合化したものにすぎずなかっ九 即ち第9図に示
したよう心気 高電気抵抗を得るため絶縁体102の成
分比率を増加させると、磁性粒子101の持つ高い磁束
密度が絶縁材料により弱められてしまうという課題があ
ったさらに従来の複合磁性材料で(よ 絶縁特性を得る
目的で、数μmから数mm程度の厚さの絶縁体102で
、磁性粒子101の部分を不連続体に分断したような構
造であるた嵌 複合体内部を通る磁束が非磁性の絶縁体
102によりその流れが遮断され その複合体の透磁率
も著しく低下するという課題もあっち 本発明はかかる従来の課題に対してなされたものであり
、高飽和磁束密度、高電気抵抗でかつ高透磁率の複合磁
性材料を提供することを目的とすム 課題を解決するための手段 本発明は 粒子状の第1の物質と、この第1の物質とは
構成元素もしくは構成イオンの数 種類あるいは価数又
は結晶構造の内の少なくとも何れか1つが異なる第1の
物質以外の物質の少なくとも2種の物質から構成された
微小粒径複合体であって、第1の物質が磁性材料であり
、第1の物質以外の物質の厚みが第1の物質の粒径より
も小さく、第1の物質と別の相でかつ連続相を形成し気
孔率が5%以下である複合磁性材料によって、従来の課
題を解決したものであ4 作用 本発明の複合磁性材料では 磁性材料からなる第1の物
質の粒子表面を、極薄い誘電体または絶縁体材料でほぼ
覆うことにより、高密度焼結体の電気抵抗を高くし 且
つ誘電体または絶縁体層の厚みを薄くする事により、高
磁気特性を実現できも 従って、従来の単なる複合磁性材料でζよ その構成材
料の持つ特性を、単にその体積占有率で所有するように
平均化した特性を持っていたのに対して、本発明の複合
磁性材料は構成要素の特性を同時に発現させる新規な磁
性材料を提供するものである。
BACKGROUND ART Magnetic metals have traditionally been used as magnetic materials for electronic parts and devices when high magnetic flux density is required. However, when used in a high frequency region, magnetic metals have low electrical resistance and therefore have a large eddy current loss. Problem to be Solved by the Invention Even if a composite magnetic material is used, which has a high electrical resistance by combining it with an insulating material 102 made of an insulating material, magnetic metals have a low electrical resistance. Current loss increases. Therefore, it has the feature of high saturation magnetic flux density, and although it is difficult to use in the high frequency range, ferrite, which is an oxide magnetic material, has an electrical resistance of more than 101 times that of magnetic metal materials, and has a low eddy current loss in the high frequency range. Force forks are far superior to magnetic metals in terms of reduction.The saturation magnetic flux density is approximately 1/2 or less than that of magnetic metals, so they cannot be used in electronic components and equipment that require high saturation magnetic flux density. Another problem was that conventional composite magnetic materials of magnetic metal and insulating material were simply a composite of the two.
Characteristics of Composite Magnetic Materials (Note: This is simply a composite of the characteristics of each component material on average.) In other words, as shown in Figure 9, the component ratio of the insulator 102 is increased to obtain high electrical resistance. In addition, in conventional composite magnetic materials, the high magnetic flux density of the magnetic particles 101 is weakened by the insulating material. The insulator 102 has a structure in which the magnetic particles 101 are divided into discontinuities.The magnetic flux passing through the inside of the composite is blocked by the non-magnetic insulator 102, and the magnetic permeability of the composite is also reduced. The present invention has been made to address such conventional problems, and it is an object of the present invention to provide a composite magnetic material with high saturation magnetic flux density, high electric resistance, and high magnetic permeability. Means for Solving the Problems The present invention provides a first substance in the form of particles, and a first substance in which the first substance differs in at least one of the number, kind, valence, or crystal structure of constituent elements or constituent ions. A microparticle-sized composite composed of at least two types of substances other than the first substance, the first substance being a magnetic material, and the thickness of the substance other than the first substance being equal to the thickness of the particles of the first substance. The conventional problems have been solved by using a composite magnetic material that is smaller than the diameter, forms a continuous phase separate from the first substance, and has a porosity of 5% or less. Then, by almost covering the particle surface of the first substance made of a magnetic material with an extremely thin dielectric or insulating material, the electrical resistance of the high-density sintered body is increased and the thickness of the dielectric or insulating layer is reduced. Although it is possible to achieve high magnetic properties by using conventional composite magnetic materials, it is possible to achieve high magnetic properties by simply using conventional composite magnetic materials. In contrast, the composite magnetic material of the present invention provides a novel magnetic material that exhibits the properties of its constituent elements at the same time.

また5%以下の気孔率を有ることより、本発明の複合磁
性材料の磁気的特性並びに機械的特性が向上する。
Furthermore, since the composite magnetic material has a porosity of 5% or less, the magnetic properties and mechanical properties of the composite magnetic material of the present invention are improved.

実施例 第1図に本発明の複合磁性材料の断面概念要部拡大図を
示す。第1の物質lは粒子状の磁性材料を含有し 第1
の物質1の周りを別の相でしかも連続相を形成した第1
の物質以外の物質2とで構成されている。
Embodiment FIG. 1 shows an enlarged view of the cross-sectional concept and essential parts of the composite magnetic material of the present invention. The first substance l contains a particulate magnetic material.
The substance 1 is surrounded by another phase and forms a continuous phase.
It is composed of a substance 2 other than the substance .

第1図のような構成をとることにより、本発明の複合磁
性材料1よ 特異な磁気特性を出現する。
By adopting the configuration as shown in FIG. 1, the composite magnetic material 1 of the present invention exhibits unique magnetic properties.

例えば第1の物質以外の物質2が誘電性もしくは絶縁性
材料を含む場合には 複合磁性材料自体は高電気抵抗を
有l−第1の物質以外の物質2が作る連続相の厚みが第
1の物質1の粒径よりも薄ければ 複合磁性材料は第]
の物質]と同程度の磁気特性が得られる。あるいは第1
の物質以外の物質2が軟磁性材料を含む場合に(よ 複
合磁性材料の磁気特性は第1の物質以上の特性を有する
ことも可能であも 本発明の第1の物質lに供される材料としては例えば鉄
 ニッケル コバルト等の磁性金属及びこれらの肉牛な
くとも1種を含む合金等が挙げられも 上記合金は例え
ばFe−AL  Fe−3L  re−Ni、  Fe
−Al−3L  Mo−Ni−Fe、  Fe−8i−
Al−Ni、  5i−Al−Fe−Co等が挙げられ
も また本発明の第1の物質以外の物質2ζよ 第1に物質
と構成元素もしくは構成イオンの数 種類あるいは価数
または結晶構造の白河れかが異なっている物質であり、
具体的には供される材料としてE  Ale’s、  
5iOa、  MgO,CaO等の金属酸化法AIN、
  BN等の金属窒化物 あるいは金属酸窒化惧Mη−
Zn−フェライト、  Ni−Zn−フェライト等のフ
ェライト系化合物等が挙げられる。即ち例えば第1の物
質以外の物質2が第1の物質1の構成元素の酸化物であ
る場合、第1の物質以外の物質2は第1の物質1と構成
元素の数 種類並びに価数及び結晶構造の4つが少なく
とも異なると言える。
For example, if the substance 2 other than the first substance contains a dielectric or insulating material, the composite magnetic material itself has a high electrical resistance l - the thickness of the continuous phase formed by the substance 2 other than the first substance is the first If it is thinner than the particle size of substance 1, then the composite magnetic material is
Magnetic properties comparable to those obtained with [materials] can be obtained. Or the first
When the substance 2 other than the substance 2 contains a soft magnetic material (as shown in FIG. Examples of materials include magnetic metals such as iron, nickel, and cobalt, and alloys containing at least one of these metals. Examples of the above alloys include Fe-AL, Fe-3L, re-Ni, and Fe.
-Al-3L Mo-Ni-Fe, Fe-8i-
Al-Ni, 5i-Al-Fe-Co, etc. may be mentioned, but also substances other than the first substance of the present invention. which are different substances,
Specifically, the materials provided include E Ale's,
5iOa, metal oxidation method AIN such as MgO, CaO, etc.
Metal nitrides such as BN or metal oxynitrides Mη-
Examples include ferrite compounds such as Zn-ferrite and Ni-Zn-ferrite. That is, for example, when the substance 2 other than the first substance is an oxide of the constituent elements of the first substance 1, the substance 2 other than the first substance is the first substance 1, the number of constituent elements, the valence, and the number of constituent elements. It can be said that at least four of the crystal structures are different.

本発明の複合磁性材料は 第1の物質と第1の物質以外
の物質とを混合する混合工程と、この混合物を所定の形
状に成形する成形工程の2工程に大別できる。
The composite magnetic material of the present invention can be roughly divided into two steps: a mixing step in which the first substance and a substance other than the first substance are mixed together, and a molding step in which this mixture is formed into a predetermined shape.

