JPH03263100A - Audio encoding and decoding device - Google Patents
Audio encoding and decoding deviceInfo
- Publication number
- JPH03263100A JPH03263100A JP2063101A JP6310190A JPH03263100A JP H03263100 A JPH03263100 A JP H03263100A JP 2063101 A JP2063101 A JP 2063101A JP 6310190 A JP6310190 A JP 6310190A JP H03263100 A JPH03263100 A JP H03263100A
- Authority
- JP
- Japan
- Prior art keywords
- vector
- residual
- band
- linear prediction
- spectral envelope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013598 vector Substances 0.000 claims abstract description 208
- 238000001228 spectrum Methods 0.000 claims abstract description 47
- 238000013139 quantization Methods 0.000 claims abstract description 39
- 230000005236 sound signal Effects 0.000 claims abstract description 18
- 230000003595 spectral effect Effects 0.000 claims description 65
- 238000010276 construction Methods 0.000 claims description 25
- 238000000605 extraction Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は音声信号をディジタル伝送あるいは蓄積する
ときに用いる音声符号化・復号化装置における線形予測
残差信号の量子化法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a method for quantizing a linear prediction residual signal in a speech encoding/decoding device used when digitally transmitting or storing speech signals.
[従来の技術]
入力音声信号を分析フレーム毎に線形予測分析して線形
予測残差信号(以後残差信号と呼ぶ)を抽出し、この残
差信号を周波数領域の成分に変換した後複数のベクトル
に分割して各ベクトル毎にベクトル量子化する方法は、
音声の高能率圧縮符号化における有力な方法の一つであ
り、この方法による従来の音声符号化・復号化装置とし
て第3図に示すものがあった。[Prior art] An input audio signal is subjected to linear predictive analysis for each analysis frame to extract a linear predictive residual signal (hereinafter referred to as a residual signal), and after converting this residual signal into frequency domain components, multiple The method of dividing into vectors and vector quantizing each vector is as follows.
This is one of the effective methods for high-efficiency compression encoding of speech, and a conventional speech encoding/decoding apparatus using this method is shown in FIG.
第3図は須田、9谷r8kbit/s TCWVQ符
号化の陸上移動通信への適用」電子情報通信学会技術研
究報告vo1.88、no、453、SP8g−138
(1989年2月)の図1に示されたものと同様のもの
である。Figure 3 is by Suda, “Application of 9tani r8kbit/s TCWVQ coding to land mobile communication” IEICE technical research report vol. 1.88, no. 453, SP8g-138
It is similar to that shown in FIG. 1 of (February 1989).
以下に従来装置の動作について説明する。The operation of the conventional device will be explained below.
先ず第3図(3a)の符号化部について説明する。First, the encoding section shown in FIG. 3 (3a) will be explained.
離散値サンプルの時系列で現された入力音声信号(1)
は線形予測分析手段(3)で固定長の分析フレーム(以
後フレームと呼ぶ)毎に線形予測分析され線形予測係数
が求められる。線形予測分析手段(3)は求めた線形予
測係数(5)を線形予測逆フイルタ手段(2)とスペク
トル包絡抽出手段(7)と多重化手段(18)に出力す
る。線形予測逆フイルタ手段(2)は入力音声信号(1
)をフレーム毎に線形予測係数(5)を用いて線形予測
逆フィルタリングし、残差信号(4)を求める。周波数
領域への変換手段(6)はDCT (Discrete
Co51ne Transf。Input audio signal expressed as a time series of discrete value samples (1)
A linear predictive analysis means (3) performs a linear predictive analysis on each fixed-length analysis frame (hereinafter referred to as a frame) to obtain a linear predictive coefficient. The linear prediction analysis means (3) outputs the obtained linear prediction coefficients (5) to the linear prediction inverse filter means (2), the spectral envelope extraction means (7), and the multiplexing means (18). The linear predictive inverse filter means (2) receives the input audio signal (1
) is subjected to linear prediction inverse filtering using the linear prediction coefficient (5) for each frame to obtain a residual signal (4). The conversion means (6) to the frequency domain is DCT (Discrete
Co51ne Transf.
rm)によって残差信号(4)をフレーム毎にその周波
数領域の成分を示すサンプル列に変換し、これを残差ス
ペクトル(8)として出力する。スペクトル包絡抽出手
段(7)は線形予測係数(5)より入力音声信号(1)
の周波数スペクトル包絡を求め、これをスペクトル包絡
(9)として出力する。尚、スペクトル包絡(9)も周
波数領域でのサンプル列で表現される。残差ベクトル構
成手段(30)は残差スペクトル(8)より残差スペク
トル(8)の各成分を要素とした複数個のベクトルを構
成し、これを残差ベクトル(12)として出力する。ス
ペクトル包絡ベクトル構成手段(31)はスペクトル包
絡(9)よりスペクトル包絡(9)の各成分を要素とし
た複数個のベクトルを残差ベクトル構成手段(29)と
同様の方法で構成し、これをスペクトル包絡ベクトル(
13)として出力する。rm), the residual signal (4) is converted for each frame into a sample sequence indicating the frequency domain components, and this is output as a residual spectrum (8). The spectral envelope extraction means (7) extracts the input audio signal (1) from the linear prediction coefficient (5).
