JPH03269343A - Irradiation optical system - Google Patents
Irradiation optical systemInfo
- Publication number
- JPH03269343A JPH03269343A JP2070782A JP7078290A JPH03269343A JP H03269343 A JPH03269343 A JP H03269343A JP 2070782 A JP2070782 A JP 2070782A JP 7078290 A JP7078290 A JP 7078290A JP H03269343 A JPH03269343 A JP H03269343A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- irradiated surface
- optical element
- optical system
- phase modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 122
- 230000001427 coherent effect Effects 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 230000004907 flux Effects 0.000 abstract description 17
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 22
- 239000011521 glass Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000005315 distribution function Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
4
〔産業上の利用分野〕
本発明は、照射光学系に係り、特に、セルアナライザの
中の小物体等を均一に照射するための照射光学系しこ関
するものである。[Detailed Description of the Invention] 4 [Industrial Application Field] The present invention relates to an irradiation optical system, and particularly to an irradiation optical system for uniformly irradiating small objects in a cell analyzer. be.
従来のセルアナライザは、断面積が200x200μm
2程度のガラスのセルと、このセル内の中央部を生理食
塩水等の液体に囲まれて流れる細胞をその運動方向に直
角に照明する照射光学系と、細胞への照射光による蛍光
と散乱光とを検出する検出系とを含んでいる。A conventional cell analyzer has a cross-sectional area of 200 x 200 μm.
A glass cell with a diameter of about 2 mm, an irradiation optical system that illuminates cells flowing in the center of the cell surrounded by a liquid such as physiological saline at right angles to the direction of their movement, and fluorescence and scattering caused by the light irradiated onto the cells. and a detection system that detects light.
セルアナライザは、検出された蛍光と散乱光とにより、
細胞の形状および内部の物質の情報を得るものである。The cell analyzer uses detected fluorescence and scattered light to
It obtains information about the shape of cells and the substances inside them.
照射光強度に分布がある場合、細胞形状やガイド流体の
流れの乱れ等により、細胞の流れがセル中央部からずれ
たときは、検出信号に変化が生じて、測定精度を低下さ
せることになる。If there is a distribution in the irradiation light intensity, if the flow of cells deviates from the center of the cell due to disturbances in the cell shape or guide fluid flow, the detection signal will change and measurement accuracy will decrease. .
従来は、この問題に対して、照射光学系透過率分布フィ
ルタやシリンドリカルレンズ等を追加し、水平方向の光
強度分布を一定にするように努めていた。具体的には、
入射光束に対して直角となるようにシリンドリカルレン
ズを水平に挿入し、更に、光源のガウス形光強度分布を
相殺するために、中央部の光透過率が低い透過率分布フ
ィルタを挿入する等の手段が採られている。この種の従
来技術を示すものには、特開昭63−83633号等が
ある。Conventionally, attempts have been made to address this problem by adding transmittance distribution filters, cylindrical lenses, etc. to the irradiation optical system in an effort to make the horizontal light intensity distribution constant. in particular,
A cylindrical lens is inserted horizontally so that it is perpendicular to the incident light flux, and a transmittance distribution filter with low light transmittance in the center is inserted to cancel out the Gaussian light intensity distribution of the light source. Measures are being taken. Examples of this type of prior art include Japanese Patent Laid-Open No. 83633/1983.
上記従来技術は、照射光の水平方向の光強度分布の均一
化の程度が不十分であり、細胞の流れが乱れると、測定
精度が低下してしまう問題があった。The above-mentioned conventional technology has a problem in that the degree of uniformity of the horizontal light intensity distribution of the irradiated light is insufficient, and when the flow of cells is disturbed, the measurement accuracy decreases.
また、透過率分布フィルタを用いて、明るい中央部の光
を減光し全体の照度を均一化しようとするために、照射
光の利用効率が低く、光源の小型化が困難であった。In addition, since a transmittance distribution filter is used to attenuate the light in the bright central area to make the overall illuminance uniform, the utilization efficiency of the irradiated light is low, making it difficult to miniaturize the light source.
本発明の目的は、照射光の利用効率を低下させずに、水
平方向光強度分布をより均一化する手段を備えた照射光
学系を提供することである。An object of the present invention is to provide an irradiation optical system equipped with means for making the horizontal light intensity distribution more uniform without reducing the utilization efficiency of irradiation light.
本発明は、上記目的を達成するために、少なくとも一つ
の光源から軸対称の強度分布を持って発射される光束に
より横長の被照射面を照明する照射光学系において、前
記光束を前記被照射面の長手方向に中心対称に分割し各
区分の光束を被照射面上で前記長手方向に重ね合わせる
位相変調光学素子を備えた照射光学系を提案するもので
ある。In order to achieve the above object, the present invention provides an irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution. The present invention proposes an irradiation optical system including a phase modulation optical element that divides the beam symmetrically in the longitudinal direction and superimposes the light beams of each section in the longitudinal direction on the irradiated surface.
より、厳密には、xyz遣交座標系のZ成分が負の領域
に存在するコヒーレントな光源からの光束により、XY
平面に平行でXZ平面、YZ平面に対称でありX軸方向
の幅がDX、Y軸方向の幅がDYであり2軸座標f (
f>0)に位置する被照射面を照明する照射光学系にお
いて、前記XY2直交座標系のほぼ原点に配置され、分
割数をN(N≧2)、入射光束のX軸方向幅を(DX×
N)としたとき、yz平面に対称に被照射面をN等分し
た各区分の波面を被照射面上で平行移動して入射光束を
Y軸の正負方向に偏向させ被照射面に集光させる位相変
調光学素子を備えた照射光学系を提案するものである。More precisely, the XY
It is parallel to the plane and symmetrical to the XZ plane and YZ plane, the width in the X axis direction is DX, the width in the Y axis direction is DY, and the two-axis coordinate f (
In the irradiation optical system that illuminates the irradiated surface located at f>0), it is arranged approximately at the origin of the XY2 orthogonal coordinate system, the number of divisions is N (N≧2), and the width of the incident light beam in the X-axis direction is (DX ×
N), the irradiated surface is divided into N equal parts symmetrically about the yz plane, and the wavefront of each section is translated in parallel on the irradiated surface to deflect the incident light flux in the positive and negative directions of the Y-axis and converge on the irradiated surface. This paper proposes an irradiation optical system equipped with a phase modulation optical element that allows
前記位相変調光学素子の振幅位相変調機能を制御し前記
光束の入射光束に直交する平面上の位置を変えさせる音
響光学素子を備えることができる。The light emitting device may include an acousto-optic element that controls the amplitude and phase modulation function of the phase modulation optical element and changes the position of the light beam on a plane orthogonal to the incident light beam.