混合工程(よ 第1の物質を例えば活性ガスに接触させ
、この活性ガスと第1の物質の表面物質とを反応させ、
その結果として第1の物質以外の物質の層を形成する手
法や、例えば第1の物質以外の物質を蒸着源もしくはタ
ーゲットとして用((第1の物質に蒸着もしくはスパッ
タリング等を施す手法や、第1の物質と第1の物質以外
の物質とを例えばボールミル 振動ミル等の撹拌分散手
段を用Lz  メカニカルアロイングにより第1の物質
表面に第1の物質以外の物質の層を設ける手法等通常の
手法でよ賎 第1の物質以外の物質が作る連続相及び第1の物質のサ
イズ(よ 複合磁性材料の種類もしくは応用デバイスに
よって異なり一概には言えない力(例えば本発明の複合
磁性材料を、最も厳しい特性が要求される磁気ヘッドに
適応する場合に1よ ごれらのサイズは次の通りである
。まず第1の物質の粒径(よ その材料に依って決定す
る磁区の大きさの範囲程度が好ましく、0.1〜100
μm程度であもまた連続相の厚みは5〜50r+m程度
であム 連続相の厚みが5nm未満では 一般に絶縁性
もしくは誘電性が不充分となり、ために複合磁性材料の
電気抵抗が低くなるた敢 高周波数領域での磁気特性が
渦電流損失で劣る。また厚みが501を越えると、磁性
金属粒子間が非磁性の連続相で隔絶された距離が大きく
なりすぎミ 複合磁性材料としての透磁率が低下する傾
向が現れる。従って複合磁性材料を磁気ヘッドとして用
いる場合に(よ ごれらの範囲が高周波数領域でも高性
能な磁気特性が得られるため好まし賎 混合された第1の物質と第1の物質以外の物質とを、高
密度に成形して複合磁性材料を得る。
A mixing step (i.e., bringing the first substance into contact with an active gas, causing the active gas to react with the surface substance of the first substance,
As a result, a method of forming a layer of a material other than the first material, a method of using a material other than the first material as a vapor deposition source or a target (a method of performing vapor deposition or sputtering on the first material, a method of forming a layer of a material other than the first material, 1 and a substance other than the first substance using a stirring and dispersing means such as a ball mill or a vibration mill. Depending on the method, the continuous phase formed by a substance other than the first substance and the size of the first substance may vary depending on the type of composite magnetic material or the applied device. When applied to a magnetic head that requires the most stringent characteristics, the size of the first dirt is as follows.First, the grain size of the first substance (the size of the magnetic domain determined by the other material) is as follows. A range of 0.1 to 100 is preferable.
If the thickness of the continuous phase is less than 5 nm, the insulating or dielectric properties will generally be insufficient, and the electrical resistance of the composite magnetic material will be low. Magnetic properties in high frequency range are poor due to eddy current loss. If the thickness exceeds 50 mm, the distance between magnetic metal particles separated by the non-magnetic continuous phase becomes too large, and the magnetic permeability as a composite magnetic material tends to decrease. Therefore, when using a composite magnetic material as a magnetic head, it is preferable to use a mixture of the first substance and a substance other than the first substance because it can obtain high-performance magnetic properties even in a high frequency range. A composite magnetic material is obtained by molding to a high density.

この成形工程は 一般に高温に加熱下高圧を印加し部理
することにより、高密度に成形できる。
This molding process generally involves applying high pressure and heating at high temperatures to form the parts, thereby achieving high density molding.

通常加熱温度は300℃以上であり、加圧は100kg
/cm2以上であも このように高温高圧下で成形して、気孔率5%以下の複
合磁性材料が得られる。
Normal heating temperature is 300℃ or higher, and pressurization is 100kg.
/cm2 or more, a composite magnetic material with a porosity of 5% or less can be obtained by molding under high temperature and high pressure.

気孔率が5%を越えると、複合磁性材料の内部の気孔が
外部にまでつながるものが現れ(開気孔と称す)、開気
孔は外界と通じているため腐食等が発生し複合磁性材料
の劣化を引き起こすことや、磁気特性あるいは加工性の
低下や、機械的強度不足と言った欠点が現れる。気孔率
が5%以下であれば(即ち外界とは遮断された気孔で閉
気孔と称す)、こう言った欠点は克服される。更により
好ましくは気孔率が3%以下、例えば本発明の複合磁性
材料を磁気ヘッドの用途に適応する際には気孔率は0.
5%程度、最も好ましくは0.1%程度であり、本発明
に依れば達成できる。
When the porosity exceeds 5%, some of the pores inside the composite magnetic material are connected to the outside (referred to as open pores), and since the open pores communicate with the outside world, corrosion etc. occur and the composite magnetic material deteriorates. This leads to disadvantages such as a decrease in magnetic properties or workability, and insufficient mechanical strength. If the porosity is 5% or less (that is, the pores are shut off from the outside world and are called closed pores), these drawbacks can be overcome. Even more preferably, the porosity is 3% or less; for example, when the composite magnetic material of the present invention is applied to a magnetic head, the porosity is 0.
It is about 5%, most preferably about 0.1%, which can be achieved according to the present invention.

この成形工程においては 高圧で圧縮されるため第1の
物質と第1の物質以外の物質との塑性変形量が異なれば
 一般には第1の物質以外の物質が破れ 第1の物質同
士が直接結合して成形される場合がある。このような現
象(よ 第1の物質以外の物質が第1の物質の周りを覆
って、しかも薄い層を形成した場合に発生し易(を 例えば第1の物質以外に物質が誘電性もしくは絶縁性材
料である場合にGLL  第1の物質同士が連続してつ
ながると、複合磁性材料の電気抵抗値が低下し 極端な
場合には従来の金属磁性材料と差がなくな4 このため成形工程中に第1の物質以外の部分が破れ第1
の物質が現れた部分を、この第1の物質以外の物質もし
くはこれに類する物質で補修しながら成形工程を行うと
よt、%  具体的には 例えば活性ガスにより第1の
物質表面に第1の物質と活性ガスとの反応物を形成させ
る場合に(よ 活性ガス雰囲気中で成形工程を行うこと
によって補修する手法や、予め例えばアパタイト等の超
塑性を示す物質を混入させておく等の手法を行う。
In this forming process, since the first material is compressed under high pressure, if the amount of plastic deformation between the first material and the material other than the first material is different, the material other than the first material will generally break and the first materials will be directly bonded to each other. It may be molded. This phenomenon tends to occur when a substance other than the first substance covers the first substance and forms a thin layer (for example, if the substance other than the first substance is dielectric or insulating). When the first substances are connected to each other continuously, the electrical resistance of the composite magnetic material decreases, and in extreme cases, it becomes no different from that of conventional metal magnetic materials4.For this reason, during the forming process. The part other than the first substance is torn and the first substance
The molding process may be performed while repairing the part where the substance appears with a substance other than the first substance or a similar substance. When a reaction product is formed between a substance and an active gas (such as a repair method by performing a molding process in an active gas atmosphere, or a method in which a substance exhibiting superplasticity such as apatite is mixed in advance) I do.

なお活性ガスとしては酸素ガス 窒素ガス等が挙げられ
 これらのガス分圧は適宜選択される。
Note that the active gas includes oxygen gas, nitrogen gas, etc., and the partial pressures of these gases are appropriately selected.

こうして作製された複合磁性材料の一実施態様(よ 第
1図に示したように磁性の第1の物質1の粒子の周りを
、第1の物質以外の物質2の連続相で囲まれた形態とな
4 このような構成を有した複合磁性材料で、特に第1の物
質以外の物質2が誘電性もしくは絶縁性物質である場合
に(表 磁性金属材料の第1の物質1の割合が圧倒的に
高いため高飽和磁束密度を達成し また第1の物質1の
周りを誘電性もしくは絶縁性の第1の物質以外の物質2
で囲んでいるた八 複合磁性材料の電気抵抗は高く高周
波数領域(例えば2MHz以上)においても渦電流損失
が少なく、更に第1の物質以外の物質2の厚みが第1の
物質1の大きさに比べて小さく、気孔率と同時に第1の
物質1が3個以上集まる三角点3の複合体全体に対する
面積率も低いた八 透磁率も高いと言う特徴を有する。
One embodiment of the composite magnetic material produced in this way (as shown in FIG. 1, particles of a magnetic first substance 1 are surrounded by a continuous phase of a substance 2 other than the first substance). Tona 4 In a composite magnetic material with such a configuration, especially when the substance 2 other than the first substance is a dielectric or insulating substance (Table 1), the proportion of the first substance 1 in the magnetic metal material is overwhelmingly The first material 1 is surrounded by a dielectric or insulating material 2 other than the first material.
The electrical resistance of the composite magnetic material is high and the eddy current loss is small even in the high frequency range (for example, 2 MHz or higher), and the thickness of the substance 2 other than the first substance is the same as that of the first substance 1. It has the characteristics of low porosity, low area ratio of the triangular points 3 where three or more of the first substances 1 gather to the entire complex, and high magnetic permeability.

なおこれらの磁気的特徴以外にL 強度や加工性と言っ
た機械的特性も従来に比べると格段に良好となる。
In addition to these magnetic characteristics, mechanical properties such as L strength and workability are also much better than conventional ones.

また本発明の複合磁性材料の別の実施態様の例を第2図
に示す。
Further, an example of another embodiment of the composite magnetic material of the present invention is shown in FIG.

第1の物質11が偏平な形状を有し この第1の物質1
1の周りを第1の物質以外の物質12が連続相を形成し
ている。
The first substance 11 has a flat shape, and this first substance 1
A substance 12 other than the first substance forms a continuous phase around the substance 1 .

このような複合磁性材料の形態!友 成形工程時に一方
向から加圧もしくは多方向から異なった大きさの力を加
えることにより達成できる。又始めから第1の物質11
が偏平な形状を有していても良いこと勿論である。
Such a form of composite magnetic material! This can be achieved by applying pressure from one direction or applying forces of different magnitudes from multiple directions during the molding process. Also, from the beginning, the first substance 11
Of course, it may have a flat shape.