Find the frequency spectrum envelope of and output it as the spectrum envelope (9). Note that the spectral envelope (9) is also expressed by a sample sequence in the frequency domain. The residual vector constructing means (30) constructs a plurality of vectors having each component of the residual spectrum (8) as an element from the residual spectrum (8), and outputs this as a residual vector (12). The spectral envelope vector construction means (31) constructs a plurality of vectors using each component of the spectral envelope (9) from the spectrum envelope (9) in the same manner as the residual vector construction means (29), and Spectral envelope vector (
13).
残差ベクトル構成手段(29)とスペクトル包絡ベクト
ル構成手段(30)で行われるベクトル構成の具体例を
第4図に示す。第4図において(4a)はスペクトル包
絡(9)であり(4C)はスペクトル包絡ベクトル構成
手段(31)によって構成されたスペクトル包絡ベクト
ル(13)である。また(4b)は残差スペクトル(8
)であり(4d)は残差ベクトル構成手段(30)によ
って構成された残差ベクトル(12)である。A specific example of vector construction performed by the residual vector construction means (29) and the spectral envelope vector construction means (30) is shown in FIG. In FIG. 4, (4a) is the spectral envelope (9), and (4C) is the spectral envelope vector (13) constructed by the spectral envelope vector construction means (31). (4b) is the residual spectrum (8
) and (4d) is the residual vector (12) constructed by the residual vector constructing means (30).
第4図はスペクトル包絡(4a)と残差スペクトル(4
b)がそれぞれ15個の周波数領域のサンプルから成り
、各々より5個ずつのスペクトル包絡ベクトル(4C)
と残差ベクトル(4d)を構成する場合を示している。Figure 4 shows the spectral envelope (4a) and the residual spectrum (4a).
b) consists of 15 frequency domain samples each, and 5 spectral envelope vectors (4C) from each.
The case where the residual vector (4d) is constructed is shown.
第4図に示すようにここのスペクトル包絡ベクトル(4
c)と残差ベクトル(4d)の構成は周波数領域のサン
プルを等間隔で抽出することで実施される。スペクトル
包絡ベクトル(4C)と残差ベクトル(4d)の第1の
ベクトルは最も低い周波数サンプルを抽出の起点として
おり、以後第5のベクトルまで抽出の起点を1点ずつ高
い周波数方向へずらしてベクトル構成が行われる。As shown in Figure 4, the spectral envelope vector (4
c) and the construction of the residual vector (4d) are performed by extracting frequency domain samples at equal intervals. The first vector of the spectral envelope vector (4C) and residual vector (4d) uses the lowest frequency sample as the starting point of extraction, and from then on, the starting point of extraction is shifted one point at a time in the direction of higher frequencies until the fifth vector is extracted. Configuration takes place.
ベクトル量子化手段(14)は残差ベクトル構成手段(
31)で複数個構成された残差ベクトル(12)をベク
トル符号帳(15)から出力される予め登録された登録
ベクトル(16)を用いてベクトル量子化する。具体的
には(1)式で与えられる残差ベクトル(12)との距
離値Dmが最も小さ(なる登録ベクトル(16)を探索
し、そノ登録ベクトルの番号を残差量子化結果(17)
として出力する。The vector quantization means (14) is a residual vector construction means (
In step 31), a plurality of residual vectors (12) are vector quantized using registered vectors (16) registered in advance that are output from a vector codebook (15). Specifically, the registered vector (16) with the smallest distance value Dm from the residual vector (12) given by equation (1) is searched for, and the number of the registered vector is determined by the residual quantization result (17). )
Output as .
1=0 (m=0.M
−1>(1)式においてWlはスペクトル包絡ベクトル
(13)、Elは残差ベクトル(12)、c i ”ゝ
はm番目の登録ベクトル(16)、Iは残差スペクトル
(8)のサンプル数と構成する残差ベクトル(12)の
個数によって決定されるベクトル次元数、mはベクトル
量子化に割り当てられる量子化ビット量に依存して決め
られる登録ベクトル(16)の個数である。 (1)式
はスペクトル包絡ベクトル(13)で重み付けされたベ
クトル間(ElとCI)距離の計算式と理解される。尚
量子化ビットは各残差ベクトルに対し均等に割り当てら
れる。1=0 (m=0.M
-1> In equation (1), Wl is the spectral envelope vector (13), El is the residual vector (12), c i "ゝ is the m-th registered vector (16), and I is the sample of the residual spectrum (8). The number of vector dimensions is determined by the number of component residual vectors (12), and m is the number of registration vectors (16) determined depending on the amount of quantization bits allocated to vector quantization. (1 ) is understood as a calculation formula for the distance between vectors (El and CI) weighted by the spectral envelope vector (13).The quantization bits are equally allocated to each residual vector.