照射光学系が、複数の被照射面に対応する数の前記位相
変調光学素子と、光源からの光束を各位相変調光学素子
に分割する光学素子とを含むようにすると、複数の被照
射面を一度に照明できる。When the irradiation optical system includes a number of phase modulating optical elements corresponding to the plurality of irradiated surfaces and an optical element that divides the light flux from the light source to each phase modulating optical element, it is possible to cover the plurality of irradiated surfaces. Can be lit all at once.
位相変調光学素子は、光源がら被照射面への方向とこの
方向に垂直方向との少なくとも一方の方向で光学素子の
少なくとも一部を一体化した複合素子とすると、全体を
小型化可能である。The entire phase modulation optical element can be miniaturized if it is made into a composite element in which at least a portion of the optical element is integrated in at least one of the directions from the light source toward the irradiated surface and the direction perpendicular to this direction.
これらの照射光学系を利用すれば、XYZ直交座標系の
X=0、Z=f付近をほぼY軸方向に運動する物体を照
射する照射光学系と、照射により生じた散乱光を検出す
る検出系と、この検出系がらの検出信号により物体の形
状等のデータを求める信号処理系とからなる物体形状計
測装置が得られる。By using these irradiation optical systems, you can create an irradiation optical system that irradiates an object moving approximately in the Y-axis direction near X=0, Z=f of the XYZ orthogonal coordinate system, and a detection system that detects the scattered light generated by the irradiation. An object shape measuring device is obtained, which includes a signal processing system that obtains data such as the shape of an object using detection signals from the detection system.
散乱光と蛍光とを検出する検出器を用いて物体8− 形状蛍光計測装置とすることもできる。Object 8- using a detector that detects scattered light and fluorescence It can also be used as a shape fluorescence measuring device.
位相変調光学素子は、非球面バルクレンズ、ブレーズ型
グレーティング、ホログラム、ブレーズ型ホログラム等
の形式で提供可能である。The phase modulation optical element can be provided in the form of an aspherical bulk lens, a blazed grating, a hologram, a blazed hologram, or the like.
いずれの場合も、前記位相変調光学素子の振幅位相変調
機能を制御し、入射光束に直交する平面に対する出射光
束の位置を変えさせる音響光学素子を備えてもよい。In either case, an acousto-optic element may be provided that controls the amplitude and phase modulation function of the phase modulation optical element and changes the position of the output light beam with respect to a plane orthogonal to the input light beam.
本発明は、さらに、前記位相変調光学素子の被照射面の
位置に配置されるイメージセンサと、このイメージセン
サからの信号を処理し被照射面における照射光束の強度
プロファイル等を表示する画像処理装置と、位相変調光
学素子を搭載し照射光束の強度プロファイル等に応じて
前記光源9位相変調光学素子の少なくとも一つの位置を
調整する手段とを含む照射光学系または位相変調光学素
子の組立装置を提案するものである。The present invention further provides an image sensor disposed at a position of the irradiated surface of the phase modulating optical element, and an image processing device that processes signals from the image sensor and displays an intensity profile of the irradiated light beam on the irradiated surface. and means for adjusting the position of at least one of the phase modulating optical elements of the light source 9 according to the intensity profile of the irradiation light beam, etc. It is something to do.
本発明の位相変調光学素子は、入射光束を中心対称に複
数の区分に分離し、区分された出射光束を被照射面上で
中心対称に重ね合わせるように偏向させるので、例えば
ガウス型の強度分布を持つ入射光束の中心区分の光束は
被照射面の周辺部分を照明することになり、従来よりも
はるかに均一な照度となる。The phase modulation optical element of the present invention separates the incident light beam into a plurality of sections symmetrically with respect to the center, and deflects the divided output light beams so that they are overlapped symmetrically with the center on the irradiated surface, so that, for example, a Gaussian intensity distribution is achieved. The light beam in the central section of the incident light beam having a radius illuminates the peripheral portion of the irradiated surface, resulting in a much more uniform illuminance than in the past.
その際に、従来のような透過率を変えて減光する手段を
使わないから、光の利用効率が低下しない。At this time, the light utilization efficiency does not decrease because the conventional means of reducing light by changing the transmittance is not used.
したがって、この位相変調光学素子を、例えばセルアナ
ライザに応用した場合は、小物体の位置が被照射面内で
左右の周辺方向にずれた場合でも、小物体からの散乱光
と蛍光とを用いる物体形状測定や物体内部の物質測定の
測定精度が上がる。Therefore, when this phase modulation optical element is applied to, for example, a cell analyzer, even if the position of the small object shifts in the left and right peripheral directions within the irradiated surface, it is possible to use the scattered light and fluorescence from the small object. The measurement accuracy of shape measurement and substance measurement inside objects is improved.
次に、図面を参照して、本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.
第工図は本発明による位相変調光学素子を採用した照射
光学系の一実施例を示す図、第2図は第1図実施例の位
相変調光学素子の働きを説明する図、第3図は一つの被
照射面を照射する位相変調光学素子の特性をより具体的
に説明する図、第4図は被照射面上の位置と光強度分布
との関係を示す図である。Fig. 2 is a diagram illustrating an embodiment of the irradiation optical system employing the phase modulation optical element according to the present invention, Fig. 2 is a diagram illustrating the function of the phase modulation optical element of the embodiment shown in Fig. FIG. 4 is a diagram illustrating in more detail the characteristics of a phase modulation optical element that irradiates one irradiated surface. FIG. 4 is a diagram showing the relationship between the position on the irradiated surface and the light intensity distribution.
第1図において、コヒーレント光源2から出射された光
束は、本発明による位相変調光学素子4により偏向され
、被照射面6を照射する。In FIG. 1, a beam of light emitted from a coherent light source 2 is deflected by a phase modulation optical element 4 according to the present invention, and illuminates an irradiated surface 6.
その際の位相変調素子4の機能を、第2図により説明す
る。位相変調光学素子4の入射光束に直角な幅をDとし
、被照射面6の幅をDxとし、幅りを中心対称にN等分
した1区分の幅をdとすると、任意のn番目の区分dn
から出射した光束が、被照射面6上で幅Dxに広がる。The function of the phase modulation element 4 at that time will be explained with reference to FIG. If the width perpendicular to the incident light beam of the phase modulation optical element 4 is D, the width of the irradiated surface 6 is Dx, and the width of one division obtained by dividing the width into N equal parts centrally symmetrically is d, then any nth Category dn
The luminous flux emitted from the light beam spreads to a width Dx on the irradiated surface 6.
それぞれの区分dnから出射する円筒波は、中心対称に
被照射面6で重なり合うので、中心部分の入射光束が被
照射面6の周辺部を照明でき、光強度分布がより均一に
なる。Since the cylindrical waves emitted from the respective sections dn overlap on the irradiated surface 6 in a center-symmetrical manner, the incident light beam at the center can illuminate the peripheral portion of the irradiated surface 6, making the light intensity distribution more uniform.