この偏平な形状を有する第1の物質11を用いることに
より、一般に三角点13の面積率が第1図の三角点3よ
りも更に低くなり、複合磁性材料の磁気特性の異方性と
機械的特性とが向上し好ましくち なお本発明で言う偏平な形状と(よ 円盤形状小判形状
 回転楕円体形状 板形状もしくは針形状等何れでもよ
く、要は第1の物質11に明らかな長軸を有する形状で
あればよ(− 更に第3図に示したような偏平面を揃え しかも長軸方
向に磁化容易軸4を有するように偏平な第1の物質21
を並べると、磁気異方性が増大し例えば高出力の磁気ヘ
ッド等に応用でき好ましく駆即ち第1の物質21の偏平
面に垂直な方向(即ち磁化困難軸方向)の透磁率C′!
、所謂スヌークスの限界を上回る高い値となる。
By using the first substance 11 having this flat shape, the area ratio of the triangular points 13 is generally lower than that of the triangular points 3 in FIG. The flat shape referred to in the present invention, which is preferable because of improved properties, may be any shape such as a disk shape, an oval shape, a spheroid shape, a plate shape, or a needle shape.In short, the first substance 11 has a clear long axis. As long as it has a shape (- In addition, the first substance 21 is flat so that the flat planes are aligned as shown in FIG. 3, and the axis of easy magnetization 4 is in the long axis direction.
When arranged, the magnetic anisotropy increases and can be applied to, for example, a high-output magnetic head.It is preferable that the magnetic permeability C'!
, a high value exceeding the so-called limit of Snooks.

このような第1の物質11もしくは21の短軸と長軸と
の比は173〜1/10程度が好ましく、短軸の長さは
3〜5μmであることが好ましく〜偏平形状の短軸と長
軸との比が1/3より太きい場合には 磁気異方性が得
られ難く、従って非常に高い透磁率は得られ難い。又l
/10を上回ると、成形時に偏平粒子が折れ易くなるた
数 注意深く成形する必要が生じる。
The ratio of the short axis to the long axis of such first substance 11 or 21 is preferably about 173 to 1/10, and the length of the short axis is preferably 3 to 5 μm. If the ratio to the long axis is greater than 1/3, it is difficult to obtain magnetic anisotropy, and therefore it is difficult to obtain very high magnetic permeability. Also l
If it exceeds /10, the flat particles tend to break during molding, and careful molding becomes necessary.

なお磁性金属に磁気異方性を導入する手法として(よ 
この他に例えばFe−3i−A1合金等の磁性金属にC
o等を添加する方法 金属磁性粉表面にCOフェライト
を形成する方法 偏平粉末内の金属成分の組成を長手方
向に傾斜を持たせて変化させる方法等がある。また粒状
粒子を容易に塑性変形させて偏平粒子を形成できる磁性
金属としては特にFe−3i−Al−Ni系が好ましい
Note that as a method of introducing magnetic anisotropy into magnetic metals,
In addition, for example, magnetic metals such as Fe-3i-A1 alloy have C
Methods of adding carbon dioxide, etc. Methods of forming CO ferrite on the surface of metal magnetic powder Methods of changing the composition of metal components in the flat powder by giving a gradient in the longitudinal direction. In addition, Fe-3i-Al-Ni is particularly preferred as a magnetic metal that can easily plastically deform granular particles to form flat grains.

本発明の別の実施態様として、第4図及び第5図のよう
な形態もある。即ち第4図及び第5図の複合磁性材料は
 第1の物質31.41で構成される複数個の第1の物
質の層301,401力丈各々第1の物質以外の物質3
2.42で分離された構造を有する。しかも同一層内に
存在する第1の物質31もしくは41番友 共にお互い
接触していも このような構造で電気抵抗に極めて大き
い異方性が出現する。このため電気抵抗が非常に低い第
1の物質31もしくは41同士が直接接触している方向
を磁束の方向と一致させると、磁束は誘電性もしくは絶
縁性被膜の影響を受けないた臥透磁率は上がる。特に第
5図に示したようへ 第1の物質41の長手方向と磁束
の方向とを一致させると、更に透磁率が高くなる。
Another embodiment of the present invention is as shown in FIGS. 4 and 5. That is, the composite magnetic material shown in FIGS. 4 and 5 includes a plurality of layers 301 and 401 of a first material each composed of a first material 31, 41, and a material 3 other than the first material.
It has a structure separated by 2.42. Moreover, even if the first materials 31 or 41 existing in the same layer are in contact with each other, extremely large anisotropy appears in the electrical resistance in such a structure. Therefore, if the direction in which the first materials 31 or 41, which have very low electrical resistance, are in direct contact with each other matches the direction of the magnetic flux, the magnetic flux will not be affected by the dielectric or insulating coating, and the magnetic permeability will be Go up. In particular, when the longitudinal direction of the first material 41 and the direction of the magnetic flux are made to match as shown in FIG. 5, the magnetic permeability is further increased.

本発明の複合磁性材料(よ 種々の用途分野で硬磁性材
料あるいは軟磁性材料として用いられる。
The composite magnetic material of the present invention can be used as a hard magnetic material or a soft magnetic material in various fields of application.

例えば鉄もしくはコバルトの少なくとも何れか1種を含
へ 単磁区構造となるような磁性粒子を用tX、磁化容
易軸を一方向に揃えた磁性材料は 永久磁石として用い
られ 最大エネルギ積(Bl()、、、が大きく、電気
絶縁性が高いた敢 モーター、スピーカー用の磁石とし
て、あるいは例えば医学分野の核磁気共鳴イメージの磁
場発生用の磁石として用いられる。
For example, magnetic particles containing at least one of iron or cobalt and having a single domain structure are used, and a magnetic material whose axis of easy magnetization is aligned in one direction is used as a permanent magnet, and the maximum energy product (Bl()) is used as a permanent magnet. It has a large .

更に本発明の複合磁性材料はトランスや磁気ヘッドの磁
芯材料として好適に用いられる。何れも上述の構成のた
め渦電流に依る欠損が少なく、高周波数領域において有
効に用いられる。磁気ヘッドの磁芯として用いられる場
合に(よ 気孔率が0゜5%以下好ましくは0.1%以
下とするのが適当であム 偏平な形状を有する第1の物質を含む複合磁性材料を磁
芯として用t\ この偏平面が磁気記録媒体の走行方向
と直角となるような磁気ヘッドの構成が高出力が得られ
るため好ましく℃ 例えば第6図(a)に示したような
磁気ヘッド6と磁気記録媒体の走行方向7との関係にお
ける磁気ヘッド6中の偏平粉体力丈 第6図(b)に示
したように偏平粉体14の偏平面が磁気記録媒体の走行
方向7と直角であると、例えば40〜100MHzの幅
広い高周波数領域において高出力特性が得られる。
Furthermore, the composite magnetic material of the present invention is suitably used as a magnetic core material for transformers and magnetic heads. Since both have the above-mentioned configuration, there are few defects caused by eddy currents, and they can be used effectively in a high frequency region. When used as a magnetic core of a magnetic head, a composite magnetic material containing a first substance having a flat shape, whose porosity is preferably 0.5% or less, preferably 0.1% or less, is used as a magnetic core of a magnetic head. For example, a magnetic head 6 as shown in FIG. 6(a) is preferable because a high output can be obtained by using the magnetic head as a magnetic core. As shown in FIG. 6(b), the flat surface of the flat powder 14 is perpendicular to the running direction 7 of the magnetic recording medium. If there is, high output characteristics can be obtained in a wide high frequency range of, for example, 40 to 100 MHz.

また本発明の複合磁性材料を磁気ヘッドどして用いると
、気孔率が低いため耐摩耗性にも優れ4以下限定的でな
い実施例を挙げて説明する。
Furthermore, when the composite magnetic material of the present invention is used in a magnetic head, etc., it has a low porosity and therefore has excellent wear resistance, and will be described below with reference to non-limiting examples.

実施例1 第1の物質としてFe−2%Si磁性合金の平均粒径2
5μmの粉体を、850℃3時間空気中にて加熱し酸化
する事によって、第1の物質以外の物質の薄層を周囲に
まんべんなく形成し九 第1の物質以外の物質としては
ほぼ酸化珪素からなる絶縁体が認められk この複合体
に低温発揮性ワックスを0.05%混ぜて成形し バイ
ンダーを除去したのち耐熱性の容器に充填L  750
℃1時間250気圧でホットプレスしたとこ7り、第1
図に示すような気孔率5%以下の高密度の複合焼結体を
得九第1の物質1力丈 第1の物質以外の物質2にほぼ
一様に覆われており、更に 研磨面を詳細に評価したと
こへ 粒子が3ヶ以上あう三角点3の面積は2.5%以
下であっtも この断面の抵抗はテスターでは20MΩ以上あり測定出
来なかった また硬度は原料の約125%に改善され旭又 ダイヤモ
ンドブレードによる切断加工に於いて(よ 従来材料で
は頻繁なドレッシングが必要であったのに対して、本発
明の材料では約172に低減され 大幅な機械加工性の
改善が認められ九実施例2 実施例1に於けるホットプレスを一軸性にすることによ
り、球状に近い第1の物質よりなる粒子の形状力(第2
図に示すように第1の物質11が2:1以上の偏平状粒
子に変形し 且第1の物質以外の物質12によって覆わ
れている。
Example 1 The average grain size of Fe-2%Si magnetic alloy as the first material was 2.
By heating and oxidizing the 5 μm powder in air at 850°C for 3 hours, a thin layer of a substance other than the first substance is evenly formed around the periphery.9 The substance other than the first substance is almost silicon oxide. This composite was mixed with 0.05% low-temperature wax and molded, and after removing the binder, it was packed into a heat-resistant container L750
After hot pressing at 250 atm for 1 hour, the first
As shown in the figure, a high-density composite sintered body with a porosity of 5% or less was obtained, which was almost uniformly covered with a material 2 other than the first material 1 and the polished surface. After detailed evaluation, the area of triangular point 3 where three or more particles meet was less than 2.5%, but the resistance of this cross section was more than 20MΩ and could not be measured with a tester.Also, the hardness was about 125% of the raw material. In the cutting process using a diamond blade, the conventional material required frequent dressing, whereas the material of the present invention reduced the dressing to about 172, which resulted in a significant improvement in machinability. 9 Example 2 By making the hot press in Example 1 uniaxial, the shape force (second
As shown in the figure, the first substance 11 is transformed into flat particles with a ratio of 2:1 or more, and is covered with a substance 12 other than the first substance.

