[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03275725A - Production of photoconductive polymer - Google Patents

Production of photoconductive polymer

Info

Publication number
JPH03275725A
JPH03275725A JP7377790A JP7377790A JPH03275725A JP H03275725 A JPH03275725 A JP H03275725A JP 7377790 A JP7377790 A JP 7377790A JP 7377790 A JP7377790 A JP 7377790A JP H03275725 A JPH03275725 A JP H03275725A
Authority
JP
Japan
Prior art keywords
general formula
formula
diamine
photoconductive
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7377790A
Other languages
Japanese (ja)
Other versions
JP2830328B2 (en
Inventor
Junko Asayama
純子 朝山
Akio Takimoto
昭雄 滝本
Hirobumi Wakemoto
博文 分元
Kuni Ogawa
小川 久仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2073777A priority Critical patent/JP2830328B2/en
Priority to EP19910104437 priority patent/EP0449117A3/en
Publication of JPH03275725A publication Critical patent/JPH03275725A/en
Priority to US08/090,638 priority patent/US5486442A/en
Priority to US08/450,909 priority patent/US5876891A/en
Priority to US08/453,061 priority patent/US5654367A/en
Priority to US08/451,727 priority patent/US5597889A/en
Application granted granted Critical
Publication of JP2830328B2 publication Critical patent/JP2830328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Liquid Crystal (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To inexpensively obtain the title polymer useful as a photosensitive layer of electrophotographic photoreceptor of light printer, having high photosensitivity and crystallizability, by using a carboxylic acid prepared by reacting a diamine compound with a tetracarboxylic acid in a specific ratio. CONSTITUTION:A compound shown by formula I {A is group shown by formula II [Xi is (substituted) aromatic group; Yi is O, S, Se, Te or group shown by formula III; n>=1; i is 1-n]} and a compound shown by formula IV (Z is group containing aromatic group) in a blending molar ratio of diamine to dicarboxylic acid of 1:1+M) (M>0) are subjected to condensation reaction to give a polyamic acid, which is applied to a substrate, then immersed in a solution (preferably <=50wt.% pyridine is added) containing acetic anhydride and heat treated to give the objective polymer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 電子写真方式の複写数 光プリンタ等に用い
られる電子写真感光体の感光層 あるいは液晶を用いた
空間光変調素子の光導電層に関するものであも 従来の技術 光導電性を持つ有機物質の開発(よ 電子写真方式の感
光体材料として近年盛んになツt4我々CL  キャリ
ア輸送能力の高い材料としてポリバラフェニレンスルフ
ィド(以下略してP P S)を提案した(特開昭62
−164556号公報)。PPSは耐熱性に優れた絶縁
材料である力丈 酸素中で熱処理することでキャリア輸
送能が大幅に向上することを見いだした(第35回応用
物理学会関係連合講演会 予稿集31p A 11/ 
 )。膜中に取り込まれた酸素分子はPPS分子を弱結
ぶ働きをし アモルファス領域に入って結合し結晶領域
の結合を結び付けると考えt、PPS中ではキャリアの
伝達方向は分子鎖に直交し 結晶領域で高いキャリア移
動度を持つものと推測され&  PPSの各分子の長さ
を重合度5〜7程度に短く揃えたオリゴ−フェニレンス
ルフィド(以下略して0PS)i飄 蒸着法によって配
向性と結晶性を著しく向上させることができも この膜
の光導電性は結晶領域の拡大によって増加し 且つキャ
リア伝導の方向は分子長軸に直交することがわっかった
(第41回応用物理学会学術講演会 予稿集5p−ZH
−15)。更に官能基をOPS中に組み込んだ分子は配
向法 結晶性の良好な膜状態を実現すれば官能基の光吸
収帯で吸収発生したキャリアをOPS骨格で伝達させる
ことが可能である(特開昭63−274871号公報)
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to the photosensitive layer of an electrophotographic photoreceptor used in an optical printer or the like, or the photoconductive layer of a spatial light modulation element using liquid crystal. Conventional technologyThe development of organic materials with photoconductivity has become popular in recent years as photoreceptor materials for electrophotography.Polybaraphenylene sulfide (hereinafter abbreviated as PPS) is a material with high carrier transport ability. ) was proposed (Unexamined Japanese Patent Publication No. 1983)
-164556). PPS is an insulating material with excellent heat resistance.We found that heat treatment in oxygen significantly improves carrier transport ability (35th Japan Society of Applied Physics Joint Conference Proceedings 31 pages A 11/
). It is thought that the oxygen molecules taken into the film act to weakly bind the PPS molecules, enter the amorphous region and bond, and connect the bonds in the crystalline region.In PPS, the carrier propagation direction is perpendicular to the molecular chains, and in the crystalline region. Oligo-phenylene sulfide (hereinafter referred to as 0PS) is estimated to have high carrier mobility and the length of each PPS molecule is shortened to a degree of polymerization of about 5 to 7.The orientation and crystallinity are improved by vapor deposition. It was found that the photoconductivity of this film increased by expanding the crystalline region, and that the direction of carrier conduction was perpendicular to the long axis of the molecules (Proceedings of the 41st Annual Conference of the Japan Society of Applied Physics). 5p-ZH
-15). Furthermore, molecules incorporating functional groups into OPS can be oriented using an orientation method.If a film state with good crystallinity is achieved, carriers absorbed and generated in the optical absorption band of the functional group can be transmitted through the OPS skeleton (Japanese Patent Application Laid-Open No. 63-274871)
.

PPS及びOPSは吸収領域が4007I111以下の
短波長領域に限られている。この材料を電荷輸送層とし
 電荷発生層との積層で機能分離型の感光層を構成する
ことで可視域増感が可能であることを示しt4 一方電
荷発生材料を直接PPS及びOPSに組み込むことも試
み?。
The absorption region of PPS and OPS is limited to a short wavelength region of 4007I111 or less. It was shown that visible range sensitization is possible by using this material as a charge transport layer and laminating it with a charge generation layer to form a functionally separated photosensitive layer.On the other hand, it is also possible to directly incorporate the charge generation material into PPS and OPS. Attempt? .