出射光束を被照射面6でこのように重ね合わせるために
は、位相変調光学素子4は、区分内でピッチが変化する
直線グレーティングとなる。n番目の区分の中心座標を
d−n、中心座標からの変1−
位をηとすると、区分dnのηにおけるピッチAn(η
)は、(1)式で示される。In order to superimpose the emitted light beams on the irradiated surface 6 in this manner, the phase modulation optical element 4 becomes a linear grating whose pitch changes within the section. If the center coordinates of the n-th section are d-n, and the displacement 1-position from the center coordinates is η, then the pitch An(η
) is expressed by equation (1).
位相変調光学素子4は、入射光束を平面波から円筒波に
変換し、被照射面6上で対称に重ね合わせる。その結果
、被照射面6上の光強度分布はより均一化される。The phase modulating optical element 4 converts the incident light beam from a plane wave to a cylindrical wave, and superimposes the waves symmetrically on the irradiated surface 6. As a result, the light intensity distribution on the irradiated surface 6 is made more uniform.
第3図は、入射光束を2分割して一つの被照射面6を照
射する場合をより具体的に示す図である。FIG. 3 is a diagram more specifically showing the case where the incident light beam is divided into two and one irradiated surface 6 is irradiated.
第3図(a)の位相変調光学素子は、Z軸上で正の方向
に進みYZ平面に対称な光強度分布を持つコヒーレント
な入射光束31をXY平面に平行な2平面p1.p2で
位相変調する機能を有する。その大きさは、X、Y、Z
方向にそれぞれDXDXWであり、平面P1がXY平面
に、中心が原点に一致するように置かれている。被照射
面6は、大きさがDXXDYであり、XY平面に平行で
原点からfにある。入射光束の大きさは光学素子の大き
さよりは大きいとする。The phase modulation optical element shown in FIG. 3(a) converts a coherent incident light beam 31 that advances in the positive direction on the Z-axis and has a light intensity distribution symmetrical to the YZ plane into two planes p1 and 2 parallel to the XY plane. It has a function of phase modulating with p2. Its size is X, Y, Z
The directions are DXDXW, respectively, and the plane P1 is placed on the XY plane, and the center is placed on the origin. The irradiated surface 6 has a size of DXXDY, is parallel to the XY plane, and is located at f from the origin. It is assumed that the size of the incident light beam is larger than the size of the optical element.
2−
第3図(c)に示すように、コヒーレントな入射光束3
1が位相変調光学素子4に入射すると、平面P□上に存
在する2つの位相変調素子4a。2- As shown in Fig. 3(c), a coherent incident beam 3
1 enters the phase modulation optical element 4, two phase modulation elements 4a exist on the plane P□.
4bにより、出射光束34a、34bは一〇、θだけ偏
向され、被照射面6上で重ね合わせられる。4b, the emitted light beams 34a and 34b are deflected by 10 and θ, and are superimposed on the irradiated surface 6.
ここで、2つの位相変調素子4a、4bに入射する光波
は、y方向成分の電界のみを有し、光束直径=2aで、
t、z=一定とすると、それぞれの成分は、(2)式で
表される。Here, the light waves incident on the two phase modulation elements 4a and 4b have only the electric field of the y-direction component, and the beam diameter is 2a,
Assuming that t and z are constant, each component is expressed by equation (2).
2a:ビーム直径
ここで、ガウス分布型の光強度分布を持つ入射ビームの
ビーム直径を2aとし、入射ビームの強度分布関数をX
軸方向にN等分し、それぞれの区間を直線近似したとき
の電界分布関数E、(x)は、(3)式で表される。2a: Beam diameter Here, the beam diameter of the incident beam with Gaussian distribution type light intensity distribution is 2a, and the intensity distribution function of the incident beam is
The electric field distribution function E, (x) obtained by dividing the area into N equal parts in the axial direction and linearly approximating each section is expressed by equation (3).
+□(e−”’型)′−8−(H)や。−(π)、・・
・・・・(3)
ただし、xn−1<X<Xn、Xn= 、nさらに、被
照射面6上の電界は、(4)式で表される。+□ (e-"'type)'-8-(H), -(π),...
(3) However, xn-1<X<Xn, Xn= , n Furthermore, the electric field on the irradiated surface 6 is expressed by equation (4).
1 (x)= I el(x)+ e、(x)l ’″
−・・−・−(4)したがって、被照射面6上の光
強度分布関数I(x)は、(5)式で表される。1 (x)=I el(x)+e,(x)l'''
-...- (4) Therefore, the light intensity distribution function I(x) on the irradiated surface 6 is expressed by equation (5).
I (x)= 4 (b n −a n xo)2co
s2kx−x・・・・・・(5)
ただし、
−1
b、 =Eo(n e −(N ”−(n−1)e−(
N))第4図は、入射光の波長λ=488nm、ビーム
径2a=200μm、被照射面幅DX=工00μm、D
Y=2μm、原点と被照射面との距離を200μmとし
たときの(5)式の計算結果を示す図である。I (x) = 4 (b n -a n xo)2co
s2kx−x・・・・・・(5) However, −1 b, =Eo(ne −(N ”−(n−1)e−(
N)) In Figure 4, the wavelength of the incident light is λ = 488 nm, the beam diameter 2a = 200 μm, the width of the irradiated surface DX = 00 μm, and D
FIG. 6 is a diagram showing the calculation results of equation (5) when Y=2 μm and the distance between the origin and the irradiated surface is 200 μm.
この場合、1μmピッチの干渉縞が生ずるが、被照射物
体が直径20〜30μm程度の細胞なので、この干渉縞
は無視できる。In this case, interference fringes with a pitch of 1 μm are generated, but since the object to be irradiated is a cell with a diameter of about 20 to 30 μm, these interference fringes can be ignored.
また、中心からX軸方向に507zm離れた点での中心
部に対する光強度の低下の割合は、本発明の位相変調光
学素子4を用いない場合は約68%であるが、本発明で
は約15%の低下まで改善される。Furthermore, the rate of decrease in light intensity with respect to the center at a point 507 zm away from the center in the % reduction.
また、本発明の位相変調光学素子4を用いた場合は、従
来の透過率分布フィルタを用いる場合と比較して、中心
付近の光強度は約3.3倍になる。Furthermore, when the phase modulating optical element 4 of the present invention is used, the light intensity near the center is approximately 3.3 times as high as when using a conventional transmittance distribution filter.