なお圧力と一軸性を調整する事に依ってさらに偏平度を
変化させることができ、 1吐 1種度まで実現できた このように第1の物質11を偏平化により、高密度化が
さらに達成され 実施例1の5%の気孔率が3%に改善
された 雌 この様な材料41  硬度異方法 耐磨耗異方法 
磁気異方性を有しており、いずれも偏平な面に対して直
角の面に於いて20〜50%向上してい九 この様な面を用いたトランスは さらに磁気特性が改良
され九 気孔率が改善された分だけ体積が小さくなり、又 その
分損失が軽減されている。
By adjusting the pressure and uniaxiality, it is possible to further change the flatness, and it is possible to achieve a level of 1 degree per discharge.By flattening the first material 11 in this way, higher density can be achieved. The porosity of Example 1 was improved from 5% to 3%. Such materials 41 Different methods of hardness Different methods of abrasion resistance
It has magnetic anisotropy, and the porosity is improved by 20 to 50% on the plane perpendicular to the flat plane. The volume is reduced by the improvement in , and the loss is reduced accordingly.

以上のような効果cヨ  第1の物質11が単一の場合
だけでなく、複合微粒子であっても同様の効果があり、
又説明に用いた合金材料に限らず、他の多くの金属材料
に適用され優れたトランスが実現されることは言うまで
もなl、% 実施例3 第1の物質として、平均粒径0.2μmのFe−C。
Effects such as those described above cyo The same effect is obtained not only when the first substance 11 is a single substance, but also when it is a composite fine particle.
It goes without saying that an excellent transformer can be realized not only with the alloy material used in the explanation but also with many other metal materials.Example 3 As the first substance, Fe with an average grain size of 0.2 μm -C.

合金の球状粉(粉体A)と、長軸が0.1μm短軸が0
、05μmの針状粉(粉体B)とを、それぞれスパッタ
ーにて、粉体の表面に5if2の膜を5 mm−20m
mの厚さで被った これらの二種類の粉体を、グリセリン溶接中に撹拌し 
第7図に示した湿式磁場プレスで成型しそれぞれ成形体
A、  Bを作製した 即ち偏平粉体11を有するスラリーを、一対の湿式金型
9の間に流し込へ 上下方向にスラリーの分散媒8のみ
を排出しながら同じ方向に加圧できる湿式成形をしつス
 同時に加圧方向(圧力1000 Kg/ Cm’)と
垂直方向に磁界(磁界強度10000G)を加えること
が出来る磁石10を有する湿式磁場プレスにより、成形
体を作製し九粉体Aを用いた成型体Aでζよ 球状粉の
たへ等分的な成型体となった力丈 針状の粉体Bを用い
た成型体B1上  粉体の長軸が一定方向に並んだ配向
性の成型体となった それぞれの成型体A、  BをN2囲気中600〜80
0℃で4時皿 加圧成型方向と同一方向にホットプレス
(500kg/cm”) L  複合磁性材料の永久磁
石を作製した 得られた二種類の永久磁石の磁気特性を測定すると、焼
結体Aでは(BH) 、、、が6. 5 MGOeであ
った 一方焼結体Bでは(BH) 、、、が50〜60MGO
eであり、従来報告されているNd−Fe−B系の焼結
磁石の(B)() 、、、値の約40MGOeよりも(
BH) 、、、が大きかった 比較のた敦 針状粉の大きさが1〜3μmのFeCo系
へ 単磁区構造を取る限界値である約0. 1μm以上
の針状粉を用いた場合では その焼結体の(BH) −
−xIt  6〜7 MGOeと球状粉を使用した場合
とほぼ同じ値にしか得られなかった な兆 本実施例の永久磁石でζ;l、  (Bl() 
、、、が大きいだけではなく、その電気抵抗値も10@
〜109Ωff1fi+と絶縁体と同程度の高抵抗を示
した又本実施例で用いた第1の物質がFe−Co系であ
るのlL  Fe−Co系の合金が最も高い飽和磁束密
度を持板 ひいては(BH) 、、、が大きい材料が作
製されるためであム 実施例4 第1の物質としてFe−Al(AI含有量5%)合金の
平均粒径30μmの粉体を、800℃3時間空気中にて
加熱酸化することによって、第1の物質以外の物質の薄
層を第1の物質の周囲にまんべんなく形成した 第1の物質以外の物質として(よ はぼ酸化アルミから
なる絶縁体が認められ九 この複合体に低温揮発性ワックスを0.05%混ぜて形
成し バインダーを除去したの板 耐熱性の容器に充填
L 700℃1時間1000気圧でホットプレスした所
、気孔率0. 5%の高密度の焼結体を得た 更に詳細に微細構造を調べたとこへ 三角点の面積は0
.3%以下と非常に小さいことが判明し九 これが後述
する高特性の原因の一つにつながっていることを示唆し
ている。
Alloy spherical powder (powder A) with a long axis of 0.1 μm and a short axis of 0
, 05μm acicular powder (powder B) were sputtered to form a 5if2 film on the powder surface for 5mm-20m.
These two types of powder covered with a thickness of m were stirred during glycerin welding.
The slurry containing the flat powder 11 formed by molding using the wet magnetic field press shown in FIG. The wet molding method is equipped with a magnet 10 that can apply a magnetic field (magnetic field strength 10,000 G) in a direction perpendicular to the pressing direction (pressure 1000 Kg/cm') at the same time. A molded body was produced by magnetic field pressing, and the strength of the molded body A using powder A was ζ. Above: Molded bodies A and B, which were oriented molded bodies in which the long axes of the powder were aligned in a certain direction, were heated in an N2 atmosphere at 600 to 800 °C.
Hot press (500 kg/cm") in the same direction as the pressure molding direction at 0°C. When the magnetic properties of the two types of permanent magnets obtained were measured, it was found that the sintered body In A, (BH) was 6.5 MGOe, while in sintered body B, (BH) was 50 to 60 MGO.
e, which is higher than the conventionally reported (B) (
BH) , , , was large compared to the FeCo system where the size of the needle-like powder was 1 to 3 μm. When acicular powder of 1 μm or more is used, the (BH) of the sintered body -
-xIt 6~7 The permanent magnet of this example obtained almost the same value as when using MGOe and spherical powder.
Not only is , , large, but its electrical resistance is also 10@
It showed a high resistance of ~109Ωff1fi+, which is comparable to that of an insulator.Also, the first material used in this example is Fe-Co based.The Fe-Co based alloy has the highest saturation magnetic flux density. This is because a material with a large (BH) is produced.Example 4 Fe-Al (AI content 5%) alloy powder with an average particle size of 30 μm was heated at 800°C for 3 hours as the first substance. By heating and oxidizing in air, a thin layer of a substance other than the first substance is evenly formed around the first substance. A plate made by mixing 0.05% of low-temperature volatile wax with this composite and removing the binder was filled in a heat-resistant container and hot-pressed at 700°C for 1 hour at 1000 atm, with a porosity of 0.5. After obtaining a sintered body with a high density of 50%, we investigated the microstructure in more detail.
.. It was found that it was very small, less than 3%.9 This suggests that this is one of the reasons for the high properties described below.

而 この断面の抵抗は20MΩ以上であり、テスターで
は測定出来なかった 又硬度は原料の約125%に改善され一更にホットプレ
ス温度を800℃で行なった所、気孔率0.1%が得ら
れ九 得られた材料の磁束密度は15000C以上観測された
 この時の酸化膜厚は約0. 2μmあり、音声用の磁
気ヘッドに使用出来る範囲にあると言えも 実施例5 実施例4のホットプレスを一軸性にすることにより、球
状に近い第1の物質の形状が2:1以上の偏平状に変形
しμ なお圧力と一軸性を調整することに依って、さらに偏平
度を変化させることができ、 10: 1程度まで実現
できに この様な材料は 硬度異方法 耐磨耗異方法磁気異方性
を有しており、いずれも偏平な面に直角の面に於いてこ
れら特性値は20〜50%向上していた この様な面を用いた磁気ヘッドはさらに磁気特性(透磁
率が約20%低減 抗磁力が約20%低減)が改良され
 耐磨耗性も15%程度改良された 特に偏平な面をテープの走行する方向にほぼ一致させる
ことにより、 10〜30MHzでの磁気ヘッド出力は
1〜1. 5dBさらに向上し 減磁も軽減された 逆に偏平な面をテープの走行方向に直角にする事によっ
て40〜100 MHzでの磁気ヘッド出力の大幅な向
上が観察され九 この方向での抗磁力は高いことか収 磁気異方性がヘッ
ド出力の改善に役だっていることが推定される。
The resistance of this cross section was more than 20MΩ, which could not be measured with a tester, and the hardness was improved to about 125% of the raw material.When hot pressing was further carried out at 800℃, a porosity of 0.1% was obtained. 9. The magnetic flux density of the obtained material was observed to be over 15,000C.The oxide film thickness at this time was approximately 0. 2 μm, which is within the range that can be used for audio magnetic heads.Example 5 By making the hot press of Example 4 uniaxial, the shape of the first material, which is nearly spherical, can be flattened by a ratio of 2:1 or more. By adjusting the pressure and uniaxiality, the flatness can be further changed to about 10:1, and such materials have different hardness, different wear resistance, and magnetic properties. It has anisotropy, and these characteristic values are improved by 20 to 50% on the plane perpendicular to the flat plane.Magnetic heads using such a plane also have improved magnetic properties (magnetic permeability). Coercive force (coercive force reduced by about 20%) has been improved, and abrasion resistance has also been improved by about 15%.By aligning the particularly flat surface with the direction in which the tape runs, the magnetic head can operate at 10 to 30 MHz. The output is 1~1. The magnetic head output was further improved by 5 dB, and demagnetization was also reduced.Conversely, by making the flat surface perpendicular to the tape running direction, a significant improvement in the magnetic head output in the range of 40 to 100 MHz was observed.9The coercive force in this direction was It is presumed that the high magnetic absorption anisotropy is useful for improving the head output.