下記一般式(ハ)で表されるIV族原子と芳香族或は置
換芳香族基から構成される基を1個以上有するオリゴマ
ーと他の有機分子との共重合体であることを特徴とする
有機高分子を用いた光導電材料が優れていることを見い
だした →X1−Yi→−(ハ) n≧2、  i=1. 2.   =・、   nXI
: ○、  S、  Se、  TeのいずれかYI:
芳香族或は置換芳香族基 この有機高分子1友PPS、OPSにおいて官能基を分
子中に有効に持込ム 様々な感度波長を持つ感光層を得
ることを可能にした 発明が解決しようとする課題 結晶法 配向性と光感度は強い相関があり、その制御は
困難であっ1.  特に光感度の良好な光導電性ポリイ
ミドの場合、その前駆体であるポリアミック酸溶液の合
戊方rh  合成条件よって、そこから得られるポリイ
ミドフィルムの結晶法 配向帳 光導電性が大きく異な
りtも  よってその制御が必要であっt、:O 課題を解決するための手段 ポリイミド膜を、下記一般式(イ)で表わされるジアミ
ン化合物と下記一般式(ロ)で表わされるテトラカルボ
ン酸からポリアミック酸を合成する暇 原料のジアミン
とカルボン酸の混合モル比率をl:  I +M (M
>0)とずムN He −A −N Ha   (イ)
A:  −(Xi−Yi)−−Xi  −n≧15i=
1、2、3、  ”−n Xi: 芳香族或は置換芳香族基 Yi:  O,S、  Se、  Te。
It is characterized by being a copolymer of an oligomer having one or more groups consisting of a group IV atom represented by the following general formula (c) and an aromatic or substituted aromatic group, and another organic molecule. It was discovered that a photoconductive material using an organic polymer is superior →X1-Yi→-(c) n≧2, i=1. 2. =・, nXI
: ○, S, Se, Te YI:
Aromatic or substituted aromatic groups are used to effectively incorporate functional groups into molecules of organic polymers such as PPS and OPS.The invention aims to solve this problem by making it possible to obtain photosensitive layers with various sensitivity wavelengths. Problem crystal method There is a strong correlation between orientation and photosensitivity, and it is difficult to control it.1. In particular, in the case of photoconductive polyimide with good photosensitivity, the photoconductivity of the polyimide film obtained from it varies greatly depending on the synthesis conditions of the polyamic acid solution that is its precursor. It is necessary to control this. Means for Solving the Problem A polyimide film is synthesized by synthesizing a polyamic acid from a diamine compound represented by the following general formula (a) and a tetracarboxylic acid represented by the following general formula (b). The mixing molar ratio of the raw materials diamine and carboxylic acid is l: I +M (M
>0) Tozumu N He -A -N Ha (a)
A: −(Xi−Yi)−−Xi −n≧15i=
1, 2, 3, "-n Xi: aromatic or substituted aromatic group Yi: O, S, Se, Te.

−CH=CH−のいずれか (ロ) 0 Z: 芳香族を含む基 作用 われわれの発明した光導電性高分子はアモルファスから
結晶膜になることで著しい光感度増加が得られも 結晶
化のプロセスにとって結晶核の存在が不可欠であん 高
分子中に剛直な分子形態を有する芳香族環からなるオリ
ゴマーを含むことで結晶化が容易に進む 一方結晶核と
してはカルボン酸の部分が考えられも この部分は平面
構造を持板 他の分子のカルボン酸部分と相互作用し易
L℃  即ち平面構造が面を併せるようにしてスタック
構造を形成すると考えていも この部分が結晶核となっ
て高分子が並び揃(\ 結晶領域を拡大していく成長メ
カニズムを想定していも 他には高分子末端にカルボン
酸が位置することに依って初めて結晶核となるモデルを
立てた 末端カルボン酸の無水カルボン酸の基が加水分
解をうけ、カルボン酸になん この基は他の高分子のカ
ルボン酸末端基と水素結合によってダイマーを形威すも
これによって高分子が並んで行く。これら結晶核を導入
するのに ポリアミック酸の合成条件としてカルボン酸
の比率を増加させも 更に高分子末端にカルボン酸が入
る状態1友 ポリアミック酸溶液中にカルボン酸を添加
し ジアミン末端をカルボン酸末端に変化させることで
も得られも 一方ジアミンとカルボン酸とのモル比率が
1:2となるまで1:1からずれると高分子鎖の形成が
困難となも 結晶化のプロセスにとって高分子が互いに滑りながらバ
ッキングすると言う運動が必要である。
Either -CH=CH- (b) 0 Z: Group action containing aromatic The photoconductive polymer we have invented changes from an amorphous state to a crystalline film, resulting in a significant increase in photosensitivity.However, the crystallization process The presence of a crystal nucleus is indispensable for the crystallization process.On the other hand, the presence of a crystal nucleus is essential for crystallization when the polymer contains an oligomer consisting of an aromatic ring with a rigid molecular structure.On the other hand, the carboxylic acid moiety can be considered as the crystal nucleus. is a planar structure that easily interacts with the carboxylic acid moiety of other molecules.In other words, even if we think that the planar structure forms a stacked structure by bringing its surfaces together, this part becomes a crystal nucleus and the polymers line up. Even though we assume a growth mechanism that expands the crystal region, we also established a model in which the crystal nucleus is formed by the position of the carboxylic acid at the end of the polymer. When the group undergoes hydrolysis, it becomes a carboxylic acid. This group forms a dimer through hydrogen bonding with the carboxylic acid terminal group of other polymers, and this causes the polymers to line up. In order to introduce these crystal nuclei, Even if the ratio of carboxylic acid is increased as a synthesis condition for polyamic acid, a state in which carboxylic acid enters the end of the polymer can also be obtained by adding carboxylic acid to the polyamic acid solution and changing the diamine end to a carboxylic acid end. On the other hand, if the molar ratio of diamine and carboxylic acid deviates from 1:1 until it becomes 1:2, it becomes difficult to form a polymer chain, but the crystallization process requires movement in which the polymers slide and back against each other. be.

本発明の高分子は脱水縮合してイミド環を形成する過程
と、高分子が並び揃う結晶化の過程が必要であも 加熱
縮合は両過程を同時に進行させる。
Although the polymer of the present invention requires a process of dehydration condensation to form an imide ring and a crystallization process in which the polymer is aligned, thermal condensation allows both processes to proceed simultaneously.