すなわち、本発明の位相変調光学素子4を用いた場合、
被照射面6のX軸方向±50μmの領域にわたり、光強
度の変化率は49%改善され、光強度自体は、約3.3
倍強くなり、光の利用効率が向上することになる。That is, when using the phase modulation optical element 4 of the present invention,
Over a region of ±50 μm in the X-axis direction of the irradiated surface 6, the rate of change in light intensity was improved by 49%, and the light intensity itself was approximately 3.3
It will be twice as strong and the efficiency of light usage will be improved.
一方、Y軸方向については、位相変調光学素子4の平面
P2に位置する位相変調素子により、第3図(d)に示
すように、入射光束31を原点からfだけ離れた直線z
=f上に集光するようにす15−
る。しかし、回折により、光束はY軸方向に(6)式で
表される大きさDYだけ広がる。On the other hand, in the Y-axis direction, the phase modulation element located on the plane P2 of the phase modulation optical element 4 directs the incident light beam 31 to a straight line z separated by f from the origin, as shown in FIG. 3(d).
=f15- However, due to diffraction, the light beam spreads in the Y-axis direction by a size DY expressed by equation (6).
また、強度分布については、(7)式のようになる。Moreover, the intensity distribution is as shown in equation (7).
ただし、J□(x)はベッセル関数
このように、X軸方向に対称な光強度分布を持つ入射光
束31を2面の位相変調素子を備えた位相変調光学素子
4に入射させることにより、第3図(b)に示すように
、被照射面6において、Y軸方向には中央にピークを持
ちX軸方向にはほぼ一定の光強度分布を持つ照明光を得
ることができる。However, J□(x) is a Bessel function. By making the incident light beam 31 having a symmetrical light intensity distribution in the X-axis direction enter the phase modulation optical element 4 equipped with two-plane phase modulation elements, As shown in FIG. 3(b), illumination light having a peak at the center in the Y-axis direction and a substantially constant light intensity distribution in the X-axis direction can be obtained on the illuminated surface 6.
第5図は、第3図に示した照射光学系を用いた物体形状
蛍光計測装置の一実施例の構成を示す図である。FIG. 5 is a diagram showing the configuration of an embodiment of an object shape fluorescence measuring device using the irradiation optical system shown in FIG. 3.
図示しないコヒーレント光源から2軸方向に発せられた
入射平行光束51は、XY平面と平行に16−
配置されている位相変調光学素子52に入射し、原点か
らZ軸方向にfだけ離れた被照射面53に集光される。An incident parallel light beam 51 emitted in two axial directions from a coherent light source (not shown) enters a phase modulating optical element 52 arranged parallel to the XY plane, and is directed to an irradiated object located f away from the origin in the Z-axis direction. The light is focused on the surface 53.
形状を計測される小物体54は、数十μmオーダーの大
きさを有し、z=fのおおよその直線上をY軸の負の方
向に運動する。これらの小物体54からの散乱光は、検
出器55により検出される。検出器55の出力信号は、
信号処理装置56に取り込まれ、形状を示すデータとな
る。The small object 54 whose shape is measured has a size on the order of several tens of micrometers, and moves approximately on a straight line of z=f in the negative direction of the Y axis. Scattered light from these small objects 54 is detected by a detector 55. The output signal of the detector 55 is
The signal is taken into the signal processing device 56 and becomes data indicating the shape.
さて、数十μmオーダーの大きさの小物体54の光束が
照射されたとき、その大きさに応じて、特定の方向に強
い散乱光が生ずる。この散乱光の強度を正確に測定でき
れば、小物体の大きさを正確に計測できることになる。Now, when a light beam from a small object 54 with a size on the order of several tens of micrometers is irradiated, strong scattered light is generated in a specific direction depending on the size. If the intensity of this scattered light can be measured accurately, the size of a small object can be accurately measured.
ところが、測定中に小物体の運動がX軸方向にわずかに
変位した場合、照射光にX軸方向の強弱の分布があると
、散乱光にもその影響が現れ、小物体の形状の測定に誤
差が生じていた。However, if the movement of the small object is slightly displaced in the X-axis direction during measurement, and the irradiated light has a distribution of strength in the X-axis direction, the scattered light will also be affected by this, making it difficult to measure the shape of the small object. An error had occurred.
これに対して、第3図の位相変調光学素子を用いる本実
施例においては、被照射面内でのX軸方向の光強度の分
布が非常に均一となるので、小物体が被照射面内でX軸
方向に変位しても、小物体の測定値への影響がごくわず
かになり、実質的に無視できる。In contrast, in this embodiment using the phase modulation optical element shown in Fig. 3, the distribution of light intensity in the X-axis direction within the irradiated surface is very uniform, so that small objects can Even if the small object is displaced in the X-axis direction, the influence of the small object on the measured value is very small and can be virtually ignored.
なお、第5図に示す物体形状計測装置において、小物体
中のある物体aに吸着される蛍光物質を含ませておくこ
とにより、照射された際に生ずる蛍光の大きさで、物体
aを定量的に間接測定できる。In addition, in the object shape measuring device shown in Fig. 5, by including a fluorescent substance that is adsorbed on a certain object a among small objects, the object a can be quantified based on the size of the fluorescence generated when it is irradiated. It can be measured indirectly.
この場合も、第3図の照射光学系を用いると、従来と比
較して、X軸方向の物体の位置変化による蛍光強度の変
化が低減される。したがって、細胞内蛍光物体の測定精
度が上がる。Also in this case, when the irradiation optical system shown in FIG. 3 is used, changes in fluorescence intensity due to changes in the position of the object in the X-axis direction are reduced compared to the conventional system. Therefore, the accuracy of measuring intracellular fluorescent objects increases.
第6図(a)はホログラム回折効果と音響光学効果とを
併用する位相変調光学素子の一実施例の構造を示す図で
ある。この光学素子は、第3図(a)に示した光学素子
と、そのyz平面に平行な面に貼り付けた圧電性セラミ
ックス等の圧電性物質61.62と、これらの圧電性物
質61゜62に高周波信号を供給する高周波電源63゜
64とからなる。FIG. 6(a) is a diagram showing the structure of an embodiment of a phase modulation optical element that uses both the hologram diffraction effect and the acousto-optic effect. This optical element consists of the optical element shown in FIG. 3(a), piezoelectric materials 61, 62 such as piezoelectric ceramics attached to the surface parallel to the yz plane, and these piezoelectric materials 61, 62. and high-frequency power sources 63 and 64 for supplying high-frequency signals.
圧電性物質62に数MHzオーダーの高周波電界を印加
すると、ガラス材65の中を縦波がY軸の負の方向に向
かって進行する。縦波は粗密波であるから、ガラス材6
5に屈折率の変化を生じさせ、位相変調型のグレーティ
ング66を生じさせる。入射光束は、このグレーティン
グ66により、回折されて偏向する。When a high frequency electric field on the order of several MHz is applied to the piezoelectric material 62, a longitudinal wave propagates through the glass material 65 in the negative direction of the Y axis. Since longitudinal waves are compressional waves, glass material 6
5 to cause a change in the refractive index to produce a phase modulation type grating 66. The incident light beam is diffracted and deflected by this grating 66.