以上のような効果は説明に用いた合金材料に限らず、他
の多くの金属材料に適用されることは言うまでもなI、
% 以上のよう囮 本発明の複合磁性材料を用いた磁気ヘッ
ド1よ 音声用の磁気ヘッドのみならず、特に今後の高
精細度VTR用や電算機用の磁気ヘッドに最適と言えも 実施例6 重量比で示した組成力<、  Si:A1:Fe= 1
0:6:84の5i−Al−Fe合金の粉末と、重量比
で示した組成力(Si:Al:Ni:Fe= 6:4:
3+87の5i−Al−Ni−Fe合金の粉末を、各々
の組成のものを高周波誘導加熱により溶解(溶融のこと
であり、金属業界では専ら使用されている)したインゴ
ットを、ハンマーミルで粉砕し#250メツシュ篩以下
で平均粒子径約20μmに分級することにより作製しな これらの粉末を不活性ガス雰囲気中で1200℃〜13
00℃で加熱し そのまま冷却板に高速で衝突させるこ
とにより、粉末を偏平化することを試み九偏平加工した
粉末の形状を走査型電子顕微縁比表面積測定装置(BE
T比表面積計)等で観測し そのアスペクト比m (m
=1/l、  1:長マt:厚さ)を測定し九 その結%  5i−Al−Fe合金の粉末で(よ 粉末
形状が一部変形する程度であった力<、  5i−Al
−Ni−Fe合金の粉末でζよ 直径的40μmで、厚
さ3〜4μmの偏平粉が得られt−随  比表面積Sも
出発原料粉でj戴0.04〜0.05m2/gであった
力叉 偏平加工を試みた5i−Al−Fe合金のSは約
0.2m”/gであり、偏平な5i−Al−Ni−Fe
合金のSは約0.1m”/gであり、アスペクト比mも
5i−Al−Fe系が1程度であったのに対し5i−A
l−Ni−Fe系では約10−15程度のものが得られ
九偏平力a工後の比表面積Sの値ζ&  5i−AI−
Fe合金で0、’1. 5i−Al−Ni−Fe合金の
それは0.1とほぼ同一オーダーである力丈 走査電子
顕微鏡による観察でct前者のほうが微粉が多くあり、
且2 形状的に(よ偏平化していなくてL 粉体表面に
凹凸が多数発生しているたべ 比表面積Sが結果的に近
かった2考えられも このこと(よ 5i−AI−Fe
合金の方が硬くて跪いた数 脆性破壊しやすく、偏平化
しないで、粉体が破壊されていくことをしめしている。
It goes without saying that the above effects are not limited to the alloy materials used in the explanation, but apply to many other metal materials.
% As described above, the magnetic head 1 using the composite magnetic material of the present invention can be said to be ideal not only for magnetic heads for audio but also for future high-definition VTRs and computers.Example 6 Compositional force expressed in weight ratio<, Si:A1:Fe=1
5i-Al-Fe alloy powder of 0:6:84 and compositional strength expressed in weight ratio (Si:Al:Ni:Fe=6:4:
3+87 5i-Al-Ni-Fe alloy powder of each composition is melted by high-frequency induction heating (melting is used exclusively in the metal industry), and the ingot is crushed with a hammer mill. These powders were prepared by classifying them to an average particle size of approximately 20 μm using a #250 mesh sieve or less, and were heated at 1200°C to 13°C in an inert gas atmosphere.
By heating the powder at 00°C and colliding it with a cooling plate at high speed, the powder was flattened.
The aspect ratio m (m
= 1/l, 1:length:thickness) was measured, and the result was 9.5i-Al-Fe alloy powder.
A flat powder with a diameter of 40 μm and a thickness of 3 to 4 μm was obtained using the Ni-Fe alloy powder, and the specific surface area S was 0.04 to 0.05 m2/g using the starting material powder. S of the 5i-Al-Fe alloy in which flattening was attempted was approximately 0.2 m''/g, and the flat 5i-Al-Ni-Fe alloy
The S of the alloy is approximately 0.1 m''/g, and the aspect ratio m is approximately 1 for the 5i-Al-Fe system, whereas the 5i-A
In the l-Ni-Fe system, a value of about 10-15 can be obtained, and the value of the specific surface area S after 9 flattening forces ζ & 5i-AI-
0 for Fe alloy, '1. The strength of the 5i-Al-Ni-Fe alloy is approximately the same order as 0.1. Observation using a scanning electron microscope shows that the former has more fine powder than the 5i-Al-Ni-Fe alloy.
2. It is also possible that the specific surface area S was close to that of the 5i-AI-Fe due to the shape (not very flat, L) and many unevennesses on the powder surface.
The alloy is harder and more susceptible to brittle fracture, indicating that the powder is destroyed without flattening.

衝突板方式以外の偏平加工についてL スタンプミル、
ボールミル等によって、前述の5i−AI−Fe合金と
5i−Al−Ni−Fe合金の粉末を偏平加工した力(
衝突板方式と同様に5i−Al−Fe合金(よ 薄板状
になりにくく、形状が球状から方形状に変形したり、一
部破壊したりして、偏平な粉体が得られなかっ九 −X  5i−Al−Ni−Fe合金粉末(よ スタン
プミ取ボールミルとも偏平化し アスペクト比mが10
〜20の偏平粉が得られ九 比較のた数 その他の組成のFei  Co系合金につ
いても偏平加工を試みた力(Fe系のパーマロイ合金(
Ni−Fe系)では良好な偏平粉が作製できた力丈例え
ば飽和磁束密度が約8000Gと磁気特性上磁気ヘッド
へ応用する場合に不足し 又磁気テープとの慴動摩擦に
たいしても耐磨耗性が低いという観点から、高周波用磁
気ヘッドへの出発偏平原料として、採用することが出来
なかっな 然る@:  5i−Al−Fe合金の飽和磁束密度は約
10000G、 5i−AI−Ni−Fe合金では約1
5000Gであり、耐磨耗性(よ それぞれ パーマロ
イ合金の約2〜10倍と良好であっ九 以上の結果かfi  5i−Al−Fe合金より5 5
i−AINi−Fe合金の方が偏平粉が得られ易く、磁
気特性に優れ 耐磨耗性も良好であることがわかっ?=
この5i−Al−Ni−Fe合金の偏平粉と、偏平加工
した5i−Al−Fe合金粉末の表面GQ  これらの
粉末を酸化雰囲気中で熱処理することにより、厚さ10
〜3nmの絶縁層を形成し通 尚酸化被膜層は 主成分
がA12eaであること力丈 オージェ電子分光(AE
S)分析かられかった これらの被膜形成した偏平粉体をエチレングリコール中
く 粉体25gにたいして、エチレングリコール約15
m1の割合で攪拌混合後、そのスラリーを金型にいれ 
上下から加圧(圧力的300Kg/cm”) Lな 鑞 この金型にζよ 上下に分散媒のみを金型外に排出
出来る細孔がおいており、この加圧成形により、加圧方
向と垂直方向に 偏平粉の板面が平行に揃った粉体配向
性成形体が得られた比較のた敢 絶縁被膜層を形成して
いない偏平粉を用いた粉体配向性成形体も作製したこれ
ら3種類の成形体を、不活性雰囲気中1200〜130
0℃の温度領域で、30MPaの圧力で3時間ホットプ
レスしf、  加圧方向は 成形時の加圧方向と一致さ
せに 得られた焼結体C友  高密度であり、気孔率は1%以
下の稠密な材料であった その断面を走査型電子顕微鏡
観察すると、5i−AI−Ni−Fe合金の偏平粉の表
面に酸化絶縁層を形成した原料を用いた場合では 金属
磁性粉が高密度に焼結した厚さ3〜5μmの磁性層と、
厚さ10〜30ηmのA 1203の絶縁層が交互にレ
ンガを組み上げた様な複合磁性材料であった力丈 偏平
加工し 酸化処理をした5i−AI−Fe合金粉末を出
発原料にしたもので:よ 酸化絶縁層があちこちで金属
粒子により、切断され 且つ金属粒子と絶縁層が相互に
入り組んだ微細構造をしていf、  又 5i−Al−
Ni−Fe合金偏平粉で酸化絶縁層を成形していない粉
末を出発原料にした焼結体では板状の金属粒子のみが配
向した微細構造になっていた 第3図に本実施例の偏平
粒子を使用した複合磁性材料の模式図を示す。
Regarding flattening other than collision plate method L stamp mill,
The force (
Similar to the collision plate method, the 5i-Al-Fe alloy (5i-Al-Fe alloy) is difficult to form into a thin plate, deforms from a spherical shape to a rectangular shape, or partially breaks, making it impossible to obtain a flat powder. 5i-Al-Ni-Fe alloy powder (also flattened with a stamp mill and a ball mill with an aspect ratio m of 10)
~20 flattened powders were obtained, resulting in a total of 9 comparisons.
For example, the saturation magnetic flux density is about 8,000 G, which is insufficient for application to magnetic heads due to magnetic properties, and it also has poor abrasion resistance against sliding friction with magnetic tape. Due to its low density, it cannot be used as a starting flat material for high-frequency magnetic heads.The saturation magnetic flux density of 5i-Al-Fe alloy is about 10,000G, Approximately 1
5000G, and the wear resistance (respectively) is good, about 2 to 10 times that of permalloy alloy, and is better than fi 5i-Al-Fe alloy.
Did you know that i-AINi-Fe alloy is easier to obtain flat powder, has excellent magnetic properties, and has good wear resistance? =
The surface GQ of this 5i-Al-Ni-Fe alloy flat powder and the flattened 5i-Al-Fe alloy powder are
An insulating layer of ~3 nm is formed, and the main component of the oxide layer is A12ea. Auger electron spectroscopy (AE)
S) Place these coated flat powders removed from analysis in ethylene glycol. About 15 g of ethylene glycol per 25 g of powder.
After stirring and mixing at a ratio of m1, put the slurry into a mold.
Pressure is applied from above and below (pressure: 300Kg/cm"). This mold has pores on the top and bottom that allow only the dispersion medium to be discharged out of the mold. A comparison experiment in which a powder-oriented molded body was obtained in which the plate surfaces of the flat powder were aligned parallel to each other in the vertical direction.A powder-oriented molded body was also produced using flat powder without an insulating coating layer. Three types of molded bodies were heated to 1200 to 130 in an inert atmosphere.
The sintered body C was hot-pressed at a temperature of 0°C under a pressure of 30 MPa for 3 hours, and the pressing direction was made to match the pressing direction during molding. When the cross section of the material was observed under a scanning electron microscope, it was found that when using a raw material with an oxide insulating layer formed on the surface of the flat powder of 5i-AI-Ni-Fe alloy, the metal magnetic powder had a high density. A magnetic layer with a thickness of 3 to 5 μm sintered to
It is a composite magnetic material made of alternating brick-like insulating layers of A1203 with a thickness of 10 to 30 ηm.The starting material is a 5i-AI-Fe alloy powder that has been flattened and oxidized. The oxide insulating layer is cut here and there by metal particles, and the metal particles and the insulating layer have a fine structure in which they intertwine, and 5i-Al-
A sintered body made from Ni-Fe alloy flat powder without an oxide insulating layer as a starting material had a fine structure in which only plate-shaped metal particles were oriented. Figure 3 shows the flat particles of this example. A schematic diagram of a composite magnetic material using .