入力音声信号(1)の周波数成分を考えた場合、そのス
ペクトル包絡の値が大きい周波数地点のサンプルは重要
度が高く、その地点の残差スペクトル(8)はスペクト
ル包絡の値が小さい周波数地点より量子化誤差が少なく
量子化される必要がある。 (1)式に示されたスペク
トル包絡ベクトル(13)による重み付はベクトル間距
離計算を残差ベクトル(12)のベクトル量子化に用い
ることは、個の必要条件に対応するものである。また第
4図に示した方法でスペクトル包絡ベクトル(4c)と
残差ベクトル(4d)を抽出すれば、各スペクトル包絡
ベクトル内のサンプルを加算平均した平均パワーはベク
トル間でほぼ均等に成るので、ベクトル量子化手段(1
4)は残差ベクトル(4d)をベクトル量子化する際に
各残差ベクトルに常に均等の量子化ビ、+−を与えられ
る利点がある。When considering the frequency components of the input audio signal (1), samples at frequency points with large spectral envelope values are more important, and the residual spectrum (8) at those points is more important than frequency points with small spectral envelope values. It is necessary to quantize with a small quantization error. Weighting by the spectral envelope vector (13) shown in equation (1) corresponds to the necessary conditions of using inter-vector distance calculation for vector quantization of the residual vector (12). Furthermore, if the spectral envelope vector (4c) and residual vector (4d) are extracted using the method shown in Figure 4, the average power obtained by adding and averaging the samples within each spectral envelope vector will be approximately equal between the vectors, so Vector quantization means (1
4) has the advantage that when vector quantizing the residual vector (4d), equal quantization values +- can always be given to each residual vector.
今説明したベクトル量子化手段(14)から出力される
残差量子化結果(17)と、線形予測分析手段(3)か
ら出力された線形予測係数(5)は多重化手段(18)
で多重化され符号化音声情報として伝送路(19)に出
力される。The residual quantization result (17) output from the vector quantization means (14) just described and the linear prediction coefficient (5) output from the linear prediction analysis means (3) are multiplexed by the multiplexing means (18).
The signals are multiplexed and output as encoded audio information to a transmission path (19).
次に第3図(3b)の復号化部について説明する。Next, the decoding section shown in FIG. 3 (3b) will be explained.
分離手段(20)は伝送路(19)から入力された符号
化音声情報を線形予測係数(5)と残差量子化結果(1
7)に分離する。ベクトル逆量子化手段(21)は符号
化部のベクトル符号帳(15)と同一のベクトル符号帳
(29)より出力される登録ベクトル(30)を用いて
残差量子化結果(17)をベクトル逆量子化して残差ベ
クトル(22)を求める。残差再生手段(33)はベク
トル逆量子化手段(21)より出力される複数の残差ベ
クトル(22)の各サンプルを、周波数領域上で符号化
部(3a)の残差ベクトル構成手段(31)が行ったベ
クトル構成以前の元の位置に配置し再生残差スペクトル
(24)を求める。時間領域への変換手段(25)は逆
DCTによって再生残差スペクトル(24)を時間領域
に変換し、再生残差信号(26)を求める。線形予測合
成フィルタ手段(27)は再生残差信号(26)と線形
予測係数(5)を用いた線形予測合成フィルタリング処
理により再生信号(28)を合成して出力する。The separating means (20) converts the encoded speech information input from the transmission path (19) into linear prediction coefficients (5) and residual quantization results (1).
7) Separate. The vector dequantization means (21) converts the residual quantization result (17) into a vector using the registered vector (30) output from the same vector codebook (29) as the vector codebook (15) of the encoding section. A residual vector (22) is obtained by inverse quantization. The residual reproduction means (33) converts each sample of the plurality of residual vectors (22) outputted from the vector dequantization means (21) into the residual vector composition means (3a) of the encoding section (3a) in the frequency domain. 31), and obtain a reproduced residual spectrum (24). A time domain conversion means (25) converts the reproduced residual spectrum (24) into the time domain by inverse DCT to obtain a reproduced residual signal (26). The linear prediction synthesis filter means (27) synthesizes and outputs a reproduction signal (28) by performing linear prediction synthesis filtering processing using the reproduction residual signal (26) and the linear prediction coefficient (5).
[発明が解決しようとする課題〕
以上説明したように従来の音声符号化・復号化装置によ
れば、スペクトル包絡ベクトルの構成はスペクトル包絡
の各周波数領域上のサンプルを周波数領域全体にわたっ
て一定間隔で抽出することで行われるので、母音のよう
に一般的に低い周波数成分の量が高い周波数成分に比べ
てかなり大きい特性を持つ音韻については、各スペクト
ル包絡ベクトルが総て第4図(4C)の様に低い周波数
側にのみ強いパワーを持つことになる。従って入力音声
信号がこの様な音間性を持つ場合、残差ベクトルのベク
トル量子化においては低周波成分のみがスペクトル包絡
ベクトルによる重み付けの強調をうけるので、高い周波
数成分の量子化歪が大きくなり、結果として、再生音声
信号の高い周波数領域での品質を劣化させる課題があっ
た。[Problem to be Solved by the Invention] As explained above, according to the conventional speech encoding/decoding device, the configuration of the spectral envelope vector is such that the samples on each frequency domain of the spectral envelope are arranged at regular intervals over the entire frequency domain. Since this is done by extraction, for phonemes such as vowels that generally have a characteristic in which the amount of low frequency components is considerably larger than that of high frequency components, each spectral envelope vector is all as shown in Figure 4 (4C). Similarly, it has strong power only on the lower frequency side. Therefore, when the input audio signal has such intersonic characteristics, only the low frequency components are weighted and emphasized by the spectral envelope vector during vector quantization of the residual vector, resulting in large quantization distortion of the high frequency components. As a result, there was a problem in that the quality of the reproduced audio signal in the high frequency range deteriorated.