入射光束の波長をλ。、印加電界の周波数をf。λ is the wavelength of the incident light flux. , the frequency of the applied electric field is f.
縦波の媒質すなわちガラス材65中での速度をVとする
と、偏向角θは(8)式で示される。When the velocity of the longitudinal wave in the medium, ie, the glass material 65, is V, the deflection angle θ is expressed by equation (8).
θ=λ。f/V ・・・・・・ (
8)このように、印加電界の周波数に応じてOが変化す
るから、集光点のZ軸からの位置を変えられることにな
る。θ=λ. f/V・・・・・・(
8) In this way, since O changes depending on the frequency of the applied electric field, the position of the focal point from the Z axis can be changed.
圧電性物質61についても同様のことがいえる。The same can be said of the piezoelectric material 61.
したがって、位相変調光学素子は、印加電界vx、vy
の周波数fx、fyを変えると、集光点をXY平面に平
行な面内で移動できる。Therefore, the phase modulating optical element has an applied electric field vx, vy
By changing the frequencies fx and fy, the focal point can be moved within a plane parallel to the XY plane.
第7図は第6図の位相変調光学素子を用いた物体追随型
の物体形状測定装置の一実施例を示す図である。この物
体形状測定装置は、第6図の位相19−
変調光学素子を採用した照射光学系72と、小物体74
からの散乱光の検出器75と、検出信号の増幅器76と
、増幅された信号を積算する積算器77と、増幅された
信号に基づきトリガ信号を生ずるトリガ発生器78と、
そのトリガ信号を取り込み数M Hzオーダーの信号を
出力する周波数可変発振器79とからなる。FIG. 7 is a diagram showing an embodiment of an object tracking type object shape measuring device using the phase modulation optical element shown in FIG. 6. This object shape measuring device includes an irradiation optical system 72 employing a phase 19-modulation optical element shown in FIG. 6, and a small object 74.
a detector 75 for scattered light from the detector 75, an amplifier 76 for the detected signal, an integrator 77 for integrating the amplified signal, and a trigger generator 78 for generating a trigger signal based on the amplified signal.
It consists of a variable frequency oscillator 79 that receives the trigger signal and outputs a signal on the order of several MHz.
小物体74は被照射面に入ると、散乱光または蛍光を発
する。この光は検出器75により検出される。検出信号
は、増幅器76からトリガ発生器78に送られ、トリガ
信号を生じさせる。このトリガ信号に応じて、周波数可
変発振器79は、発振周波数を高くする。照射光学系に
印加される周波数が高くなるほど、照射光の偏向角が大
きくなるので、照射光は移動する物体に長い時間追随で
きることになる。したがって、実際に駒情報を得る側の
信号処理系にある積算器77の各小物体についての積算
時間を長くとることができ、物体情報のSlN比を上げ
ることが可能である。When the small object 74 enters the illuminated surface, it emits scattered light or fluorescence. This light is detected by detector 75. The detection signal is sent from amplifier 76 to trigger generator 78 to generate a trigger signal. In response to this trigger signal, variable frequency oscillator 79 increases the oscillation frequency. The higher the frequency applied to the irradiation optical system, the larger the deflection angle of the irradiation light, which means that the irradiation light can follow a moving object for a longer time. Therefore, it is possible to increase the integration time for each small object in the integrator 77 in the signal processing system that actually obtains the piece information, and it is possible to increase the SIN ratio of the object information.
特に、蛍光効率の低い蛍光物質を用いる場合で20−
も、蛍光により、物体形状や物体内部の物質の計測が高
精度となる。In particular, even when a fluorescent substance with low fluorescence efficiency is used, the measurement of the shape of an object and the substance inside the object can be made with high accuracy due to fluorescence.
第8図は位相変調光学素子の組立装置を示す図である。FIG. 8 is a diagram showing an assembly apparatus for a phase modulation optical element.
この組立装置は、複数の位相変調素子82を入射光束8
1の光路に置き、位相変調素子82を通過してきた光束
を受光するイメージセンサ83と、このイメージセンサ
83からの信号を処理し光強度プロファイル等を表示す
る画像処理装置とからなる。This assembly device connects a plurality of phase modulating elements 82 to an incident light beam 8.
The image sensor 83 is placed on one optical path and receives the light beam that has passed through the phase modulation element 82, and an image processing device that processes the signal from the image sensor 83 and displays a light intensity profile and the like.
複数の位相変調素子82を組立て、目的とする特性の位
相変調光学素子を得るには、画像処理装置のモニタを見
ながら位相変調素子82同士の角度や距離を調整し、固
定すればよい。In order to assemble a plurality of phase modulation elements 82 and obtain a phase modulation optical element with desired characteristics, the angles and distances between the phase modulation elements 82 may be adjusted and fixed while watching the monitor of the image processing device.
第3図の実施例では、直線グレーティングの位相変調素
子からなる位相変調光学素子を示したが、第9図のよう
なふたつの非球面91.92を有するバルク光学素子で
構成することもできる。In the embodiment shown in FIG. 3, a phase modulating optical element made of a linear grating phase modulating element is shown, but it can also be constructed from a bulk optical element having two aspherical surfaces 91 and 92 as shown in FIG.
また、第10図に示すように、第3図に用いている直線
グレーティングをブレーズ化した位相変調光学素子を用
いてもよい。この場合は、−次の回折方向がはっきりし
ているので、高次の回折波を低減することが可能である
。Furthermore, as shown in FIG. 10, a phase modulation optical element in which the linear grating used in FIG. 3 is blazed may be used. In this case, since the -order diffraction direction is clear, it is possible to reduce high-order diffraction waves.
このほかに、ホログラムやブレーズ型ホログラムを用い
ることが可能である。In addition, it is possible to use a hologram or a blazed hologram.
第11図は3つの被照射面を有する本発明による照射光
学系の実施例を示す図である。コヒーレント光源2と位
相変調光学素子40〜4eと被照射面6a〜6cはそれ
ぞれ第3図の基礎的実施例のコヒーレント光源2偵相変
調光学素子、被照射面と変わらない。FIG. 11 is a diagram showing an embodiment of the irradiation optical system according to the present invention having three irradiated surfaces. The coherent light source 2, the phase modulating optical elements 40 to 4e, and the irradiated surfaces 6a to 6c are the same as the coherent light source 2, the phase modulating optical elements, and the irradiated surface of the basic embodiment shown in FIG. 3, respectively.
位相変調素子4fは、入射光束を1次、0次。The phase modulation element 4f converts the incident light beam into first order and zero order.
−1次の回折波に分離する直線グレーティングである。It is a linear grating that separates into -1st order diffraction waves.
位相変調素子4a、4bは、位相変調素子4fからの出
射光束がそれぞれ位相変調素子4c。In the phase modulation elements 4a and 4b, the light flux emitted from the phase modulation element 4f is the phase modulation element 4c, respectively.
4eに垂直に入射するように偏向する機能を有し、例え
ば直線グレーティング等のホログラム素子またはプリズ
ムなどの屈折光学素子等からなる。It has a function of deflecting the light so as to be incident perpendicularly to 4e, and is made of, for example, a hologram element such as a linear grating or a refractive optical element such as a prism.
本実施例によれば、ひとつのコヒーレント光源からの光
束により複数の被照射面を照明できる。According to this embodiment, a plurality of illuminated surfaces can be illuminated with a light beam from one coherent light source.
その場合に、減光が避けられなかった従来の透過率分布
型フィルタを用いていないので、光束の利用効率が低下
しない。In this case, since the conventional transmittance distribution filter, which inevitably causes light attenuation, is not used, the utilization efficiency of the luminous flux does not decrease.
第12図は第1工図実施例の位相変調光学素子を一体化
した光学素子を用いる実施例を示す図である。FIG. 12 is a diagram showing an embodiment using an optical element in which the phase modulating optical element of the first embodiment is integrated.
本実施例の一体化型位相変調光学素子23は、ガラス板
21の両面に既に述べた直線グレーティング4f、4a
、4bを形成し、ガラス板22の片面に直線グレーティ
ング4c、4d’、4eを形威し、ガラス板21と22
とを一体化して、位相変調光学素子としたものである。The integrated phase modulating optical element 23 of this embodiment has the linear gratings 4f and 4a described above on both sides of the glass plate 21.
, 4b, and linear gratings 4c, 4d', 4e are formed on one side of the glass plate 22, and the glass plates 21 and 22
These are integrated to form a phase modulation optical element.
このように一体化すると、部品加工が簡略化され、照射
光学系全体のコンパクト化にもつながる。Integration in this manner simplifies component processing and leads to a more compact irradiation optical system as a whole.
なお、第11図および第12図の実施例では、被照射面
の数を3面として説明したが、2面または更に多い数の
面でもよいことはいうまでもない。In the embodiments shown in FIGS. 11 and 12, the number of irradiated surfaces is three, but it goes without saying that the number of irradiated surfaces may be two or even larger.
本発明によれば、コヒーレントで水平方向に中心対称な
光強度分布を有する入射光束を被照射面の長手方向に中
心対称に分割し、各区分の光束を23−
被照射面上で前記長手方向に重ね合わせる位相変調光学
素子を用いているので、被照射面の長手方向における光
強度分布を極めて均一化できる。According to the present invention, an incident light beam having a coherent and horizontally center-symmetrical light intensity distribution is divided centrally symmetrically in the longitudinal direction of the irradiated surface, and the light beams of each division are divided into 23- sections on the irradiated surface in the longitudinal direction. Since a phase modulating optical element is used which is superimposed on the irradiated surface, the light intensity distribution in the longitudinal direction of the irradiated surface can be made extremely uniform.
したがって、例えば、セルアナライザの中で小物体の前
記長手方向の位置が変わっても、小物体からの散乱光変
動がなく、細胞の形状や大きさを正確に計測できる。Therefore, for example, even if the position of the small object in the longitudinal direction changes in the cell analyzer, there is no fluctuation in the scattered light from the small object, and the shape and size of the cell can be accurately measured.
また、前記被照射面の長手方向で光強度を均一化するた
めに透過率分布型フィルタを用いていないから、光束の
利用効率が良い。Furthermore, since no transmittance distribution type filter is used to make the light intensity uniform in the longitudinal direction of the irradiated surface, the efficiency of using the luminous flux is good.
さらに、高周波電界の印加により光束の集光点を小物体
に追随させる手段を採用できるので、検出信号の積算結
果の精度が高まる。Furthermore, since it is possible to adopt means for causing the focal point of the light beam to follow a small object by applying a high-frequency electric field, the accuracy of the integration result of the detection signal is increased.
特に、計測すべき小物体の蛍光物質を吸着させて蛍光を
検出する場合も、積算時間を長くとれ、S/N比のよい
測定結果が得られる。Particularly, when detecting fluorescence by adsorbing a fluorescent substance of a small object to be measured, the integration time can be increased and measurement results with a good S/N ratio can be obtained.
第1図は本発明による位相変調光学素子を採用した照射
光学系の一実施例を示す図、第2図は第1図実施例の位
相変調光学素子の働きを説明する24
図、第3図は一つの被照射面を照射する位相変調光学素
子の特性をより具体的に説明する図、第4図は被照射面
上の位置と光強度分布との関係を示す図、第5図は本発
明による物体形状蛍光計測装置の一実施例の構成を示す
図、第6図はホログラム回折効果と音響光学効果とを併
用する位相変調光学素子の一実施例を示す図、第7図は
第6図の位相変調光学素子を用いた物体追随型の物体形
状測定装置の一実施例を示す図、第8図は位相変調光学
素子の組立装置を示す図、第9図はバルク型位相変調光
学素子の一′例を示す図、第10図はブレーズ型グレー
ティングを用いる位相変調光学素子を示す図、第11図
は3つの被照射面を有する本発明による照射光学系の実
施例を示す図、第12図は一体化した光学素子を用いた
本発明による照射光学系の実施例を示す図である。
2・・・コヒーレント光源、
4・・・位相変調(光学)素子、6・・・被照射面、工
2・・・光学素子、21.22 ・ガラス板、23・・
・一体化型光学素子、31・・入射光束、↓・・・入射
平行光束、52・・・光学素子、3・・・被照射面、5
4・・・小物体、55・・・検出器、6・・・信号処理
装置、61.62・・・圧電性物質、3.64・・・高
周波電源、65・・・ガラス材料、6・・・位相変調型
グレーティング、
1・・・入射平行光束、72・・・照射光学系、4・・
・小物体、75・・検出器、76・・・増幅器、7・・
・積算器、78・・・トリガ発生器、9・・・周波数可
変発振器、81・・・入射光束、2・・・位相変調素子
、83・・イメージセンサ、4・・・画像処理装置、9
1.92・・・非球面、01・・・ブレーズ型グレーテ
ィング。FIG. 1 is a diagram showing an embodiment of the irradiation optical system employing the phase modulation optical element according to the present invention, and FIG. 2 is a diagram illustrating the function of the phase modulation optical element of the embodiment shown in FIG. is a diagram more specifically explaining the characteristics of a phase modulation optical element that irradiates one irradiated surface, Figure 4 is a diagram showing the relationship between the position on the irradiated surface and the light intensity distribution, and Figure 5 is the main figure. FIG. 6 is a diagram showing the configuration of an embodiment of the object shape fluorescence measuring device according to the invention, FIG. A diagram showing an example of an object tracking type object shape measuring device using the phase modulation optical element shown in the figure, Figure 8 is a diagram showing an assembly apparatus for the phase modulation optical element, and Figure 9 is a diagram showing a bulk type phase modulation optical element. 10 is a diagram showing a phase modulation optical element using a blazed grating. FIG. 11 is a diagram showing an embodiment of the irradiation optical system according to the present invention having three irradiated surfaces. FIG. 12 shows an embodiment of the irradiation optical system according to the invention using integrated optical elements. 2... Coherent light source, 4... Phase modulation (optical) element, 6... Irradiated surface, Work 2... Optical element, 21.22 ・Glass plate, 23...
・Integrated optical element, 31...Incoming light flux, ↓...Incoming parallel light flux, 52...Optical element, 3...Irradiated surface, 5
4...Small object, 55...Detector, 6...Signal processing device, 61.62...Piezoelectric material, 3.64...High frequency power supply, 65...Glass material, 6... ...Phase modulation grating, 1...Incoming parallel light flux, 72...Irradiation optical system, 4...
・Small object, 75...Detector, 76...Amplifier, 7...
- Integrator, 78... Trigger generator, 9... Frequency variable oscillator, 81... Incident light flux, 2... Phase modulation element, 83... Image sensor, 4... Image processing device, 9
1.92...Aspherical surface, 01...Blaze type grating.
Claims (1)
て発射される光束により横長の被照射面を照明する照射
光学系において、 前記光束を前記被照射面の長手方向に中心対称に分割し
各区分の光束を前記被照射面上で前記長手方向に重ね合
わせる位相変調光学素子を備えたことを特徴とする照射
光学系。 2、XYZ直交座標系のZ成分が負の領域に存在するコ
ヒーレントな光源からの光束により、XY平面に平行で
XZ平面、YZ平面に対称でありX軸方向の幅がDX、
Y軸方向の幅がDYでありZ軸座標f(f>0)に位置
する被照射面を照明する照射光学系において、 前記XYZ直交座標系のほぼ原点に配置され、分割数を
N(N≧2)、入射光束のX軸方向幅を(DX×N)と
したとき、YZ平面に対称に被照射面をN等分した各区
分の波面を被照射面上で平行移動して入射光束をY軸の
正負方向に偏向させ被照射面に集光させる位相変調光学
素子を備えたことを特徴とする照射光学系。 3、請求項1または2に記載の照射光学系において、 前記位相変調光学素子の振幅位相変調機能を制御し前記
光束の入射光束に直交する平面上の位置を変えさせる音
響光学素子を備えたことを特徴とする照射光学系。 4、請求項1〜3のいずれか一項に記載の照射光学系に
おいて、 前記照射光学系が、複数の前記被照射面に対応する数の
前記位相変調光学素子と、前記光源からの光束を各位相
変調光学素子に分割する光学素子とを含むことを特徴と
する照射光学系。 5、請求項4に記載の照射光学系において、前記光源か
ら被照射面への方向とこの方向に垂直方向との少なくと
も一方の方向で前記光学素子の少なくとも一部を一体化
した複合素子を備えたことを特徴とする照射光学系。 6、XYZ直交座標系のX=0、Z=f付近をほぼY軸
方向に運動する物体を照射する請求項2〜5のいずれか
一項に記載の照射光学系と、照射により生じた散乱光を
検出する検出系と、当該検出系からの検出信号により前
記物体の形状等のデータを求める信号処理系とからなる
物体形状計測装置。 7、請求項6に記載の物体形状計測装置において、前記
検出系が照射により生じた散乱光と蛍光とを検出する検
出器を含むことを特徴とする物体形状蛍光計測装置。 8、少なくとも一つの光源から軸対称の強度分布を持っ
て発射される光束により横長の被照射面を照明する照射
光学系において、 非球面バルクレンズからなり、前記光束を前記被照射面
の長手方向に中心対称に分割し各区分の光束を前記被照
射面上で前記長手方向に重ね合わせる位相変調光学素子
。 9、少なくとも一つの光源から軸対称の強度分布を持っ
て発射される光束により横長の被照射面を照明する照射
光学系において、 ブレーズ型グレーティングからなり、前記光束を前記被
照射面の長手方向に中心対称に分割し各区分の光束を前
記被照射面上で前記長手方向に重ね合わせる位相変調光
学素子。 10、少なくとも一つの光源から軸対称の強度分布を持
って発射される光束により横長の被照射面を照明する照
射光学系において、 ホログラムグからなり、前記光束を前記被照射面の長手
方向に中心対称に分割し各区分の光束を前記被照射面上
で前記長手方向に重ね合わせる位相変調光学素子。 11、少なくとも1つの光源から軸対称の強度分布を持
って発射される光束により横長の被照射面を照明する照
射光学系において、 ブレーズ型ホログラムグからなり、前記光束を前記被照
射面の長手方向に中心対称に分割し各区分の光束を前記
被照射面上で前記長手方向に重ね合わせる位相変調光学
素子。 12、請求項8〜11のいずれか一項に記載の位相変調
光学素子において、 前記位相変調光学素子の振幅位相変調機能を制御し前記
光束の入射光束に直交する平面上の位置を変えさせる音
響光学素子を備えたことを特徴とする位相変調光学素子
。 13、請求項1〜12のいずれか一項に記載の照射光学
系または位相変調光学素子の組立装置において、 前記位相変調光学素子の被照射面の位置に配置されるイ
メージセンサと、 当該イメージセンサからの信号を処理し被照射面におけ
る照射光束の強度プロファイル等を表示する画像処理装
置と、 前記位相変調光学素子を搭載し照射光束の強度プロファ
イル等に応じて前記光源、位相変調光学素子の少なくと
も一つの位置を調整する手段とを含むことを特徴とする
照射光学系または位相変調光学素子の組立装置。[Claims] 1. In an irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution, the light beam is directed in the longitudinal direction of the irradiated surface. 1. An irradiation optical system comprising a phase modulation optical element that divides the light beam into centrally symmetrical sections and superimposes the light beams of each section on the irradiated surface in the longitudinal direction. 2. Due to the light beam from a coherent light source whose Z component of the XYZ orthogonal coordinate system is in a negative region, it is parallel to the XY plane and symmetrical to the XZ plane and YZ plane, and the width in the X axis direction is DX,
In the irradiation optical system that illuminates the irradiated surface whose width in the Y-axis direction is DY and is located at the Z-axis coordinate f (f>0), it is arranged approximately at the origin of the XYZ orthogonal coordinate system, and the number of divisions is set to N (N ≧2), when the width of the incident light beam in the X-axis direction is (DX×N), the incident light beam is obtained by dividing the irradiated surface into N equal parts symmetrically about the YZ plane and moving the wavefront of each section in parallel on the irradiated surface. 1. An irradiation optical system comprising a phase modulation optical element that deflects the light in the positive and negative directions of the Y-axis and focuses the light on a surface to be irradiated. 3. The irradiation optical system according to claim 1 or 2, further comprising an acousto-optic element that controls the amplitude and phase modulation function of the phase modulation optical element and changes the position of the light beam on a plane orthogonal to the incident light beam. An irradiation optical system featuring: 4. The irradiation optical system according to any one of claims 1 to 3, wherein the irradiation optical system includes a number of the phase modulating optical elements corresponding to the plurality of irradiated surfaces and a light beam from the light source. An irradiation optical system comprising: an optical element divided into each phase modulation optical element. 5. The irradiation optical system according to claim 4, comprising a composite element in which at least a part of the optical element is integrated in at least one direction from the light source to the irradiated surface and in a direction perpendicular to this direction. An irradiation optical system characterized by: 6. The irradiation optical system according to any one of claims 2 to 5, which irradiates an object moving approximately in the Y-axis direction near X=0 and Z=f of the XYZ orthogonal coordinate system, and scattering caused by the irradiation. An object shape measuring device comprising a detection system that detects light and a signal processing system that obtains data such as the shape of the object based on a detection signal from the detection system. 7. The object shape fluorescence measuring device according to claim 6, wherein the detection system includes a detector that detects scattered light and fluorescence generated by irradiation. 