21は第1の物質であり絶縁層によって取り囲まれてい
る。
21 is a first material and is surrounded by an insulating layer.

5i−Al−Ni−Fe合金の偏平粉の表面に 酸化絶
縁層を形成した原料を用いて作製した複合磁性材料(厚
さ約5mm長さ約30+nm)の電気抵抗を測定すると
、偏平粉の板面に垂直方向ではIMΩと絶縁体なみの高
抵抗を示し 又 偏平粉の板面と平行な方向でも電気抵
抗を測定すると約IMΩという抵抗を示したバ 絶縁層
それ自体を測定した場合に(友 数十MΩの抵抗値を示
した しかl、、  5i−Al−Fe合金偏平粉末の表面を
酸化絶縁層を形成した原料を使用した焼結体 及びSi
 −A1−Ni−Fe合金偏平粉で酸化絶縁層を形成し
ていない原料を使用した焼結体の電気抵抗を測定すると
、どちらも数100μΩ程度と金属磁性体と同程度の電
気抵抗しか得られなかっ九 51、 5i−Al−Ni−Fe合金偏平粉で、酸化絶
縁層を形成した粉末を出発原料にした磁芯の磁気特性を
、偏平粉の板面に垂直方向と、板面に平行な方向の二方
向で透磁率を測定したとこ’)、  10KHz〜5 
MHzの周波数では偏平粉の板面に垂直方向で50.板
面と平行方向で1000〜1500であっ九又この複合
磁性材料の飽和磁束密度1;!、  15000Gであ
り、出発原料粉の金属磁性体の飽和磁束密度の値とほぼ
同一であった しかLASi−Al−Fe合金偏平粉末の表面を酸化絶
縁層を形成した原料を使用した焼結体 及び8i−A1
−Ni−Fe合金偏平粉で酸化絶縁層を形成していない
原料を使用した焼結体の透磁率を測定すると、それぞれ
10〜I KHzの低周波領域で(よ 数100〜10
00の値であった力<、IKHzを越えると数10以下
の低い透磁率の値しか得られなかっ九 よって、高周波特性の良好な複合磁性材料の使用原料と
して、5i−Al−Ni−Fe合金の偏平粉が優れてい
ることがわがつれ 実施例7 実施例6と同様の5i−Al−Ni−Fe合金の粉末を
、2種類作製した この内−つは各種金属原料を組成がwt%比でSi:A
1:Ni:Fe= 6 : 4 : 3 :87になる
ように配合し これを不活性雰囲気取 高周波誘導加熱
により、度溶解黴 溶解したインゴットを適当な大きさ
のブロックに切断後、さらにこれを高周波誘導加熱によ
り、溶解し 高圧力のArガスにてN2ガス中に溶湯金
属を吹き出し いわゆるN2アトマイズ球状粉を作製し
た このN2アトマイズ球状粉を分級し#250メツシ
ュ以下の微粉体を集へ これを出発原料Aとしな もう一つの粉末は 出発原料Aと同一組成で、溶解して
作製したブロックをハンマーミルで粗粉砕し 更に こ
れをN2ガスをキャリアーガスとするジェットミルにて
微粉砕し九 微粉を分級し#250メツシュ以下の微粉
体を捕集し これを出発原料Bとした 出発原料A及び出発原料Bの比表面積Sを測定したとこ
へ それぞれ0.05〜0.06m27gであり、比表
面積Sには差がなかつ丸 しかし走査型電子顕微鏡観察
では 出発原料A L  平均粒子径約15〜16μm
の粒径がよく揃った球状粉であり、出発原料Bは形状が
不揃いの塊状の粉体であり、且ス 微粉から粗粉まで混
在していた 次&ζ 出発原料Aと出発原料Bとを実施例2と同様へ
 ボールミルにて50時間偏平加工しな 得られた偏平
粉体を走査型電子顕微鐵 比表面積測定により、その形
状、アスペクト比m等を評価した その結果 出発原料Aを使用した偏平粉(偏平粉A)は
 はぼ楕円形で、その板径は約30μ取厚さは約3〜5
μのであった その板径の分布も狭く、20〜40μm
の範囲にあり、アスペクト比mもほぼ10の値が得られ
九−人  出発原料Bから作製した偏平粉(偏平粉B)
lよ 板の周縁が凹凸であり、且ス 板径の大きさも3
〜60μmまでの範囲に広がっており、その板厚も0.
5〜20μ山と不揃いであつ九 偏平粉A及び偏平粉B
をそれぞし400℃で10分間空気中で酸化処理をし 
膜厚20〜50nmの絶縁被膜を形成し九 これらの被
膜形成処理粉を、実施例3と同様へ 湿式形成して偏平
粉を配向させ、この成形体をホットプレス金型にいh 
 1200〜1300℃で、300Kg/cm2の圧力
で3時間ホットプレスしな 得られた焼結体は 気孔率1%以下の高密度焼結体であ
っ九 偏平粉Aを出発原料にした焼結体(約5 mm尾30m
m径)(ヨ  高電気抵抗で、20MΩ以上の抵抗があ
った力丈 偏平粉Bを出発原料にした焼結体(同形状、
約5mm尾 30mm径)ものでは その電気抵抗は1
〜2MΩであっ九 これは偏平粉りの周縁に凹凸が多数
あるた数 高密度焼結体を形成する段階で、薄い絶縁被
膜が破れ易くなるためと、考えられも 高周波領域で使
用する場合、渦電流損失を低減しなくてはならないので
、高電気抵抗の方が好まし賎 以上の点か収 偏平粉作製の出発原料として、球状粉体
の方が好ましいことがわかム 尚高電気抵抗を必要としない分野では 偏平粉Bでも適
応できることは勿論であ4 実施例8 実施例7で作製した偏平粉Aを出発原料にした複合磁性
材料を磁気コアとして、磁気テープ走行方向を偏平粉の
長手方向と一致させ、 トラック幅30μrn、磁気ギ
ャップ0.3μmのビデオ用磁気ヘッド(磁気ヘッドA
)を作製した 比較のたべ 実施例7に記載した出発原料Bを、酸化処
理せずにそのままホットプレス焼結させた従来材を用い
て、前述と同一形状の磁気ヘッド(磁気ヘッドB)を作
製した γ−Fear3を磁性粉とした磁気テープ(Hc約50
00e)を使用して、前述の磁気ヘッドA及び磁気ヘッ
ドBの評価を行なったとこへ 周波数5 MHzで磁気
ヘッドAは磁気ヘッドBに比べて5〜10clB田力が
高かった さらに比較のた敢 同一組成で直径約20μmの金属磁
性球状粉を用(\ その表面を酸化処理して絶縁被膜を
作製し これを焼結した複合磁性体を作製し これを磁
気コアとする同一形状の磁気ヘッドを作製し その評価
も併せて行なったその結果 磁気ヘッドBより、同一周
波数で、3〜5dB出力が高かった力交 磁気ヘッドA
より低い出力した得られなかった 実施例9 Siが9. 5wt尾Alが6wt%、Feが84wt
%Coが0. 5wt%の組成の5i−Al−Fe−C
o合金の偏平粉末(厚み/長手方向の比が1/3〜1/
10で、厚み3μm)50gを、 0.05%の02ガ
スを含有したAr中で800℃で1時間熱処理し 粉体
の表面を極薄く酸化した 酸化膜厚は粉体の重量増加と比表面積から計算した結果
及び、粉体表面のオージェ分析か収 約10〜20nm
と見積られ九 この偏平粉をグリセリン溶液を溶媒として、スラリー状
に混合し 実施例3と同様に第7図に概要を示した湿式
磁場プレス装置にこのスラリーを入れて、磁界を印加す
る方向と垂直方向に加圧プレスして、成形体を作成した この成形体は湿式−軸(一方向)加圧により、第3図に
示したように偏平な形状の第1の物質21の板面が加圧
方向に垂直になるように配列しかつ印加磁界により、磁
化容易軸4の方向に磁界方向5に揃う。この成形体を1
%02を含有したN2雰囲気中で850℃で4時間加圧
成形方向と同一方向にホットプレス(500Kg/cm
”)  l−磁芯としての複合磁性材料を作製し九 得られた磁芯材料の表面を研磨し その焼結密度及び気
孔率を測定した その結果 焼結体の相対密度は99.
5%以上で、気孔率は0.5%であっ九またこの磁芯材
料の電気抵抗は20MΩ以上であり、その飽和磁束密度
は100OOG以上であっ?=この磁芯材料の透磁率を
、第1の物質21の長手方向と平行な方向と、第1の物
質21の板面と垂直な方向の2方向について測定し九 長手方向すなわち磁化容易軸4方向の透磁率は測定周波
数が10MHzでは500程度、20MHzでは200
〜300程度であった力丈 第1の物質21の板面に垂
直な方向の透磁率L  10MHzで1300S20M
Hzで1200と何れも1000以上の透磁率が得られ
九実施例10 実施例9で作製した磁芯材料を使用して、磁気トラック
幅15μ臥 磁気ギャップ長0.2μmのVTR用磁気
ヘッドを作製した 磁気ヘッドは3種類作製し 一つは本発明の複合磁性材
料の偏平な第1の物質の長手方向力丈 磁気テープ摺動
方向と平行となるもの(磁気ヘッドa)、もう一つは本
発明の複合磁性材料の第1の物質の偏平板面が磁気テー
プ摺動方向と垂直になるもの(磁気ヘッドb)、最後の
ものは本発明の複合磁性材料の第1の物質の長手方向力
文 磁気テープ摺動方向とほぼ45度の傾斜をもつもの
(磁気ヘッドC)であ4 47−Fe2rを塗した磁気テープ(保持力HCl00
0〜15000e)を使用L  5〜IOM)Tzの周
波数領域における3種類の磁気ヘッドの記録再生特性を
調べたその結果 磁気ヘッドbカ(磁気ヘッドa及びC
に比べ 3〜5dB程度S/N比が高かった比較例1 実施例10と同様の磁気テープで、従来のMn−Znフ
ェライト単結晶で作製したVHSタイプVTR用磁気ヘ
ッドへ 記録再生特性を評価すると、実施例10の磁気
ヘッドbに比べ 約5〜7dB程度S/N比が低かっ通 発明の効果 本発明の複合磁性材料は 粒子状の第1の物質と、前記
第1の物質とは構成元素もしくは構成イオンの数 種類
あるいは価数又は結晶構造の内の少なくとも何れか1つ
が異なる第1の物質以外の物質の少なくとも2種の物質
から構成された微小粒径複合体であって、前記第1の物
質が磁性材料であり、前記第1の物質以外の物質の厚み
が前記第1の物質の粒径より薄く、前記第1の物質とは
別の相でかつ連続相を形成し 気孔率が5%以下である
複合磁性材料を提供することに依って、高飽和磁束密度
、高電気抵抗でかつ高透磁率な磁性材料を達成できる効
果がある。
When we measured the electrical resistance of a composite magnetic material (approximately 5 mm thick and approximately 30+ nm long) made using a raw material with an oxide insulating layer formed on the surface of flat powder of 5i-Al-Ni-Fe alloy, we found that the flat powder plate In the direction perpendicular to the surface, it showed a high resistance of IMΩ, comparable to that of an insulator, and when the electrical resistance was measured in the direction parallel to the plate surface of the flat powder, it showed a resistance of about IMΩ. A sintered body using a raw material with an oxidized insulating layer formed on the surface of 5i-Al-Fe alloy flat powder and Si, which exhibited a resistance value of several tens of MΩ.
-A1-When measuring the electrical resistance of a sintered body made of Ni-Fe alloy flat powder without forming an oxide insulating layer, the electrical resistance was only about several 100 μΩ, which is about the same as that of a magnetic metal material. The magnetic properties of a magnetic core made from a 5i-Al-Ni-Fe alloy flat powder with an oxide insulating layer formed as a starting material were measured in the direction perpendicular to the plate surface of the flat powder and in the direction parallel to the plate surface. Magnetic permeability was measured in two directions'), 10KHz ~ 5
At a frequency of MHz, the frequency of the flat powder is 50. The saturation magnetic flux density of this composite magnetic material is 1,000 to 1,500 in the direction parallel to the plate surface. , 15000G, which was almost the same as the saturation magnetic flux density value of the metal magnetic material of the starting raw material powder. -A1
- When measuring the magnetic permeability of a sintered body made of flat Ni-Fe alloy powder without an oxide insulating layer, it is found that the permeability is 100 to 10 in the low frequency range of 10 to I KHz.
If the force exceeds IKHz, a low magnetic permeability value of several 10 or less can be obtained. Example 7 Two types of 5i-Al-Ni-Fe alloy powders similar to those in Example 6 were prepared. Among them, the composition of various metal raw materials was in wt% ratio. And Si:A
1:Ni:Fe = 6:4:3:87. This was mixed in an inert atmosphere. High-frequency induction heating was used to melt the mold. After cutting the melted ingot into blocks of appropriate size, this was further heated. The molten metal is melted by high-frequency induction heating and blown into N2 gas using high-pressure Ar gas to produce so-called N2 atomized spherical powder.This N2 atomized spherical powder is classified to collect fine powder of #250 mesh or less. Another powder, called starting material A, has the same composition as starting material A. A block prepared by melting is coarsely pulverized in a hammer mill, and then finely pulverized in a jet mill using N2 gas as a carrier gas. The specific surface area S of starting material A and starting material B was measured.The specific surface area S of starting material A and starting material B was measured. However, in scanning electron microscopy observation, starting material A L average particle diameter of approximately 15-16 μm
The starting material B was a spherical powder with a well-uniformed particle size, and the starting material B was a lumpy powder with an irregular shape. Proceed as in Example 2 Flattening using a ball mill for 50 hours The obtained flattened powder was measured using a scanning electron microscope to evaluate its shape, aspect ratio m, etc. The results were as follows: Flattening using starting material A The powder (flat powder A) has an oval shape, the diameter of the plate is approximately 30μ, and the thickness is approximately 3~5μ.
The distribution of the plate diameter was also narrow, 20 to 40 μm.
The value of the aspect ratio m of approximately 10 was obtained, and the value of the aspect ratio m was approximately 10.
The circumference of the plate is uneven, and the diameter of the plate is 3.
The thickness ranges from ~60μm, and the plate thickness is 0.5μm.
5 to 20μ peaks and irregularly flat powder A and flat powder B
Each was oxidized in air at 400℃ for 10 minutes.