しかし第一の過程では分子の熱運動を妨げることになる
。そこで第一過程をポリアミック酸溶液を基板上に塗布
した後、無水酢酸を含む溶液中に浸漬すも このプロセ
スでは脱水縮合後、加水分解した酢酸が分子間に残存し
 分子間隔が開いた状態を保つ。これで第二の加熱結晶
化を行うと分子の滑り運動がしやすく、結晶化が進払 実施例 本発明における一般式(イ)の構造を有するジアミン分
子において、YI:芳香族或は置換芳香族には以下のも
のが例として上げられも ベンゼン、アントラセン、ナフタレン、ピレン、ペリレ
ン、ナフタセン、ベンゾアントラセン、ベンゾフェナン
トレン、クリセン、 トリフェニレン、フェナントレン
等の縮合多環炭化水素及びその置換誘導体 アントラキ
ノン、 ジベンゾピレンキノン、アントアントロン、イ
ソビオラントロン、ビラントロン等の縮合多環キノン及
びその置換誘導体 無金属フタロシアニン、鍜紅  ニ
ッケル、アルミニウム等の金属を含む金属フタロシアニ
ン、インジゴ、チオインジゴ瓶 及びこれらの誘導体で
あも He−A (1)A+ S)^−ph 2、3、4、5 ・ ・ ・ ) nと称する。) 0)。−Ph 2、3、4、5・ ・・) nと称すん ) e)n−Ph 3.4、5・・・) nと称すム ) CH)、Ph 3、4、5・・・) HR (Ph (n=L (以下5DA (2)A:  −(Ph (n−1、 (以下0DA (3)  A:  −(Ph−3 (n−1、2、 (以下5eDA (4)A:  −(Ph−CI (n=1、2、 (以下BDA−nと称すへ ) (5)A:  −ph−s−x−s−ph−(X:  
ナフタレン、アントラセン、ピレン、ペリレン等多環芳
香環) (Phはp位で結合するベンゼン環を表す。)等があも また一般式(ロ)で表される化合物の例として(友 (1〉ピロメリット酸(以下PMDAと称する)(2)
ベンゾフェノンテトラカルボン酸二無水物(以下BPD
Aと称する) (3)3、3°  4.4゛ −ビフェニルテトラカル
ボン酸二無水物(以下B I DA Iと称する〉 (4)1.l’5、5° −ビフェニルテトラカルボン
酸二無水物(以下BIDA2と称する) (5)ナフタレン−1,4、5,8−テトラカルボン酸
二無水物(以下NADAIと称すも ) (6)ナフタレン−2、3、6、7−テトラカルボン酸
二無水物(以下NADA2と称すん ) (7〉ペリレン−3、4、9、10−テトラカルボン酸
二無水物(以下PEDAと称すん )等が上げられも 実施例1 以下、本発明の一実施例を添付図面に基づいて説明すも 本発明におけるIV属原子と芳香病あるいは置換芳香属
基から構成される基を1個以上有するポリイミド膜とし
て、例えば 以下の構造式の高分子が上げられも 例えハ」二記ポリイミド膜は 以下の方法によって懲戒
できも 本発明の一般式(イ)に表わされるフェニレンスルフィ
ドジアミン5DA−2を溶かし込んた3=IのN、  
N−ジメチルアセトアミド(以下DMAcと記す)に本
発明の一般式(ロ)に表わされるベンゾフェノンテトラ
カルボン酸二無水物を投下しながらスタージー等によっ
て溶かし込む。投入後約30分スタージー等によって混
合すると粘性の高いポリアミック酸が得られも 前記ポ
リアミック酸溶液をガラス基板、アルミ基板等の上にス
ピンコードによりに塗布し ホットプレート等によって
約80℃、  30分程度で仮乾燥した後、恒温漕によ
り300℃程度で約2時間加熱すんこれによって、脱水
反応後のポリイミドが得られも まプユ 前記フェニレンスルフィドジアミン(よの構造
式より、化学式C+ * H1e N t S 2と表
わされるので、 Imolの分子量1上12x 18+
lx 16414×2+32x2−324g (C=1
28=I  N=145=32)となん 前記ベンゾフェノンテトラカルボン酸二無水物(よ の構造式より、化学式C+ v l(e Q tと表わ
されので、Imolの分子1 <L  +2x 17+
l x 6+16x 7−322g(C=12.OH=
1.O0=16,0>となも上記より、 フェニレンス
ルフィドジアミン)とベンゾフェノンテトラカルボン酸
二無水物とで合成されたポリイミド(以下BPDA−P
h 3と記す)はジアミン化合物とテトラカルボン酸の
モル比率がl:1の線 重量比は1:  0.99とな
る。
However, the first process impedes the thermal movement of molecules. Therefore, in the first step, after coating a polyamic acid solution on the substrate, it is immersed in a solution containing acetic anhydride. In this process, after dehydration and condensation, hydrolyzed acetic acid remains between the molecules, creating a state in which the molecular spacing is widened. keep. When the second heating crystallization is performed, the sliding movement of the molecules is facilitated, and the crystallization is carried out in a diamine molecule having the structure of the general formula (a) in the present invention, YI: aromatic or substituted aromatic. Examples of the group include the following: fused polycyclic hydrocarbons such as benzene, anthracene, naphthalene, pyrene, perylene, naphthacene, benzanthracene, benzophenanthrene, chrysene, triphenylene, and phenanthrene, and their substituted derivatives, anthraquinone, and dibenzopyrene. Fused polycyclic quinones such as quinone, anthanthrone, isoviolanthrone, and vilantrone, and their substituted derivatives; Metal-free phthalocyanines, red; Metallic phthalocyanines containing metals such as nickel and aluminum; indigo and thioindigo; and their derivatives. -A (1) A+ S)^-ph 2, 3, 4, 5 ・ ・ ・ ) is called n. ) 0). -Ph 2, 3, 4, 5...) Referred to as n) e) n-Ph 3.4, 5...) Referred to as n) CH), Ph 3, 4, 5...) HR (Ph (n=L (hereinafter 5DA (2) A: -(Ph (n-1, (hereinafter 0DA) (3) A: -(Ph-3 (n-1, 2, (hereinafter 5eDA) (4) A : -(Ph-CI (n=1, 2, (hereinafter referred to as BDA-n)) (5) A: -ph-s-x-s-ph-(X:
(Polycyclic aromatic rings such as naphthalene, anthracene, pyrene, perylene) (Ph represents a benzene ring bonded at the p-position) are also examples of compounds represented by the general formula (b) (friend (1) Pyromellitic acid (hereinafter referred to as PMDA) (2)
Benzophenone tetracarboxylic dianhydride (hereinafter referred to as BPD)
(referred to as A) (3) 3,3° 4.4゛-biphenyltetracarboxylic dianhydride (hereinafter referred to as B I DA I) (4) 1.l'5,5°-biphenyltetracarboxylic dianhydride (hereinafter referred to as BIDA2) (5) Naphthalene-1,4,5,8-tetracarboxylic dianhydride (hereinafter referred to as NADAI) (6) Naphthalene-2,3,6,7-tetracarboxylic dianhydride Example 1 Hereinafter, one implementation of the present invention Examples will be explained based on the attached drawings. Examples of the polyimide film having one or more groups composed of a group IV atom and an aromatic or substituted aromatic group according to the present invention include, for example, a polymer having the following structural formula. For example, the polyimide membrane described in C.2 can be treated by the following method.
The benzophenonetetracarboxylic dianhydride represented by the general formula (b) of the present invention is poured into N-dimethylacetamide (hereinafter referred to as DMAc) and dissolved using a Stargie or the like. A highly viscous polyamic acid can be obtained by mixing for about 30 minutes with a Stargy etc. After adding the solution, apply the polyamic acid solution onto a glass substrate, aluminum substrate, etc. using a spin cord, and heat it at about 80°C using a hot plate etc. for about 30 minutes. After temporary drying, the polyimide is heated at about 300°C for about 2 hours in a constant temperature bath. By this, the polyimide after the dehydration reaction is obtained. Since it is expressed as S 2, the molecular weight of Imol is 12x 18+
lx 16414×2+32x2-324g (C=1
28=IN=145=32) and the above-mentioned benzophenonetetracarboxylic dianhydride (from the structural formula of
l x 6+16x 7-322g (C=12.OH=
1. From the above, polyimide (hereinafter referred to as BPDA-P) synthesized from benzophenone tetracarboxylic dianhydride (phenylene sulfide diamine) and benzophenone tetracarboxylic dianhydride
h3) has a linear weight ratio of 1:1 in which the molar ratio of diamine compound to tetracarboxylic acid is 1:1.