この発明は上記のような課題を解決するためになされた
もので、スペクトル包絡と残差スペクトルを低域と高域
の二つの帯域に分割し、各帯域毎にスペクトル包絡ベク
トルと残差ベクトルを構成することで、残差ベクトルの
ベクトル量子化で低い周波数成分のみにスペクトル包絡
ベクトルによる重み付けがなされないようにしたもので
ある。This invention was made to solve the above problems, and it divides the spectral envelope and residual spectrum into two bands, a low band and a high band, and creates a spectral envelope vector and a residual vector for each band. By configuring this, only low frequency components are not weighted by the spectral envelope vector in vector quantization of the residual vector.
[課題を解決するための手段]
この発明に係る音声符号化・復号化装置は、周波数領域
のサンプル列に変換された線形予測残差信号を複数の周
波数帯域に分割し、各周波数帯域毎に予め設定した個数
の残差ベクトルを構成する帯域別残差ベクトル構成手段
と、周波数領域のサンプル列で現される入力音声信号の
周波数スペクトル包絡から前記帯域別残差ベクトル構成
手段と同一の方法で複数のスペクトル包絡ベクトルを構
成する帯域別スペクトル包絡ベクトル構成手段と、前記
帯域別残差ベクトル構成手段で構成された残差ベクトル
を前記帯域別スペクトル包絡ベクトル構成手段で構成さ
れたスペクトル包絡ベクトルを用いてベクトル量子化す
るベクトル量子化手段を符号化部に備え、前記ベクトル
量子化手段でベクトル量子化された残差ベクトルをベク
トル逆量子化するベクトル逆量子化手段と、このベクト
ル逆!子化手段で逆ベクトル量子化された残差ベクトル
の各サンプルを周波数領域上で前記帯域別残差ベクトル
構成手段による残差ベクトル構成前の周波数位置へ配置
する残差再生手段を備えたものである。[Means for Solving the Problems] A speech encoding/decoding device according to the present invention divides a linear prediction residual signal converted into a frequency domain sample sequence into a plurality of frequency bands, and performs processing for each frequency band. A band-specific residual vector constructing means for constructing a preset number of residual vectors, and a frequency spectrum envelope of an input audio signal represented by a frequency domain sample sequence using the same method as the band-specific residual vector constructing means. A band-specific spectral envelope vector configuring means for configuring a plurality of spectral envelope vectors, and a residual vector configured by the band-specific residual vector configuring device using a spectral envelope vector configured by the band-specific spectral envelope vector configuring device. The encoding section includes a vector quantization means for vector quantizing the residual vector quantized by the vector quantization means, and a vector dequantization means for vector dequantizing the residual vector vector quantized by the vector quantization means; It is equipped with a residual reproduction means for arranging each sample of the residual vector that has been inverse vector quantized by the childization means at a frequency position in the frequency domain before residual vector composition by the band-based residual vector composition means. be.
[作用]
この発明における帯域別残差ベクトル構成手段は、周波
数領域のサンプル列に変換された線形予測残差信号を複
数の周波数帯域に分割し、各周波数帯域内において最も
周波数の低い第1番目のサンプルを起点として予め各周
波数帯域毎に設定した一定の間隔で順次サンプルを抽出
し、この抽出されたサンプルを要素として各周波数帯域
における第1の残差ベクトルを構成し、さらに起点とな
るサンプルを1点ずつ高い周波数方向へずらして前記一
定の間隔でサンプルを抽出することで第2番目以後予め
各周波数帯域毎に設定した個数の残差ベクトルを構成し
、帯域別スペクトル包絡ベクトル構成手段は、周波数領
域のサンプル列で現される入力音声信号の周波数スペク
トル包絡から前記帯域別残差ベクトル構成手段と同一の
方法で複数のスペクトル包絡ベクトルを構成し、ベクト
ル量子化手段は前記帯域別残差ベクトル構成手段で構成
された各残差ベクトルを、その残差ベクトルに周波数領
域での位置関係が同一である前記帯域別スペクトル包絡
ベクトル構成手段で構成されたスペクトル包絡ベクトル
の各要素サンプル値を荷重とたベクトル間距離計算によ
ってベクトル量子化し、ベクトル逆量子化手段は前記ベ
クトル量子化手段でベクトル量子化された残差ベクトル
をベクトル逆量子化し、残差再生手段は前記ベクトル逆
量子化手段でベクトル逆量子化された残差ベクトルの要
素サンプルを前記帯域別残差ベクトル構成手段によるベ
クトル構成前の周波数領域上の位置に配置する。[Operation] The band-based residual vector composition means of the present invention divides the linear prediction residual signal converted into a frequency domain sample sequence into a plurality of frequency bands, and divides the linear prediction residual signal converted into a frequency domain sample sequence into a plurality of frequency bands, and divides the linear prediction residual signal converted into a frequency domain sample sequence into a plurality of frequency bands. Samples are sequentially extracted at regular intervals preset for each frequency band using the sample as a starting point, and the extracted samples are used as elements to construct the first residual vector in each frequency band, and then the sample that becomes the starting point is By shifting one point at a time in the direction of higher frequencies and extracting samples at the constant intervals, a number of residual vectors set in advance for each frequency band after the second one is constructed, and the band-specific spectral envelope vector construction means , the vector quantization means constructs a plurality of spectral envelope vectors from the frequency spectrum envelope of the input audio signal represented by a frequency domain sample sequence in the same manner as the band-wise residual vector constructing means; Each residual vector constructed by the vector construction means is loaded with each element sample value of the spectral envelope vector constructed by the band-based spectral envelope vector construction means, which has the same positional relationship in the frequency domain. The vector quantization means vector quantizes the residual vector quantized by the vector quantization means, and the residual reproduction means vector quantizes the residual vector by vector-to-vector distance calculation. Element samples of the dequantized residual vector are arranged at positions on the frequency domain before vector construction by the band-specific residual vector construction means.