8. In an irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution, the light beam is directed in the longitudinal direction of the irradiated surface, comprising an aspherical bulk lens. A phase modulation optical element that splits the light beam into each section symmetrically with respect to the center and superimposes the light beams of each section in the longitudinal direction on the irradiated surface. 9. In an irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution, the illumination optical system is comprised of a blazed grating and directs the light beam in the longitudinal direction of the irradiated surface. A phase modulation optical element that divides the light beam into centrally symmetrical sections and superimposes the light beams of each section in the longitudinal direction on the irradiated surface. 10. An irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution, comprising a hologram, the light beam being centered in the longitudinal direction of the irradiated surface. A phase modulating optical element that divides the light beam symmetrically and overlaps the light beams of each section in the longitudinal direction on the irradiated surface. 11. An irradiation optical system that illuminates a horizontally long irradiated surface with a light beam emitted from at least one light source with an axially symmetrical intensity distribution, comprising a blazed hologram, and which directs the light beam in the longitudinal direction of the irradiated surface. A phase modulation optical element that splits the light beam into each section symmetrically with respect to the center and superimposes the light beams of each section in the longitudinal direction on the irradiated surface. 12. The phase modulation optical element according to any one of claims 8 to 11, further comprising: an acoustic device that controls the amplitude and phase modulation function of the phase modulation optical element to change the position of the light beam on a plane orthogonal to the incident light beam; A phase modulation optical element characterized by comprising an optical element. 13. The irradiation optical system or phase modulating optical element assembly apparatus according to any one of claims 1 to 12, comprising: an image sensor disposed at a position of the irradiated surface of the phase modulating optical element; and the image sensor. an image processing device that processes signals from the irradiated light beam and displays the intensity profile of the irradiated light beam on the irradiated surface; and means for adjusting one position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2070782A JPH03269343A (en) | 1990-03-20 | 1990-03-20 | Irradiation optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2070782A JPH03269343A (en) | 1990-03-20 | 1990-03-20 | Irradiation optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03269343A true JPH03269343A (en) | 1991-11-29 |
Family
ID=13441440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2070782A Pending JPH03269343A (en) | 1990-03-20 | 1990-03-20 | Irradiation optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03269343A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651291A1 (en) * | 1993-10-27 | 1995-05-03 | Sony Corporation | Pattern projecting method |
JP2008089540A (en) * | 2006-10-05 | 2008-04-17 | Furukawa Electric Co Ltd:The | Method and device for measuring light |
JP2008534945A (en) * | 2005-03-31 | 2008-08-28 | セドゥー ディアグノスチックス | Optical device for blood analysis, analyzer equipped with such device |
-
1990
- 1990-03-20 JP JP2070782A patent/JPH03269343A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0651291A1 (en) * | 1993-10-27 | 1995-05-03 | Sony Corporation | Pattern projecting method |
JP2008534945A (en) * | 2005-03-31 | 2008-08-28 | セドゥー ディアグノスチックス | Optical device for blood analysis, analyzer equipped with such device |
JP2008089540A (en) * | 2006-10-05 | 2008-04-17 | Furukawa Electric Co Ltd:The | Method and device for measuring light |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5007737A (en) | Programmable detector configuration for Fraunhofer diffraction particle sizing instruments | |
US6323949B1 (en) | Optical measurement method and apparatus which determine a condition based on quasi-elastic-interaction | |
US5042950A (en) | Apparatus and method for laser beam diagnosis | |
US4036557A (en) | Laser doppler velocimeter | |
EP0701707A4 (en) | Laser diffraction particle sizing apparatus and method | |
CN104360095A (en) | Instantaneous rotational speed measuring method, device and system based on no-diffraction light beams | |
CN108801455A (en) | A kind of excitation of Raman optical signal and collection device | |
US20120019907A1 (en) | High-resolution surface plasmon microscope that includes a heterodyne fiber interferometer | |
US6040899A (en) | Optical velocimetric probe | |
JPH03269343A (en) | Irradiation optical system | |
US8195421B2 (en) | Velocity detector | |
US4125778A (en) | Apparatus for laser anemometry | |
US5453835A (en) | Multichannel acousto-optic correlator for time delay computation | |
US3780217A (en) | Heterodyne imaging device for providing high resolution images | |
US4171915A (en) | Laser interferometer probe | |
US4693604A (en) | Interference method and interferometer for testing the surface precision of a parabolic mirror | |
JP2000186912A (en) | Method and apparatus for measuring small displacement | |
US4952027A (en) | Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device | |
JPS58153107A (en) | Device for measuring diameter and speed of particle simultaneously | |
US5859730A (en) | Optical apparatus having a luminous flux shaping filter | |
CN114719983B (en) | Space heterodyne Raman spectrometer | |
JPS63218827A (en) | Light spectrum detector | |
CN115638884B (en) | A nonlinear interferometer | |
CN109459415B (en) | Laser transient grating system with continuously adjustable space period | |
DE3322709A1 (en) | Optical distance-measuring instrument |