よって、ジアミン化合物とテトラカルボン酸との重量比
率によって、モル比率を知ることができるた臥 各重量
比率によって合成したポリイミド膜の結晶性 光感度を
評価しf、BPDAと5DA−2との重量和が0.9g
になるように重量比率を変えてポリアミック酸を合或し
 このポリアミック酸溶液を塗布後300℃で加熱して
ポリイミド膜を形成した 第1図及び第3@ 第4図が
示しているBPDA/ (BPDA、+5DA2)l友
 テトラカルボン酸の重量比率であも 第1図は横軸にBPDA/ (BPDA+DA3)、縦
軸にポリイミドの膜厚を示していも図が示すように B
PDA/ (BPDA十DA3)が0.5近傍で急激に
膜厚が厚くなった これはポリイミドの分子鎖が長いた
めであん 通常の合成条件(前記重量比−0,5)で最
も重合が進むことを示す。
Therefore, the molar ratio can be determined by the weight ratio of the diamine compound and the tetracarboxylic acid. is 0.9g
The polyamic acid solution was coated and heated at 300°C to form a polyimide film. BPDA, +5DA2)l As shown in Figure 1, the horizontal axis shows BPDA/(BPDA+DA3) and the vertical axis shows the polyimide film thickness.
The film thickness suddenly became thick when PDA/ (BPDA + DA3) was around 0.5. This is because the molecular chain of polyimide is long. Polymerization progresses the most under normal synthesis conditions (the above weight ratio -0.5) Show that.

第2図1よ 横軸はX線構造解析によるX線照射角2θ
、縦軸はポリイミド膜における散乱強度を示していも 
図が示すよう!、  BPDA/(BPD A +D 
A、 3 )が0.511以上の試料1よ 2θ=18
.6°及び2θ=22.4”に散乱ピークがあり、ポリ
イミド膜が結晶化していf=Braggの反射条件の式 %式% はX線の入射角度 nは反射の次数λは波長 βπ/1
80) より、 2θ=18.6°及び2θ=22.4°の示す
各々の面間隔(よ d=4.8  [入]、  d=4
.0[人1と求められも BPDA/ (BPDA十D
A3)が0.5以下の試料には散乱ピークは見られなか
ったたぬ アモルファス膜であっtも第3図は 横軸に
BPDA/ (BPDA十DA3)、縦軸に単位膜厚当
りの散乱強度を示していも また ○は2θ−18,6
°、△は2θミ22.4°を示していも 図が示すよう
に BPDA/(BPDA+DA3)が0.5以下の場
合ではアモルファス膜である戟 0.5より大きい場合
では結晶性を有するポリイミド膜が得られた 第4図は横軸はBPDA/ (BPDA+DA3)、縦
軸は電子写真による光感度を示している。光感度測定は
AI基板上のポリイミド膜にコロナ帯電電位+9kVで
表面を正帯電させも その後光を照射し その表面電位
を半減するのに必要な光量(半減露光量E +−* [
1ux−see] )で光感度を表わす。BPDA/ 
(BPDA十DA3)が0.5以下のアモルファス膜で
は3001ux−sec以上と感度は低い力<、 0.
5より高くなると201ux−see以下と高感度なポ
リイミド膜が得られた これらより、 ジアミン化合物とテトラカルボン酸との
モル比率が1:  l+M (M>O)になるように合
或した場合に ポリアミック酸加熱後に結晶性を有する
高感度なポリイミド膜が得られた特にBPDA/ (B
PDA十DA3)が0.556の時、 71ux−se
eという最大光感度が得られt:。
Figure 2 1. The horizontal axis is the X-ray irradiation angle 2θ from X-ray structural analysis.
, the vertical axis shows the scattering intensity in the polyimide film.
As the diagram shows! , BPDA/(BPDA +D
Sample 1 with A, 3) of 0.511 or more 2θ=18
.. There are scattering peaks at 6° and 2θ = 22.4", and the polyimide film is crystallized. f = Bragg's reflection condition formula % formula % is the incident angle of the X-ray n is the order of reflection λ is the wavelength βπ/1
80), each surface spacing indicated by 2θ = 18.6° and 2θ = 22.4° (so d = 4.8 [in], d = 4
.. 0[Person 1 and required BPDA/ (BPDA10D
No scattering peak was observed in samples with A3) of 0.5 or less.In Figure 3, the horizontal axis is BPDA/ (BPDA + DA3), and the vertical axis is scattering per unit film thickness. Even if it shows strength, ○ is 2θ-18,6
As shown in the figure, if BPDA/(BPDA+DA3) is less than 0.5, it is an amorphous film.If it is greater than 0.5, it is a polyimide film with crystallinity. In FIG. 4, the horizontal axis shows BPDA/(BPDA+DA3), and the vertical axis shows the photosensitivity by electrophotography. Photosensitivity measurements are performed by positively charging the surface of a polyimide film on an AI substrate with a corona charging potential of +9 kV, then irradiating it with light, and calculating the amount of light required to halve the surface potential (half-reduction exposure amount E + - * [
1ux-see]) represents the photosensitivity. BPDA/
In the case of an amorphous film with (BPDA + DA3) of 0.5 or less, the sensitivity is 3001 ux-sec or more, which is a low force <, 0.
A polyimide film with a high sensitivity of 201 ux-see or less was obtained when the temperature was higher than 5. From these results, polyamic In particular, a highly sensitive polyimide film with crystallinity was obtained after acid heating.
When PDA1DA3) is 0.556, 71ux-se
A maximum photosensitivity of e was obtained and t:.