An insulating film with a thickness of 20 to 50 nm was formed. These film-forming treated powders were wet-formed in the same manner as in Example 3 to orient the flat powder, and the molded body was placed in a hot press mold.
The sintered body obtained by hot pressing at 1200 to 1300°C and a pressure of 300 kg/cm2 for 3 hours is a high-density sintered body with a porosity of 1% or less. (Approximately 5 mm tail 30 m
m diameter) (y) High electrical resistance, strength with a resistance of 20 MΩ or more Sintered body made from flat powder B as a starting material (same shape,
If the diameter is approximately 5 mm and the diameter is 30 mm, its electrical resistance is 1.
It is ~2MΩ.9 This is because there are many irregularities around the edges of the flat powder.It is thought that this is because the thin insulation coating becomes easy to tear during the process of forming a high-density sintered body.When used in a high frequency region, Since eddy current loss must be reduced, high electrical resistance is preferable, and it is clear that spherical powder is preferable as a starting material for making flat powder. Of course, flat powder B can also be used in fields where it is not required.4 Example 8 A composite magnetic material made from flat powder A produced in Example 7 as a starting material is used as a magnetic core, and the running direction of the magnetic tape is set to the longitudinal direction of the flat powder. A video magnetic head (magnetic head A) with a track width of 30 μrn and a magnetic gap of 0.3 μm
) A magnetic head with the same shape as described above (magnetic head B) was manufactured using a conventional material obtained by hot press sintering the starting material B described in Example 7 without oxidation treatment. Magnetic tape (Hc approx. 50
00e) was used to evaluate the aforementioned magnetic head A and magnetic head B. At a frequency of 5 MHz, magnetic head A had a higher force of 5 to 10 clB than magnetic head B. Furthermore, the strength of comparison was the same. Using metallic magnetic spherical powder with a diameter of approximately 20 μm, the surface was oxidized to create an insulating film, and this was sintered to create a composite magnetic material. A magnetic head with the same shape was created using this as a magnetic core. The results of the evaluation were as follows: Magnetic head A had a 3 to 5 dB higher output at the same frequency than magnetic head B.
Example 9 with lower output not obtained Si 9. 5wt tail Al is 6wt%, Fe is 84wt
%Co is 0. 5i-Al-Fe-C with a composition of 5 wt%
o Alloy flat powder (thickness/longitudinal ratio is 1/3 to 1/
10, 3 μm thick) was heat treated at 800℃ for 1 hour in Ar containing 0.05% 02 gas.The surface of the powder was oxidized very thinly.The thickness of the oxide film was determined by the increase in weight of the powder and the specific surface area. Calculated results and Auger analysis of the powder surface yield approximately 10-20 nm
Mix these flat powders into a slurry using a glycerin solution as a solvent, and put this slurry into the wet magnetic field press apparatus outlined in Figure 7 in the same way as in Example 3, and set the direction in which the magnetic field is applied. A molded body was created by vertical pressure pressing. This molded body was wet-axially (unidirectionally) pressed so that the flat surface of the first material 21 had a flat shape as shown in FIG. They are arranged perpendicular to the pressing direction and are aligned in the magnetic field direction 5 in the direction of the easy magnetization axis 4 by the applied magnetic field. This molded body is 1
Hot press (500 kg/cm) in the same direction as the pressure molding direction for 4 hours at 850 ° C.
'') A composite magnetic material was prepared as an l-magnetic core, the surface of the obtained magnetic core material was polished, and its sintered density and porosity were measured.As a result, the relative density of the sintered body was 99.
5% or more, the porosity is 0.5%, the electrical resistance of this magnetic core material is 20MΩ or more, and the saturation magnetic flux density is 100OOG or more. = The magnetic permeability of this magnetic core material is measured in two directions, one parallel to the longitudinal direction of the first substance 21 and the other perpendicular to the plate surface of the first substance 21. The magnetic permeability in the direction is about 500 when the measurement frequency is 10MHz, and 200 when the measurement frequency is 20MHz.
Force length was about ~300 Magnetic permeability L in the direction perpendicular to the plate surface of the first material 21 1300S20M at 10MHz
Example 10 Using the magnetic core material prepared in Example 9, a VTR magnetic head with a magnetic track width of 15 μm and a magnetic gap length of 0.2 μm was manufactured. Three types of magnetic heads were fabricated. One is one in which the longitudinal force of the flat first material of the composite magnetic material of the present invention is parallel to the sliding direction of the magnetic tape (magnetic head a), and the other is one in which the longitudinal force is parallel to the sliding direction of the magnetic tape. The flat plate surface of the first substance of the composite magnetic material of the invention is perpendicular to the sliding direction of the magnetic tape (magnetic head b), and the last one is the one in which the flat plate surface of the first substance of the composite magnetic material of the invention is perpendicular to the longitudinal direction force of the first substance of the composite magnetic material of the invention. A magnetic tape coated with 47-Fe2r (with a holding force of HCl00
The results of investigating the recording and reproducing characteristics of three types of magnetic heads in the frequency range of 0 to 15000e) and 5 to IOM) Tz.
Compared to Comparative Example 1, the S/N ratio was about 3 to 5 dB higher. When the recording and reproducing characteristics of a magnetic tape similar to that of Example 10 were evaluated on a VHS type VTR magnetic head made of conventional Mn-Zn ferrite single crystal. , compared to the magnetic head b of Example 10, the S/N ratio was about 5 to 7 dB lower. Effects of the Invention The composite magnetic material of the present invention includes a particulate first substance, and the first substance is a constituent element. or a microparticle-sized composite composed of at least two substances other than the first substance in which at least one of the number, type, valence, or crystal structure of constituent ions differs; the substance is a magnetic material, the thickness of the substance other than the first substance is thinner than the particle size of the first substance, and forms a continuous phase that is separate from the first substance, and the porosity is By providing a composite magnetic material with a magnetic flux density of 5% or less, it is possible to achieve a magnetic material with high saturation magnetic flux density, high electrical resistance, and high magnetic permeability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は各々本発明の複合磁性材料の構成を示
す概念要部断面図 第6図(a)は本発明の複合磁性材
料の一応用例の磁気ヘッドと磁気記録媒体の位置関係を
示す概念斜視医 第6図(b)は偏平な第1の物質と磁
気記録媒体の走行方向との関係を示す概念要部斜視図 
第7図は本発明の複合磁性材料の一実施態様を作製する
湿式プレス装置を示す概略医 第8図は本発明の複合磁
性材料の磁気特性@ 第9図は従来の複合磁性材料の概
念要部断面図である。 1、 11. 21. 31. 41・・・第1の物質
、2゜12、 32. 42・・・第1の物質以外の物
質、 3゜13・・・三角怠 4・・・磁化容易a 7
・・・走行方向14・・・偏平粉4&  101・・・
磁性粒子、 102・・・絶縁化
FIGS. 1 to 5 are conceptual cross-sectional views of main parts showing the structure of the composite magnetic material of the present invention. FIG. 6(a) is the positional relationship between a magnetic head and a magnetic recording medium in an application example of the composite magnetic material of the present invention. Fig. 6(b) is a conceptual main part perspective view showing the relationship between the flat first substance and the running direction of the magnetic recording medium.
Figure 7 is a schematic diagram showing a wet press apparatus for producing an embodiment of the composite magnetic material of the present invention Figure 8 is the magnetic properties of the composite magnetic material of the present invention @ Figure 9 is an overview of the concept of the conventional composite magnetic material FIG. 1, 11. 21. 31. 41...first substance, 2゜12, 32. 42... Substance other than the first substance, 3゜13... Triangular laziness 4... Easy magnetization a 7
... Running direction 14 ... Flat powder 4 & 101 ...
Magnetic particles, 102...insulation