[実施例] 以下にこの発明の一実施例を第1図について説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.
第1図においては第3図と同一部分については同一符号
を付してあり説明を省略する。In FIG. 1, the same parts as in FIG. 3 are designated by the same reference numerals, and their explanation will be omitted.
以下に本発明の一実施例の動作について説明する。The operation of one embodiment of the present invention will be described below.
先ず第1図(1a)の符号化部について説明する。First, the encoding section shown in FIG. 1(1a) will be explained.
帯域別残差ベクトル構成手段(10)は、残差スペクト
ル(8)を低域と広域の2つの周波数帯域に分割し、各
周波数帯域内において最も周波数の低い第1番目の残差
スペクトルのサンプルを起点として予め各周波数帯域毎
に設定した一定の間隔でサンプルを抽出し、この抽出さ
れたサンプルを要素として各周波数数帯域における第1
番目の残差ベクトル(12)を構成し、さらに起点とな
るサンプルを1点ずつ高い周波数方向へずらして第2番
目以後、予め各周波数毎に設定した個数の残差ベクトル
(12)を構成する。The band-specific residual vector construction means (10) divides the residual spectrum (8) into two frequency bands, low and wide, and extracts the sample of the first residual spectrum having the lowest frequency within each frequency band. Samples are extracted at regular intervals set in advance for each frequency band using the
The second residual vector (12) is constructed, and the starting sample is shifted one point at a time in the direction of higher frequencies, and the second and subsequent residual vectors (12) are constructed in a preset number for each frequency. .
帯域別スペクトル包絡ベクトル構成手段(11)はスペ
クトル包絡(9)から帯域別残差ベクトル構成手段と同
一の方法でスペクトル包絡ベクトル(13)を構成する
。The band-based spectral envelope vector construction means (11) constructs a spectral envelope vector (13) from the spectrum envelope (9) in the same manner as the band-based residual vector construction means.
帯域別残差ベクトル構成手段(10)と帯域別スペクト
ル包絡ベクトル構成手段(11)で行われるベクトル構
成の具体例を第2図に示す。第2図において(2日)は
スペクトル包絡(9)であり(2C)は帯域別スペクト
ル包絡ベクトル構成手段(11)で構成されたスペクト
ル包絡ベクトル(13)である。また(2b)は残差ス
ペクトル(8)であり(2d)は帯域別残差ベクトル構
成手段(10)で構成された残差ベクトル(12)てベ
クトル量子化時の距離計算((1)式)においても低周
波成分のみがスペクトル包絡ベクトルによる重み付けの
強調を受けることは無くなる。FIG. 2 shows a specific example of vector construction performed by the band-based residual vector construction means (10) and the band-based spectral envelope vector construction means (11). In FIG. 2, (2nd) is the spectrum envelope (9), and (2C) is the spectrum envelope vector (13) constructed by the band-based spectrum envelope vector construction means (11). In addition, (2b) is the residual spectrum (8), and (2d) is the residual vector (12) configured by the band-specific residual vector configuration means (10) to calculate the distance during vector quantization (formula (1) ), only the low frequency components are no longer weighted with emphasis by the spectral envelope vector.
次に第1図(1b)の復号化部について説明する。Next, the decoding section shown in FIG. 1(1b) will be explained.
残差再生手段(23)はベクトル逆量子化手段(21)
より出力される複数の残差ベクトル(22)の各サンプ
ルを、周波数領域上で帯域別残差ベクトル構成手段(1
0)が行ったベクトル構成以前の元の位置に配置し、再
生残差スペクトル(24)を求める。The residual reproduction means (23) is a vector inverse quantization means (21).
Each sample of the plurality of residual vectors (22) output from the band-specific residual vector constructing means (1
0) is placed at the original position before the vector configuration performed, and the reproduced residual spectrum (24) is obtained.
なお、上記実施例では帯域別残差スペクトル構成手段(
lO)と帯域別スペクトル包絡ベクトル構成手段(11
)は低周波数帯域と高周波数帯域の2つの帯域に残差ス
ペクトル(8)とスペクトル包絡(9)を分割したが、
3つ以上の帯域にこれらを分割しても良い。またベクト
ル量子化手段(14)では、低周波数帯域から構成した
残差ベクトルには高周波数帯域から構成した残差ベクト
ルより多くの量子化ビットを常に固定的に割り当である
。第2図はスペクトル包絡(2a)と残差スペクトル(
2b)がそれぞれ15個の周波数領域上のサンプルから
成り、これを低周波数帯域は9サンプル、高周波数帯域
は6サンプルに帯域分割し、各々の帯域から3個と2個
のスペクトル包絡ベクトル(2C)及び残差ベクトル(
2d)を構成する場合を示している。In the above embodiment, the band-specific residual spectrum configuration means (
lO) and band-specific spectral envelope vector construction means (11
) divided the residual spectrum (8) and spectral envelope (9) into two bands, a low frequency band and a high frequency band, but
These may be divided into three or more bands. Further, in the vector quantization means (14), more quantization bits are always fixedly assigned to the residual vector formed from the low frequency band than to the residual vector formed from the high frequency band. Figure 2 shows the spectral envelope (2a) and the residual spectrum (
2b) consists of 15 frequency domain samples each, which is divided into 9 samples for the low frequency band and 6 samples for the high frequency band, and 3 and 2 spectral envelope vectors (2C ) and residual vector (
2d) is shown.