また 第1図が示すように BPDA/ (BPDA+
DA3)が0.66より高い場合では 膜厚は2μm以
下と薄く形成されtラ  これ(よ 分子鎖が短いこと
を示していも また 第3図が示すように BPDA/
 (BPDA+DA3)が0.66より高い場合は散乱
ピークが見られなくアモルファス膜であった 第4図が
示すように BPDA/ (BPDA十DA3)が0.
66より高い場合、光感度が数百1ux−secと低感
度なポリイミド膜が形成されt、に れらの結果より前記モル比率がBPDA/(BPDA+
Ph5)が0.66以下の場合、ジアミン化合物とテト
ラカルボン酸とのモル比率が1=1+M (0<M< 
+)の条件を満たした場合に特に高感度な結晶化ポリイ
ミド膜が形成できた実施例2 第5図及び第1表は本発明の第2の実施例における有機
高分子光導電材料の製造方法を示す図である。
Also, as shown in Figure 1, BPDA/ (BPDA+
When DA3) is higher than 0.66, the film is formed as thin as 2 μm or less.
When (BPDA+DA3) was higher than 0.66, no scattering peak was observed and the film was an amorphous film.As shown in Figure 4, BPDA/(BPDA+DA3) was 0.66.
When higher than 66, a polyimide film with a low photosensitivity of several hundred ux-sec is formed, and from our results, the molar ratio is BPDA/(BPDA+
Ph5) is 0.66 or less, the molar ratio of diamine compound and tetracarboxylic acid is 1=1+M (0<M<
Example 2 in which a particularly highly sensitive crystallized polyimide film was formed when the conditions of FIG.

テトラカルボン酸添加によるポリイミドの結晶性及び光
感度を示すため阪 以下のような方法でポリアミック酸
を合或し ポリイミド膜を形成した 実施例1と同じ方法でBPDA−Ph3のポリアミック
酸を合成すも DMA cを溶媒として、BPDAとDA3との重量和
が0.9gでかつ添加するBPDAの重量率(BPDA
/ (BPDA十DA3))が0.55となるポリアミ
ック酸を合成した このポリアミック酸をアルミ基板上
に塗布した後300℃に加熱しt4 第5図(友 カルボン酸添加量の違いによる添加なしと
添加ありのX線構造解析による散乱強度を示していも 
各データの横軸1よX線照射角2θ、縦軸は散乱強度を
示していも 図が示すようにA、  B共にBPDAを
添加をしない場合にはアモルファス膜である力交 添加
した場合には散乱ピークがみられ 結晶化したポリイミ
ド膜が得られt4第1表(、t、ポリイミドの膜厚 膜
厚当りの散乱強嵐 光感度(半減露光量E、・2〉を示
していも(以下余白) 第1表 表が示すように A、  Bのポリアミック酸溶液は共
に 脱水反応後はアモルファス膜であり、光感度も数百
1ux−secと低(ち それに対して、BPDAを添
加した各々のポリアミック酸では単位膜厚当り散乱強度
が約3.0〜3.45と高い結晶性を示し 光感度も2
.91ux−secと高感度なポリイミドが形成できた
 また 各々のポリイミドの膜厚がBPDA添加後厚く
なったことからし添加したBPDAは末端ジアミンと脱
水縮重合し分子鎖長の分布は長くなりtラ  結晶化ポ
リイミド膜の形成できたことは過剰のBPDAが各分子
の末端に位置することで結晶核となったと考えられも これらより、脱水反応後アモルファス膜となるポリアミ
ック酸溶液でL このポリアミック酸にテトラカルボン
酸を添加することによって、高感度な結晶化ポリイミド
膜が形成できた また テトラカルボン酸の添加した後のポリアミック酸
溶液が1:l+Mで、 0<M<1であるとき、高感度
な結晶化ポリイミドが得られる。
In order to demonstrate the crystallinity and photosensitivity of polyimide due to the addition of tetracarboxylic acid, polyamic acid was synthesized using the following method, and polyamic acid of BPDA-Ph3 was synthesized using the same method as in Example 1 in which a polyimide film was formed. Using DMA c as a solvent, the total weight of BPDA and DA3 is 0.9 g, and the weight percentage of BPDA to be added (BPDA
/ (BPDA + DA3)) of 0.55 was synthesized. This polyamic acid was coated on an aluminum substrate and heated to 300°C. Even if the scattering intensity is shown by X-ray structural analysis with addition
Although the horizontal axis of each data shows the X-ray irradiation angle 2θ and the vertical axis shows the scattering intensity, as shown in the figure, when BPDA is not added to both A and B, it is amorphous film. A scattering peak was observed, and a crystallized polyimide film was obtained. ) As shown in Table 1, both polyamic acid solutions A and B are amorphous films after the dehydration reaction, and the photosensitivity is low at several hundred ux-sec (on the other hand, each polyamic acid solution with BPDA added In acid, the scattering intensity per unit film thickness is approximately 3.0 to 3.45, showing high crystallinity, and the photosensitivity is also 2.
.. A polyimide with a high sensitivity of 91 ux-sec was formed. Also, since the film thickness of each polyimide became thicker after adding BPDA, the added BPDA was dehydrated and condensed with the terminal diamine, and the molecular chain length distribution became longer. The formation of a crystallized polyimide film is thought to be due to excess BPDA being located at the ends of each molecule and becoming crystal nuclei. By adding tetracarboxylic acid, a highly sensitive crystallized polyimide film was formed.Also, when the polyamic acid solution after adding tetracarboxylic acid was 1:l+M and 0<M<1, a highly sensitive crystallized polyimide film was formed. A crystallized polyimide is obtained.