Claims (5)

【特許請求の範囲】[Claims] (1)粒子状の第1の物質と、前記第1の物質とは構成
元素もしくは構成イオンの数、種類あるいは価数又は結
晶構造の内の少なくとも何れか1つが異なる第1の物質
以外の物質の少なくとも2種の物質から構成された微小
粒径複合体であって、前記第1の物質が磁性材料であり
、前記第1の物質以外の物質の厚みが前記第1の物質の
粒径より薄く、前記第1の物質とは別の相でかつ連続相
を形成し、気孔率が5%以下であることを特徴とする複
合磁性材料。
(1) A particulate first substance and the first substance are substances other than the first substance that differ in at least one of the number, type, or valence of constituent elements or constituent ions, or crystal structure. A fine particle size composite composed of at least two types of substances, wherein the first substance is a magnetic material, and the thickness of the substance other than the first substance is smaller than the particle size of the first substance. A composite magnetic material that is thin, forms a continuous phase separate from the first substance, and has a porosity of 5% or less.
(2)第1の物質以外の物質が誘電体材料もしくは絶縁
体材料の内の何れか1つを含有することを特徴とする、
請求項1記載の複合磁性材料。
(2) characterized in that the substance other than the first substance contains either a dielectric material or an insulating material;
The composite magnetic material according to claim 1.
(3)連続相の厚みが、5〜50nmであることを特徴
とする、請求項1記載の複合磁性材料。
(3) The composite magnetic material according to claim 1, wherein the continuous phase has a thickness of 5 to 50 nm.
(4)第1の物質が偏平な形状を有することを特徴とす
る、請求項1記載の複合磁性材料。
(4) The composite magnetic material according to claim 1, wherein the first substance has a flat shape.
(5)第1の物質の磁化容易軸を、一定の方向に揃えた
微細構造を有することを特徴とする、請求項1もしくは
4何れかに記載の複合磁性材料。
(5) The composite magnetic material according to claim 1 or 4, having a fine structure in which the axis of easy magnetization of the first substance is aligned in a certain direction.
JP2150989A 1989-06-09 1990-06-08 Composite magnetic material Pending JPH03278407A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP14790689 1989-06-09
JP1-147906 1989-06-09
JP18642389 1989-07-19
JP1-186423 1989-07-19
JP1-280553 1989-10-26
JP1-288357 1989-11-06
JP2-63154 1990-03-14

Publications (1)

Publication Number Publication Date
JPH03278407A true JPH03278407A (en) 1991-12-10

Family

ID=26478304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150989A Pending JPH03278407A (en) 1989-06-09 1990-06-08 Composite magnetic material

Country Status (1)

Country Link
JP (1) JPH03278407A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010782A1 (en) * 2001-07-23 2003-02-06 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
JP2011530479A (en) * 2008-08-13 2011-12-22 イーエムダブリュ カンパニー リミテッド Ferrite manufacturing method
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
JP2019161183A (en) * 2018-03-16 2019-09-19 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010782A1 (en) * 2001-07-23 2003-02-06 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
JP2006302958A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2008263098A (en) * 2007-04-13 2008-10-30 Tohoku Univ Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
JP2011530479A (en) * 2008-08-13 2011-12-22 イーエムダブリュ カンパニー リミテッド Ferrite manufacturing method
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
JP2019161183A (en) * 2018-03-16 2019-09-19 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine
JP2021100119A (en) * 2018-03-16 2021-07-01 株式会社東芝 Pressed powder material and rotary electric machine
US11597010B2 (en) 2018-03-16 2023-03-07 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine

Similar Documents

Publication Publication Date Title
US5238507A (en) Magnetic material
US5252148A (en) Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
US12006560B2 (en) Fe-based nanocrystalline alloy powder, magnetic component, and dust core
KR100344268B1 (en) Pressed body of amorphous magnetically soft alloy powder and process for producing same
JPH05109520A (en) Composite soft magnetic material
JP2009010180A (en) Soft magnetic powder, soft magnetic formed object, and method of manufacturing them
JPS58203625A (en) Magnetic recording medium
JP2008078496A (en) OXIDE CONTAINING Co-BASED ALLOY MAGNETIC FILM, OXIDE CONTAINING Co-BASED ALLOY TARGET, AND MANUFACTURING METHOD THEREOF
JPH06267723A (en) Composite soft magnetic material
JPH03278407A (en) Composite magnetic material
JP3629390B2 (en) High frequency powder magnetic core and method for manufacturing the same
JPH07135106A (en) Magnetic core
JPH0547541A (en) Manufacture of magnetic core
JP2001107104A (en) High permeability iron-base magnetic metal powder for powder magnetic core
JPS61196502A (en) Magnetic material and manufacture thereof
JPS6289802A (en) Production of fe-ni alloy green compact magnetic core
JP7338644B2 (en) Sintered compact and its manufacturing method
JPH0447017B2 (en)
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPH03150810A (en) Line filter
JPH0494502A (en) High magnetic permeability material, its manufacturing method, and method for manufacturing high magnetic permeability alloy powder
JPH05251224A (en) Composite magnetic material
JP3654917B2 (en) Method of manufacturing magnetic recording medium using hexagonal ferrite powder
JPH02225322A (en) Magnetic material and production thereof
JP2000309801A (en) Dust core and coil