ベクトル量子化手段(14)は、帯域別残差ベクトル構
成手段(10)から出力された残差ベクトル(12)を
帯域別スペクトル包絡ベクトル構成手段(11)から出
力されたスペクトル包絡ベクトル(13)を利用した距
離計算式((1)式)を用いてベクトル量子化する。The vector quantization means (14) converts the residual vector (12) output from the band-specific residual vector composition means (10) into a spectral envelope vector (13) output from the band-specific spectrum envelope vector composition means (11). Vector quantization is performed using a distance calculation formula (formula (1)) using .
帯域別残差ベクトル構成手段(10)と帯域別スペクト
ル包絡ベクトル構成手段(11)は帯域別にベクトル構
成を行うので、スペクトル包絡が低周波数帯域のみに大
きい成分を持つ場合でも、構成されるスペクトル包絡ベ
クトルの総てが従来装置例で説明した様な低い周波数側
にのみ強いパワーを持つことは無く(第2図(2C:)
)、従ってたり、各周波数帯域のスペクトル包絡の平均
パワー値に応じて量子化ビット量を制御することで、各
帯域別に量子化ビット量を設定でもよい。Since the band-specific residual vector configuration means (10) and the band-specific spectral envelope vector configuration means (11) perform vector configuration for each band, even if the spectral envelope has a large component only in the low frequency band, the configured spectral envelope All of the vectors do not have strong power only on the low frequency side as explained in the example of the conventional device (Figure 2 (2C:)
), or the quantization bit amount may be set for each band by controlling the quantization bit amount according to the average power value of the spectral envelope of each frequency band.
[発明の効果]
以上のようにこの発明によれば、残差スペクトルとスペ
クトル包絡を低周波数帯域と高周波数帯域に分割し、各
帯域毎に残差ベクトルとスペクトル包絡ベクトルを構成
するようにしたので、スペクトル包絡が低周波数帯域の
みに強い成分を持っている場合でも、残差ベクトルをベ
クトル量子化する際のベクトル間距離計算においてスペ
クトル包絡ベクトルを用いた重み付けが低周波数領域の
みに片寄ることが無く、高周波数帯域の量子化特性が従
来装置に比べて改善され、品質の良い再生音声信号を得
られる効果を有する。[Effects of the Invention] As described above, according to the present invention, the residual spectrum and the spectral envelope are divided into a low frequency band and a high frequency band, and a residual vector and a spectral envelope vector are configured for each band. Therefore, even if the spectral envelope has a strong component only in the low frequency band, the weighting using the spectral envelope vector in calculating the distance between vectors when vector quantizing the residual vector may be biased only in the low frequency band. However, the quantization characteristics in the high frequency band are improved compared to conventional devices, and it has the effect of obtaining high-quality reproduced audio signals.
第1図はこの発明の一実施例を示すブロック図、第2図
は第1図に示す実施例の動作を説明する説明図、第3図
は従来の音声符号化・復号化装置を示すブロック図、第
4図はその動作を説明する説明図である。
図中符号(1)は入力音声信号、(2)は線形予測逆フ
イルタ手段、(3)は線形予測分析手段、(4)は残差
信号、 (5)は線形予測係数、(6)は周波数領域へ
の変換手段、(7)はスペクトル包絡抽出手段、 (8
)は残差スペクトル、 (9)はスペクトル包絡、(l
O)は帯域別残差ベクトル構成手段、 (11)は帯域
別スペクトル包絡ベクトル構成手段、 (12)は残差
ベクトル、 (13)はスペクトル包絡ベクトル、 (
14)はベクトル量子化手段、 (15)はベクトル符
号帳、(16)は登録ベクトル、(17)は残差量子化
結果、(18)は多重化手段、(19)は伝送路、(2
0)は分離手段、(21)はベクトル逆量子化手段、
(22)は残差ベクトル、 (23)は残差再生手段、
(24)は再生残差スペクトル、(25)は時間領域へ
の変換手段、(26)は再生残差信号、 (27)は線
形予測合成フィルタ手段、(28)は再生音声信号、(
29)はベクトル符号帳、(30)は登録ベクトル、
(31)は残差ベクトル構成手段、 (32)はスペク
トル包絡ベクトル構成手段、(33)は残差再生手段、
(2a)はスペクトル包絡、 (2b)は残差スペクト
ル、(2’c)はスペクトル包絡ベクトル、(2d)は
残差ベクトル、 (4a)はスペクトル包絡、 (4b
)は残差スペクトル、 (4C)はスペクトル包絡ベク
トル、 (4d)は残差ベクトルである。
なお、図中同一符号は同一または相当部分を示す。FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram explaining the operation of the embodiment shown in FIG. 1, and FIG. 3 is a block diagram showing a conventional audio encoding/decoding device. 4 are explanatory diagrams for explaining the operation. In the figure, (1) is the input audio signal, (2) is the linear prediction inverse filter means, (3) is the linear prediction analysis means, (4) is the residual signal, (5) is the linear prediction coefficient, and (6) is Conversion means to frequency domain, (7) is spectrum envelope extraction means, (8
) is the residual spectrum, (9) is the spectral envelope, (l
O) is a band-specific residual vector composition means, (11) is a band-specific spectral envelope vector composition means, (12) is a residual vector, (13) is a spectral envelope vector, (
14) is a vector quantization means, (15) is a vector codebook, (16) is a registered vector, (17) is a residual quantization result, (18) is a multiplexing means, (19) is a transmission line, (2
0) is a separation means, (21) is a vector dequantization means,
(22) is the residual vector, (23) is the residual reproduction means,
(24) is the reproduced residual spectrum, (25) is the time domain conversion means, (26) is the reproduced residual signal, (27) is the linear prediction synthesis filter means, (28) is the reproduced audio signal, (