実施例3 第7図及び第8図1友 本発明の第3の実施例における
有機高分子光導電材料の製造方法を示す図であも 無水酢酸浸漬の脱水反応効果を示すために ポリイミド
膜の結晶性と光感度を測定し?、:o3mlのN、  
N−ジメチルアセトアミドを溶媒として、0.42gの
BPDAと0.38gのDA3とを合成したポリアミッ
ク酸を、アルミ基板上に塗布し所定時間無水酢酸に浸漬
後に300℃加熱しt4第7図1i、横軸に無水酢酸浸
漬時阻 縦軸にX線構造解析による散乱強度を示してい
も 図が示すように ポリアミック酸を無水酢酸に浸漬
した場合では 無水酢酸につけないつまり加熱処理のみ
の場合より、高い散乱強度を示し丸 特に 浸漬時間が
2時間では5.2と高い結晶化ポリイミド膜が得られ九 第8図1戴 横軸に無水酢酸浸漬時肌 縦軸に電子写真
による光感度(半減露光量)を示している。
Example 3 Figures 7 and 8 are diagrams showing the method for producing an organic polymer photoconductive material in the third example of the present invention. In order to show the dehydration reaction effect of immersion in acetic anhydride, polyimide films were Measure crystallinity and photosensitivity? , :o3ml N,
A polyamic acid prepared by synthesizing 0.42 g of BPDA and 0.38 g of DA3 using N-dimethylacetamide as a solvent was coated on an aluminum substrate, immersed in acetic anhydride for a predetermined period of time, and then heated at 300°C. The horizontal axis shows the scattering intensity when immersed in acetic anhydride, and the vertical axis shows the scattering intensity obtained by X-ray structural analysis. The scattering intensity is indicated by a circle.Especially when the immersion time is 2 hours, a crystallized polyimide film with a high value of 5.2 is obtained. ) is shown.

無水酢酸に浸漬した場合(よ 加熱処理のみ場合より、
高い光感度を示しt、:O特に 無水酢酸浸漬3時間で
は3、51.ux−seeと高い感度を有するポリイミ
ド膜が得られtも 第9図(戴 横軸にX線構造解析よる散乱強度、縦軸に
光感度を示していも ○(よ 無水酢酸に浸積したポリ
イミドで、△は無水酢酸に浸漬しなかったポリイミドで
あも 無水酢酸に浸漬しなかった場合で1よ 結晶法 
光感度共に低い力丈 無水酢酸に浸漬した場合でζよ 
高い感度を有する結晶化ポリイミド膜が得られも これらより、脱水反応と結晶化とを同時に行う加熱処理
工程ではなく、無水酢酸浸漬によって生じる脱水反応と
加熱処理による結晶化とに工程を分けることによって、
高感度な結晶化ポリイミドを得ることができた また 無水酢酸を含む溶液にピリジンを無水酢酸に対し
て50重量パーセント以下の添加をすることにより、高
感度な結晶化ポリイミド膜が得られtら 第9図及び第1O図は ピリジン添加率[%](ピリジ
ン重量/無水酢酸重量*100)に対する結晶性及び光
感度を示してい瓜 以下の工程でポリイミド膜を形成し
た 3mlのDMAcを溶媒として0.42gのBPDAと
0.38 gのDA3とで合成したポリアミック酸を、
ピリジンの量を変えて添加した無水酢酸に2時間浸漬L
 300℃に加熱した 第9図は横軸にピリジン添加風 縦軸にX線解析による
散乱強度を示している。ピリジンの添加が50%より多
い場合ではアモルファス膜である力<、 50%以下に
なると結晶化膜が得られtもまた 第10図は横軸にピ
リジン添加風 縦軸に光感度(半減露光量)を示してい
も 図爪 示ずようにピリジンの添加量が50%より高
い場合、数百オーダー1ux−seCと光感度は低い力
東 添加量が50%以下になると51ux−see以下
の高感度なポリイミド膜が得られた これらより、無水酢酸を含む溶液中にのピリジンを無水
酢酸の50重量パーセント以下添加することにより、脱
水反応が促進されるため結晶性が高くなり、高感度なポ
リイミド膜が得られ1゜実施例4 本発明の製造方法に依って、電子写真感光体を作製しt
−感光体の構造断面図を第11図に重犯円筒基板面+0
1に実施例1のBPDAi)h3のポリアミック酸を膜
厚15μm塗布すも 使用したモル比率は0.52であ
る。塗布 乾燥後、300℃2時間の加熱処理を行う。
When immersed in acetic anhydride (as compared to when heated only),
It shows high photosensitivity, especially when immersed in acetic anhydride for 3 hours. A polyimide film with high sensitivity as ux-see was obtained. So, △ means polyimide that was not immersed in acetic anhydride.It is 1 when it was not immersed in acetic anhydride.
Low photosensitivity and strength When immersed in acetic anhydride,
A crystallized polyimide film with high sensitivity can be obtained by dividing the process into a dehydration reaction caused by immersion in acetic anhydride and crystallization by heat treatment, rather than a heat treatment process in which dehydration reaction and crystallization are performed simultaneously. ,
A highly sensitive crystallized polyimide film was obtained.Also, a highly sensitive crystallized polyimide film was obtained by adding pyridine to a solution containing acetic anhydride in an amount of 50% by weight or less based on acetic anhydride. Figures 9 and 1O show the crystallinity and photosensitivity with respect to the pyridine addition rate [%] (pyridine weight/acetic anhydride weight*100). Polyamic acid synthesized with 42 g of BPDA and 0.38 g of DA3,
L immersed in acetic anhydride with varying amounts of pyridine for 2 hours
In Fig. 9, which was heated to 300°C, the horizontal axis shows the pyridine added wind, and the vertical axis shows the scattering intensity by X-ray analysis. When the addition of pyridine is more than 50%, an amorphous film is obtained, and when it is less than 50%, a crystallized film is obtained. ) As shown in Figure 3, when the amount of pyridine added is higher than 50%, the photosensitivity is low, on the order of several hundred 1ux-seC.When the amount added is less than 50%, the photosensitivity is low, less than 51ux-seC. From these results, adding pyridine to a solution containing acetic anhydride at 50% by weight or less of acetic anhydride accelerates the dehydration reaction, resulting in high crystallinity and a highly sensitive polyimide film. Example 4 An electrophotographic photoreceptor was produced by the manufacturing method of the present invention.
-The structural cross-sectional view of the photoreceptor is shown in Figure 11. Serious cylindrical board surface +0
The polyamic acid of BPDAi)h3 of Example 1 was applied to the sample to a thickness of 15 μm.The molar ratio used was 0.52. Coating: After drying, heat treatment is performed at 300°C for 2 hours.

この感光体を複写機に搭載し感光詩法 画像特性を評価
した初期表面電位700v、半減露光量3.01uxs
ec。
This photoreceptor was installed in a copying machine and the image characteristics were evaluated using the photosensitive method.The initial surface potential was 700V, and the half-decreased exposure amount was 3.01uxs.
ec.

残留電位50vと良好であり、 1万枚の連続画像出力
後も安定な感度と画像を示し九 実施例5 本発明の製造方法に依って、空間光変調素子を作製し?
、  素子構成の断面図を第12図に示す。
It had a good residual potential of 50 V, and exhibited stable sensitivity and images even after 10,000 continuous images were output.9 Example 5 A spatial light modulation element was manufactured using the manufacturing method of the present invention.
, A cross-sectional view of the element configuration is shown in FIG.