29) is a vector codebook, (30) is a registered vector,
(31) is a residual vector composition means, (32) is a spectral envelope vector composition means, (33) is a residual reproduction means,
(2a) is the spectral envelope, (2b) is the residual spectrum, (2'c) is the spectral envelope vector, (2d) is the residual vector, (4a) is the spectral envelope, (4b
) is the residual spectrum, (4C) is the spectrum envelope vector, and (4d) is the residual vector. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
長の分析フレーム毎に線形予測分析し、得られた線形予
測係数を利用して該分析フレーム内の入力音声信号の線
形予測残差信号を求め、この該分析フレーム内の線形予
測残差信号を周波数領域のサンプル列に変換後にベクト
ル量子化して出力する符号化部と、この符号化部でベク
トル量子化された周波数領域に変換された線形予測残差
信号をベクトル量子化した後に時間領域のサンプル列に
変換し、この時間領域のサンプル列に変換された線形予
測残差信号と前記線形予測係数による線形予測合成フィ
ルタ処理で再生音声信号を合成する復号化部で構成され
る音声符号化・復号化装置において、符号化部には前記
分析フレーム内の入力音声信号の周波数スペクトル包絡
を周波数領域のサンプル列として求めるスペクトル包絡
抽出手段と、前記周波数領域のサンプル列に変換された
該分析フレームの線形予測残差信号を複数の周波数帯域
に分割し、各周波数帯域内において最も周波数の低い第
1番目のサンプルを起点として予め各周波数帯域毎に設
定した一定の間隔で順次サンプル抽出し、この抽出され
たサンプルを要素として各周波数帯域において第1の残
差信号ベクトルを構成し、さらに起点となるサンプルを
1点ずつ高い周波数方向へずらして前記一定の間隔でサ
ンプル抽出することで第2番目以後予め各周波数帯域毎
に設定した個数の残差信号ベクトルを構成する帯域別残
差ベクトル構成手段と、前記スペクトル包絡抽出手段で
求められた入力音声信号の周波数スペクトル包絡のサン
プル列より前記帯域別残差ベクトル構成手段と同一の方
法で複数のスペクトル包絡ベクトルを構成する帯域別ス
ペクトル包絡ベクトル構成手段と、前記帯域別残差ベク
トル構成手段で構成された残差信号ベクトルをそのベク
トルに周波数領域での位置関係が同一である前記帯域別
スペクトル包絡ベクトル構成手段で構成されたスペクト
ル包絡ベクトルの各要素サンプル値を加重としてベクト
ル間距離を計算することでベクトル量子化するベクトル
量子化手段を備え、復号化部には、前記スペクトル量子
化手段でベクトル量子化された残差信号をベクトル逆量
子化するベクトル逆量子化手段と、このベクトル逆量子
化手段でベクトル逆量子化された全ての残差信号ベクト
ルの要素サンプルを前記帯域別残差ベクトル構成手段に
よるベクトル構成前の周波数領域上の位置に配置する残
差再生手段を備えることを特徴とした音声符号化・復号
化装置。Linear prediction analysis is performed on the input audio signal expressed as a time series of discrete value samples for each analysis frame of a certain length, and the linear prediction residual signal of the input audio signal within the analysis frame is calculated using the obtained linear prediction coefficients. An encoding unit that calculates the linear prediction residual signal in the analysis frame and converts it into a frequency domain sample sequence, vector quantizes it, and outputs it, The linear prediction residual signal is vector quantized and then converted into a time domain sample sequence, and the reproduced audio signal is generated by linear prediction synthesis filter processing using the linear prediction residual signal converted to the time domain sample sequence and the linear prediction coefficients. In the audio encoding/decoding device, the encoding unit includes a spectral envelope extraction means for obtaining a frequency spectrum envelope of the input audio signal in the analysis frame as a frequency domain sample sequence; The linear prediction residual signal of the analysis frame converted into a sample sequence in the frequency domain is divided into a plurality of frequency bands, and the first sample with the lowest frequency in each frequency band is the starting point. Samples are extracted sequentially at regular intervals set to band-specific residual vector construction means for constructing a preset number of residual signal vectors for each frequency band after the second one by extracting samples at regular intervals; and input obtained by the spectrum envelope extraction means. A band-specific spectral envelope vector configuring means for configuring a plurality of spectral envelope vectors from a sample sequence of a frequency spectrum envelope of an audio signal in the same manner as the band-specific residual vector configuring means, and a band-specific residual vector configuring means. calculating an inter-vector distance using the residual signal vector obtained as a weight by each element sample value of the spectral envelope vector constructed by the band-based spectral envelope vector construction means having the same positional relationship in the frequency domain; The decoding section includes vector dequantization means for vector dequantization of the residual signal vector quantized by the spectrum quantization means, and vector dequantization means for vector dequantization of the residual signal vector quantized by the spectrum quantization means. The method is characterized by comprising a residual reproduction means for arranging all the element samples of the residual signal vector vector-dequantized by the means at positions in the frequency domain before vector construction by the band-based residual vector construction means. Audio encoding/decoding device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063101A JPH03263100A (en) | 1990-03-14 | 1990-03-14 | Audio encoding and decoding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063101A JPH03263100A (en) | 1990-03-14 | 1990-03-14 | Audio encoding and decoding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03263100A true JPH03263100A (en) | 1991-11-22 |
Family
ID=13219567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2063101A Pending JPH03263100A (en) | 1990-03-14 | 1990-03-14 | Audio encoding and decoding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03263100A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062990A1 (en) * | 2006-11-21 | 2008-05-29 | Samsung Electronics Co., Ltd. | Method, medium, and system scalably encoding/decoding audio/speech |
JP2009042740A (en) * | 2007-03-02 | 2009-02-26 | Panasonic Corp | Encoding device |
JP2009042734A (en) * | 2007-03-02 | 2009-02-26 | Panasonic Corp | Encoding device and encoding method |
KR100949232B1 (en) * | 2002-01-30 | 2010-03-24 | 파나소닉 주식회사 | Encoding device, decoding device and methods thereof |
-
1990
- 1990-03-14 JP JP2063101A patent/JPH03263100A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100949232B1 (en) * | 2002-01-30 | 2010-03-24 | 파나소닉 주식회사 | Encoding device, decoding device and methods thereof |
WO2008062990A1 (en) * | 2006-11-21 | 2008-05-29 | Samsung Electronics Co., Ltd. | Method, medium, and system scalably encoding/decoding audio/speech |
US8285555B2 (en) | 2006-11-21 | 2012-10-09 | Samsung Electronics Co., Ltd. | Method, medium, and system scalably encoding/decoding audio/speech |
US9734837B2 (en) | 2006-11-21 | 2017-08-15 | Samsung Electronics Co., Ltd. | Method, medium, and system scalably encoding/decoding audio/speech |
JP2009042740A (en) * | 2007-03-02 | 2009-02-26 | Panasonic Corp | Encoding device |
JP2009042734A (en) * | 2007-03-02 | 2009-02-26 | Panasonic Corp | Encoding device and encoding method |
JP2011175278A (en) * | 2007-03-02 | 2011-09-08 | Panasonic Corp | Encoding device, decoding device, encoding method and decoding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7729905B2 (en) | Speech coding apparatus and speech decoding apparatus each having a scalable configuration | |
JP7009602B2 (en) | Audio decoder | |
US6807526B2 (en) | Method of and apparatus for processing at least one coded binary audio flux organized into frames | |
DE60024123T2 (en) | LPC HARMONIOUS LANGUAGE CODIER WITH OVERRIDE FORMAT | |
US8509092B2 (en) | System, apparatus, method, and program for signal analysis control and signal control | |
US8463615B2 (en) | Low-delay audio coder | |
US8099275B2 (en) | Sound encoder and sound encoding method for generating a second layer decoded signal based on a degree of variation in a first layer decoded signal | |
US5822723A (en) | Encoding and decoding method for linear predictive coding (LPC) coefficient | |
US9118805B2 (en) | Multi-point connection device, signal analysis and device, method, and program | |
EP1310943B1 (en) | Speech coding apparatus, speech decoding apparatus and speech coding/decoding method | |
US8665914B2 (en) | Signal analysis/control system and method, signal control apparatus and method, and program | |
JP3406275B2 (en) | Digital signal encoding method, digital signal decoding method, these devices and their respective program recording media | |
JP2000338998A (en) | Audio signal encoding method and decoding method, device therefor, and program recording medium | |
US8473288B2 (en) | Quantizer, encoder, and the methods thereof | |
EP2023339B1 (en) | A low-delay audio coder | |
DE69913976T2 (en) | VOICE PARAMETER COMPRESSION | |
JPH03263100A (en) | Audio encoding and decoding device | |
JP4335245B2 (en) | Quantization device, inverse quantization device, speech acoustic coding device, speech acoustic decoding device, quantization method, and inverse quantization method | |
JP2523286B2 (en) | Speech encoding and decoding method | |
US20100283536A1 (en) | System, apparatus, method and program for signal analysis control, signal analysis and signal control | |
JPH07111456A (en) | Method and device for compressing voice signal | |
JP3010637B2 (en) | Quantization device and quantization method | |
JP3010651B2 (en) | Method and apparatus for adaptive transform coding |