ガラス基板201上にITO透明電極202が形成され
た基板面に光導電性ポリイミドBPDAPh3を配向膜
203として成膜ず瓜 実施例3の方法にしたがって膜
厚5μm形威すも 一方の配向膜206は膜厚1000
AとするBPDAPh3であん この空間光変調素子2
10はあるしきい値以上の入射光21+の光エネルギー
に対して液晶205の配向状態が変化すも よって出射
光212の光エネルギーの変化は第13図のようになり
、光ニューラルネットワーク啄 光演算システムで使わ
れる光しきい値素子としての機能を示しtも 発明の効果 本発明の製造方法によれば 高い光感度を有する結晶性
高分子を提供できる。この光感光材料は熱安定法 耐刷
性に優れた電子写真方式の感光体を安価に提供す瓜 ま
た液晶配向膜として用いた場合、高感度な光スイツチン
グ素子を提供する。
A photoconductive polyimide BPDAPh3 is formed as an alignment film 203 on a glass substrate 201 on which an ITO transparent electrode 202 is formed.One alignment film 206 is formed to have a film thickness of 5 μm according to the method of Example 3. Film thickness 1000
This spatial light modulation element 2 is filled with BPDAPh3 as A.
10 is because the alignment state of the liquid crystal 205 changes in response to the optical energy of the incident light 21+ that exceeds a certain threshold.Therefore, the optical energy of the emitted light 212 changes as shown in Fig. 13, and the optical neural network Taku Optical calculation Effects of the Invention According to the manufacturing method of the present invention, a crystalline polymer having high photosensitivity can be provided. This photosensitive material provides a thermally stabilized electrophotographic photoreceptor with excellent printing durability at a low cost, and also provides a highly sensitive optical switching element when used as a liquid crystal alignment film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1よ 本発明の製造方法による高分子光導電材料
の膜厚変化を示ず阻 第2図はテトラカルボン酸重量率
の違いによる散乱強度を示す@ 第3図はテトラカルボ
ン酸重量率の違いによる膜厚当りの散乱強度を示すは 
第4図はテトラカルボン酸重量率の違いによる光感度を
示ずは 第5図はテトラカルボン酸添加量の違いによる
膜厚当りの散乱強度を示す阻 第6図は無水酢酸浸漬時
間の違いによる散乱強度を示ず阻 第7図は無水酢酸浸
漬時間の違いによる光感度を示ず阻 第8図は無水酢酸
浸漬時間の違いにおける散乱強度と光感度との関係を示
す@ 第9図はピリジン添加量の違いによる膜厚におけ
る散乱強度を示す阻 第1O図はピリジン添加量の違い
による光感度を示す阻 第11図は本発明の製造方法に
依る電子写真感光体の構造断面は 第12図は本発明の
製造方法に依る空間光変調素子の断面は 第13図は第
12図で示した空間光変調素子の光スイツチング特性を
示す図であも 101・・支持体 102・・光導電層 103・・自
由表面 201.207・・透明基板202.206・
・透明電極 203・・光導電性配向膜 204・・液
晶 205・・配向膜208・・偏光子 209・・検
光子 210・・空間光変調素子 211・・入射光 
212・・出射九
Figure 1 shows no change in the film thickness of the polymeric photoconductive material produced by the manufacturing method of the present invention. Figure 2 shows the scattering intensity due to the difference in the weight percentage of tetracarboxylic acid. The scattering intensity per film thickness due to the difference in
Figure 4 shows the photosensitivity due to the difference in the weight percentage of tetracarboxylic acid. Figure 5 shows the scattering intensity per film thickness due to the difference in the amount of tetracarboxylic acid added. Figure 6 shows the photosensitivity due to the difference in the immersion time in acetic anhydride. Figure 7 shows no photosensitivity due to differences in acetic anhydride immersion time. Figure 8 shows the relationship between scattering intensity and photosensitivity for different acetic anhydride immersion times. Figure 9 shows pyridine. Figure 1O shows the scattering intensity in the film thickness due to the difference in the amount of pyridine added. 13 is a diagram showing the optical switching characteristics of the spatial light modulator shown in FIG. 12. 101...Support 102...Photoconductive layer 103...Free surface 201.207...Transparent substrate 202.206.
- Transparent electrode 203... Photoconductive alignment film 204... Liquid crystal 205... Alignment film 208... Polarizer 209... Analyzer 210... Spatial light modulation element 211... Incident light
212...Emission 9

Claims (6)

【特許請求の範囲】[Claims] (1)光導電性を有するポリイミド膜を、下記一般式(
イ)で表わされるジアミン化合物と下記一般式(ロ)で
表わされるテトラカルボン酸からポリアミック酸を合成
する際、原料のジアミンとカルボン酸の混合モル比率を
1:1+M(M>0)とすることを特徴とする光導電性
高分子の製造方法 ▲数式、化学式、表等があります▼・・・・(イ) A:−(Xi−Yi)n−Xi− n≧1、i=1、2、3、・・・、n Xi:芳香族或は置換芳香族基 Yi:O、S、Se、Te、 −CH=CH−のいずれか ▲数式、化学式、表等があります▼・・・・(ロ) 芳香族を含む基
(1) A photoconductive polyimide film is formed using the following general formula (
When synthesizing polyamic acid from the diamine compound represented by (a) and the tetracarboxylic acid represented by the following general formula (b), the mixing molar ratio of the raw materials diamine and carboxylic acid should be 1:1+M (M>0). Method for producing photoconductive polymers characterized by ▲Mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(a) A: -(Xi-Yi)n-Xi- n≧1, i=1,2 , 3,...,n Xi: aromatic or substituted aromatic group Yi: O, S, Se, Te, -CH=CH- ▲ Numerical formula, chemical formula, table, etc. are available ▼... (b) Groups containing aromatics
(2)原料のジアミンとカルボン酸の混合モル比率が1
:1+MでM<1であることを特徴とする請求項1記載
の光導電性高分子の製造方法。
(2) The mixing molar ratio of raw material diamine and carboxylic acid is 1
2. The method for producing a photoconductive polymer according to claim 1, wherein: 1+M and M<1.
(3)光導電性を有するポリイミド膜を、一般式(イ)
で表わされるジアミン化合物と一般式(ロ)で表される
テトラカルボン酸からポリアミック酸を合成する際、所
定の比率で混合した後、一般式(ロ)で表わされるテト
ラカルボン酸を添加することを特徴とする光導電性高分
子の製造方法。
(3) A polyimide film having photoconductivity is formed using the general formula (a).
When synthesizing polyamic acid from the diamine compound represented by the formula (B) and the tetracarboxylic acid represented by the general formula (B), it is recommended that the tetracarboxylic acid represented by the general formula (B) be added after mixing in a predetermined ratio. Characteristic method for producing photoconductive polymers.
(4)テトラカルボン酸の添加した後のポリアミック酸
溶液中のジアミンとカルボン酸の混合モル比率が1:1
+Mで0<M<1であることを特徴とする請求項3記載
の光導電性高分子の製造方法。
(4) The mixing molar ratio of diamine and carboxylic acid in the polyamic acid solution after adding tetracarboxylic acid is 1:1
4. The method for producing a photoconductive polymer according to claim 3, wherein +M satisfies 0<M<1.
(5)一般式(イ)で表わされるジアミン化合物と一般
式(ロ)で表わされるテトラカルボン酸との縮合反応に
より得られるポリアミック酸溶液を基板上に塗布した後
、無水酢酸を含む溶液中に浸漬し、続いて加熱処理工程
を施すことを特徴とする光導電性高分子の製造方法。
(5) After applying a polyamic acid solution obtained by a condensation reaction between a diamine compound represented by the general formula (a) and a tetracarboxylic acid represented by the general formula (b) onto a substrate, the polyamic acid solution is poured into a solution containing acetic anhydride. 1. A method for producing a photoconductive polymer, comprising immersion and subsequent heat treatment.
(6)無水酢酸を含む溶液中にピリジンを無水酢酸に対
して50重量パーセント以下添加することを特徴とする
請求項5記載の光導電性高分子の製造方法。
(6) The method for producing a photoconductive polymer according to claim 5, characterized in that pyridine is added to the solution containing acetic anhydride in an amount of 50% by weight or less based on acetic anhydride.
JP2073777A 1990-03-23 1990-03-23 Method for producing photoconductive polymer Expired - Fee Related JP2830328B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2073777A JP2830328B2 (en) 1990-03-23 1990-03-23 Method for producing photoconductive polymer
EP19910104437 EP0449117A3 (en) 1990-03-23 1991-03-21 Organic polymer and preparation and use thereof
US08/090,638 US5486442A (en) 1990-03-23 1993-07-13 Organic polymer and preparation and use in crystal spatial light modulator
US08/450,909 US5876891A (en) 1990-03-23 1995-05-26 Photosensitive material and process for the preparation thereof
US08/453,061 US5654367A (en) 1990-03-23 1995-05-26 Organic polymer and preparation and use thereof
US08/451,727 US5597889A (en) 1990-03-23 1995-05-26 Organic polymer and preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073777A JP2830328B2 (en) 1990-03-23 1990-03-23 Method for producing photoconductive polymer

Publications (2)

Publication Number Publication Date
JPH03275725A true JPH03275725A (en) 1991-12-06
JP2830328B2 JP2830328B2 (en) 1998-12-02

Family

ID=13527975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073777A Expired - Fee Related JP2830328B2 (en) 1990-03-23 1990-03-23 Method for producing photoconductive polymer

Country Status (1)

Country Link
JP (1) JP2830328B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632334A1 (en) * 1993-06-30 1995-01-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same
US8088882B2 (en) 2005-03-31 2012-01-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278299A (en) * 1975-12-25 1977-07-01 Showa Electric Wire & Cable Co Ltd Preparation of aromatic polyamide-imide resins
JPS6215228A (en) * 1985-07-15 1987-01-23 Mitsubishi Petrochem Co Ltd Aromatic thioether imide polymer
JPS6284124A (en) * 1985-08-30 1987-04-17 ゼネラル・エレクトリツク・カンパニイ Crystalline polyimide containing cumulative phenylenesulfideunit
JPS62135530A (en) * 1985-07-16 1987-06-18 Kanegafuchi Chem Ind Co Ltd Heat-resistant thin polyimide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278299A (en) * 1975-12-25 1977-07-01 Showa Electric Wire & Cable Co Ltd Preparation of aromatic polyamide-imide resins
JPS6215228A (en) * 1985-07-15 1987-01-23 Mitsubishi Petrochem Co Ltd Aromatic thioether imide polymer
JPS62135530A (en) * 1985-07-16 1987-06-18 Kanegafuchi Chem Ind Co Ltd Heat-resistant thin polyimide film
JPS6284124A (en) * 1985-08-30 1987-04-17 ゼネラル・エレクトリツク・カンパニイ Crystalline polyimide containing cumulative phenylenesulfideunit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632334A1 (en) * 1993-06-30 1995-01-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus employing the same
US8088882B2 (en) 2005-03-31 2012-01-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof
US8742059B2 (en) 2005-03-31 2014-06-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof

Also Published As

Publication number Publication date
JP2830328B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5654367A (en) Organic polymer and preparation and use thereof
KR100667118B1 (en) Materials for Inducing Alignment in Liquid Crystals and Liquid Crystal Displays
KR100450991B1 (en) Liquid Crystal Alignment Treatment Method
US6103322A (en) Materials for inducing alignment of liquid crystals and liquid crystal optical elements
KR101737122B1 (en) Diamine compound, liquid crystal aligning agent, and liquid crystal display device using the same
WO2009017252A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing the same, and liquid crystal display device
EP0980016B1 (en) Aligning agent for liquid crystal
CA2039945C (en) Polyimide, organic film comprising the polyimide, and photoconductive device comprising the organic film
US4954612A (en) Solvent-soluble polyimide and production thereof
US5733481A (en) Composition for use in the formation of an active light waveguide, method for manufacturing an active light waveguide using the composition, and active light waveguide
US4696890A (en) Processes for preparing protective coatings and relief structures
US4670535A (en) Photosensitive polyimide precursor and process for producing the same
JPH03275725A (en) Production of photoconductive polymer
WO2000022029A1 (en) Polyimide precursors and polyimides
KR100558805B1 (en) Polarizable Amines and Polyimides for Optical Alignment of Liquid Crystals
KR20010025050A (en) Process and materials for inducing alignment of liquid crystals and liquid crystal optical elements
KR19980048480A (en) A photo-alignment composition, an alignment film formed therefrom, and a liquid crystal display element having the alignment film
US4355089A (en) Process for producing a photoconductive polyimide coating upon a substrate
TW202140619A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP3014713B2 (en) Photoconductive material and manufacturing method thereof
US6991834B1 (en) Materials for inducing alignment of liquid crystals and liquid crystal optical elements
JP2002515617A (en) Method and material for inducing liquid crystal alignment, and liquid crystal optical element
JPH04213326A (en) Polyimide compound, organic film containing the same compound, and photoconductive element containing the film
RU2120652C1 (en) Photoconducting layer
TW202417599A (en) Liquid crystal alignment agent, method of producing the same, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees