[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03269311A - Optical beam position detector - Google Patents

Optical beam position detector

Info

Publication number
JPH03269311A
JPH03269311A JP6848090A JP6848090A JPH03269311A JP H03269311 A JPH03269311 A JP H03269311A JP 6848090 A JP6848090 A JP 6848090A JP 6848090 A JP6848090 A JP 6848090A JP H03269311 A JPH03269311 A JP H03269311A
Authority
JP
Japan
Prior art keywords
light
prism
incident
light beam
photosensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6848090A
Other languages
Japanese (ja)
Inventor
Katsu Tashiro
克 田代
Iwao Sugizaki
杉崎 巖
Rie Wakashima
若島 理絵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP6848090A priority Critical patent/JPH03269311A/en
Publication of JPH03269311A publication Critical patent/JPH03269311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the response speed and sensitivity of the optical beam position detector by arranging two light shielding parts between two photodetectors and two lenses for always making optical beam incident upon the vicinity of the centers of respective photodetectors. CONSTITUTION:Optical beams L1 are made incident upon the ridge line of a prism 1 whose surface forms a reflecting face and its vertex forms an obtuse angle and divided into beams L2a, L2b and respective beams L2a, L2b are detected by respective photosensors 3a, 3b and the center position of the incident beams L1 is found out by the difference between the two detected values. The incident beams are always concentrated into the vicinity of the centers of respective photosensors 3a, 3b by the lenses 2a, 2b inserted between the prism 1 and the photosensors 3a, 3b. Scattered light L4 generated by the photosensors 3a, 3b and the lenses 2a, 2b is shielded by the light shielding parts 4a, 4b and prevented from being made incident upon the opposite sensors as disturbance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えばレーザープリンタなどに使用される回転
多面鏡(いわゆるポリゴンミラー)の動的面倒れ角度等
を測定する際に使用する光ビーム位置測定装置に関する
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to measuring the position of a light beam used when measuring the dynamic tilt angle of a rotating polygon mirror (so-called polygon mirror) used in, for example, a laser printer. Concerning a measuring device.

(従来の技術) 従来光ビームの入射位置を測定する方法とじてCOD、
PSD、、、2分割センサ、直角プリズムを用いる方法
、スリットを用いる方法等様々な方法が提案されている
(Prior art) Conventional methods for measuring the incident position of a light beam include COD,
Various methods have been proposed, such as PSD, a method using a two-split sensor, a method using a right-angle prism, and a method using a slit.

まず回転多面鏡の面倒れ角をこれらの光ビーム位置セン
サを用いて測定する光学系において、PSDを用いて構
成した例を第3図に示す。ここで25はPSD、23は
回転多面鏡、21は光源、22は集光用レンズである。
First, FIG. 3 shows an example in which a PSD is used in an optical system for measuring the tilt angle of a rotating polygon mirror using these light beam position sensors. Here, 25 is a PSD, 23 is a rotating polygon mirror, 21 is a light source, and 22 is a condensing lens.

光源21を出たレーザビームは回転多面鏡23の反射面
で反射し、PSD25の感光面を横切る。もし回転多面
鏡23の反射面の角度が面倒れを持てば反射ビームの角
度が変わりPSD25を横切る位置が変化する。
The laser beam emitted from the light source 21 is reflected by the reflective surface of the rotating polygon mirror 23 and crosses the photosensitive surface of the PSD 25 . If the angle of the reflecting surface of the rotating polygon mirror 23 is tilted, the angle of the reflected beam changes and the position across the PSD 25 changes.

P S I)25はこのビーム入射位置の変化を検知し
て回転多面鏡23の面倒れ量を測定することができる。
The PSI 25 can detect this change in the beam incidence position and measure the amount of surface tilt of the rotating polygon mirror 23.

次にスリットを用いて同じ測定をする例を第4図に示す
。ここで41は光源、42は回転多面鏡、43はスリッ
ト、44はフォトセンサである。スリット43及びフォ
トセンサ44に入射するスポットの位置が回転多面鏡4
2の回転につれてS1〜S4のように移動するとする。
Next, FIG. 4 shows an example in which the same measurement is performed using a slit. Here, 41 is a light source, 42 is a rotating polygon mirror, 43 is a slit, and 44 is a photosensor. The position of the spot incident on the slit 43 and the photosensor 44 is set on the rotating polygon mirror 4.
Suppose that it moves like S1 to S4 with the rotation of 2.

スポットが82の位置にきたとき入射ビームはスリット
によってけられることなくその全光量がフォトセンサに
入射する。スポットが移動してS3の位置にきたとき入
射ビームはスリット43によってその一部がけられ、フ
ォトセンサにはけられた残りの光量が入射する。もし回
転多面鏡42の反射面の角度が面倒れを持てば反射ビー
ムの角度が変わりスリット43によってけられる割合が
変化する。多少角度が変わってもS2における光量は変
化せずs3におけるフォトセンサの感知する光量が角度
の変動により影響を受けるので82における光量と83
における光量の比からビーム入射位置の変化を測定し回
転多面鏡23の面倒れ量を知ることができる。
When the spot reaches position 82, the incident beam is not eclipsed by the slit and the entire amount of light enters the photosensor. When the spot moves to the position S3, a portion of the incident beam is eclipsed by the slit 43, and the remaining amount of light enters the photosensor. If the angle of the reflecting surface of the rotating polygon mirror 42 is tilted, the angle of the reflected beam will change and the rate at which it is eclipsed by the slit 43 will change. Even if the angle slightly changes, the light amount at S2 does not change, and the light amount sensed by the photosensor at s3 is affected by the change in angle, so the light amount at 82 and 83
By measuring the change in the beam incident position from the ratio of the light amounts at , it is possible to determine the amount of surface tilt of the rotating polygon mirror 23.

次に直角プリズムを用いて同じ測定をする例を第5図に
示す。ここで31は表面を反射面とした直角プリズム、
32a及び32bはフォトセンサ、33は回転多面鏡、
L31−L33はビームである。回転多面鏡33で反射
した入射ビームL31は、直角プリズム31の頂点で上
下に分けられビームL32aはフォトセンサ32aに、
ビームL32bはフォトセンサ32.bにそれぞれ入射
する。もし回転多面鏡42の反射面の角度が誤差を持て
ば反射ビームの角度が変わり直角プリズム31の頂点で
分けられる上下の光量比が変化する。
Next, FIG. 5 shows an example in which the same measurement is performed using a right-angle prism. Here, 31 is a right-angled prism whose surface is a reflective surface.
32a and 32b are photosensors, 33 is a rotating polygon mirror,
L31-L33 are beams. The incident beam L31 reflected by the rotating polygon mirror 33 is divided into upper and lower parts at the vertex of the rectangular prism 31, and the beam L32a is directed to the photosensor 32a.
The beam L32b is transmitted to the photosensor 32. b respectively. If the angle of the reflecting surface of the rotating polygon mirror 42 has an error, the angle of the reflected beam changes and the ratio of the upper and lower light amounts divided at the apex of the rectangular prism 31 changes.

例えばL31が図の上方に傾くとビームL32aは増加
し、ビームL32bは減少する。ビームL32aとビー
ムL32bとの合計の光量比は一定なのでフォトセンサ
32a、フォトセンサ32bの出力の合計と、各出力の
差との比から入射ビーム位置を求めることができ、それ
から回転多面鏡33の面倒れ量を知ることができる。
For example, when L31 tilts upward in the figure, beam L32a increases and beam L32b decreases. Since the total light amount ratio of the beam L32a and the beam L32b is constant, the incident beam position can be determined from the ratio of the total output of the photosensor 32a and the photosensor 32b and the difference between each output. You can know the amount of trouble.

(発明が解決しようとする課題) 前記従来の光ビーム位置検出方法では下記のような問題
点があった。
(Problems to be Solved by the Invention) The conventional light beam position detection method has the following problems.

まずPSD25を用いる方法ではPSD25の応答速度
が限られているため回転数の高い回転多面鏡23の測定
には使用できないという問題点があった。
First, the method using the PSD 25 has a problem in that the PSD 25 has a limited response speed and cannot be used to measure the rotating polygon mirror 23 which rotates at a high number of revolutions.

(5) 次にスリット43を用いる方法においては応答速度の点
ではフカ1−センサ44に応答速度の高い素子を用いれ
ば良いので問題ないが、ビームの全光量を測定する時点
S2とスリット43を用いてビームの位置を測定する時
点S3で時間差があるためその間に光源41の雑音等に
よりビーム自身が光量の変動を起こすとビームの入射位
置を正確に測定することができなくなるという問題点が
あった・ 次に直角プリズム31を用いる方法においてはビームL
31の全光量とビームL31の移動による各センサ32
a、32bの出力差を同時に測定することができるので
光源の光量変動雑音に対しては問題なくなるが、各フォ
トセンサ32a。
(5) Next, in the method of using the slit 43, there is no problem in terms of response speed as it is sufficient to use an element with a high response speed for the hook 1-sensor 44. Since there is a time lag at the time S3 when the position of the beam is measured using the method, there is a problem that if the beam itself fluctuates in light intensity due to noise from the light source 41 or the like during that time, it becomes impossible to accurately measure the incident position of the beam. Next, in the method using the right angle prism 31, the beam L
31 and each sensor 32 due to the movement of the beam L31.
Since the output difference between the photosensors a and 32b can be measured at the same time, there is no problem with the noise of the light intensity fluctuation of the light source.

32bが対面した位置にあるため、−旦片方のフォトセ
ンサ、例えば32aに入射したビームL32aの反射光
゛や散乱光L33が対面した位置にあるもう一方のフォ
トセンサ32bに入ってしまい直角プリズム31で分け
られたビームL32a。
Since the photo sensors 32b are located in facing positions, the reflected light and scattered light L33 of the beam L32a that first entered one photosensor, for example 32a, enters the other photosensor 32b located in the facing position, causing the right angle prism 31 Beam L32a divided by.

L32bの光量を正確に測ることができないとい(6) う問題点があった。It is said that the light intensity of L32b cannot be measured accurately (6) There was a problem.

(課題を解決するための手段) 本発明は前記課題を解決すべくなされたもので、実施例
に対応する第1図、第2図で説明すると、本発明による
光ビーム位置検出装置は、光ビームL1を反射によって
2分割する、95度以上の鈍角な頂点を持つ固定された
プリズムミラ1と、該プリズムミラ1により2分割され
た反射光L2a。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and as explained with reference to FIGS. 1 and 2 corresponding to embodiments, the light beam position detection device according to the present invention A fixed prism mirror 1 having an obtuse angle of 95 degrees or more divides the beam L1 into two by reflection, and reflected light L2a divided into two by the prism mirror 1.

L2bを受光する二つの受光素子3a、3bとを備え、
2分割された2つの光L2a、L2bの光量比から光ビ
ームL1の入射位置を検出することを特徴とした光ビー
ム位置検出装置であって、前記二つの受光素子3a、3
bの間に各々の散乱光が相手の受光素子に入射しないよ
うにするための遮光部4a、4bを設け、さらに前記プ
リズムミラ1と二つの受光素子3a、3bとの間にプリ
ズムミラ1を反射した光ビームL2a、L2bが常に受
光素子3a、3bの中心付近に入射するようにレンズ2
a、2bを設けたことを特徴としたものである。
Comprising two light receiving elements 3a and 3b that receive L2b,
A light beam position detection device is characterized in that the incident position of the light beam L1 is detected from the light amount ratio of the two divided lights L2a and L2b, and the two light receiving elements 3a and 3
Light shielding parts 4a and 4b are provided between the prism mirror 1 and the two light receiving elements 3a and 3b to prevent each scattered light from entering the other light receiving element, and a prism mirror 1 is provided between the prism mirror 1 and the two light receiving elements 3a and 3b. The lens 2 is arranged so that the reflected light beams L2a and L2b always enter near the center of the light receiving elements 3a and 3b.
A, 2b are provided.

また、前記プリズムミラlに替えて、光ビームL11を
透過によって2分割する、95度以上の鈍角な頂点を持
つ固定されたプリズム11を用い、プリズム11により
2分割された透過光L12a。
Furthermore, instead of the prism mirror I, a fixed prism 11 having an obtuse angle of 95 degrees or more is used to divide the light beam L11 into two by transmission, and the transmitted light L12a is divided into two by the prism 11.

L12bを受光する二つの受光素子13a、13bを備
え、2分割された2つの光り工2a、L12bの光量比
から光ビームの入射位置を検出することを特徴とした光
ビーム位置検出装置であって、前記二つの受光素子13
a、13bの間に各々の散乱光が相手の受光素子に入射
しないようにするための遮光部14を設け、さらに前記
プリズム11と二つの受光素子13a、13bとの間に
、プリズムを透過した光ビームL12a、L12bが常
に受光素子13a、13bの表面の中心付近に入射する
ようにレンズ12a、12bを設けたことを特徴とした
ものである。
A light beam position detection device comprising two light receiving elements 13a and 13b that receive light L12b, and detecting the incident position of the light beam from the light amount ratio of two divided light beams 2a and L12b. , the two light receiving elements 13
A light shielding part 14 is provided between the prism 11 and the two light receiving elements 13a and 13b to prevent each scattered light from entering the other light receiving element. It is characterized in that lenses 12a and 12b are provided so that the light beams L12a and L12b are always incident near the center of the surfaces of the light receiving elements 13a and 13b.

(作用) 表面を反射面とした鈍角プリズム1の稜線に光ビームL
工を入射しこれを分割する。分割した各々のビームL2
a及びL2bを2個のフォトセンサ3a及び3bで検知
し、それぞれのフォトセンサの出力をそれぞれA、Bと
し、(A−B)/(A+B)を求める。この値は光ビー
ムL工の中心とプリズムlの稜線とが一致したときにO
となり中心からのずれ量に比例して大きくなる。よって
この値から入射光ビームL1の位置変化を求めることが
できる。さらに鈍角プリズム1とフォトセンサ3a及び
3bの間にレンズ2a及び2bを挿入するので光ビーム
LLのプリズムlへの入射位置が変化しても鈍角プリズ
ム1の反射光L2a及びL2bはレンズ2a及び2bに
よって常にフォトセンサ3a及び3bの中心付近に集光
され、安定した信号を感知することができる。さらにフ
ォトセンサ3a及び3bや、レンズ2a及び2bにおい
て反射光L5や散乱光L4が発生するが、反射光L5に
関しては反射プリズム1が鈍角でフォトセンサ3a及び
3bが対面した位置でないため例えば片側のセンサ3a
の反射光L5がもう片方のセンサ3bに直接入射するこ
とがなくなり、散乱光L4に関してはこれを遮る遮光部
4a及び(9) 4bを設けたため同様の効果があるので外乱の少ない測
定が可能となる。
(Function) A light beam L is applied to the ridgeline of the obtuse prism 1 whose surface is a reflective surface.
Inject the beam and divide it. Each divided beam L2
a and L2b are detected by two photosensors 3a and 3b, and the outputs of the respective photosensors are taken as A and B, respectively, and (A-B)/(A+B) is calculated. This value is O when the center of the light beam L and the ridgeline of the prism L coincide.
This increases in proportion to the amount of deviation from the center. Therefore, the position change of the incident light beam L1 can be determined from this value. Furthermore, since lenses 2a and 2b are inserted between the obtuse prism 1 and the photosensors 3a and 3b, even if the incident position of the light beam LL on the prism l changes, the reflected lights L2a and L2b of the obtuse prism 1 will be reflected from the lenses 2a and 2b. Therefore, the light is always focused near the center of the photosensors 3a and 3b, and a stable signal can be sensed. Further, reflected light L5 and scattered light L4 are generated at the photosensors 3a and 3b and the lenses 2a and 2b, but as for the reflected light L5, since the reflective prism 1 is at an obtuse angle and the photosensors 3a and 3b are not in a position facing each other, for example, on one side. Sensor 3a
The reflected light L5 will no longer be directly incident on the other sensor 3b, and since the light shielding parts 4a and (9) 4b are provided to block the scattered light L4, the same effect can be achieved, making it possible to perform measurements with less disturbance. Become.

(実施例) 第1図は、本発明による第1の実施例の説明図である。(Example) FIG. 1 is an explanatory diagram of a first embodiment according to the present invention.

表面を反射面とした頂点の鈍角なプリズム1の稜線に光
ビームL1が入射し分割される。
A light beam L1 is incident on the ridgeline of the prism 1 whose apex has an obtuse angle and whose surface is a reflective surface, and is split.

分割された各々のビームL2a、L2bは2個のフォト
センサ3a、3bで検知され、それぞれのフォトセンサ
3a、3bの出力をそれぞれA、Bとして(A−B)/
 (A+B)が求められる。この値は光ビームLLの中
心とプリズム1の稜線とが一致したときにOとなり中心
からのずれ量に比例して大きくなる。例えば入射ビーム
LLの中心がプリズムの稜線に入射する位置が図の上方
に移動するとプリズムの反射光のうちL2aは増加し、
L2bは減少する。そのため各フォトセンサの出力はA
は増加しBは減少する。入射ビームの全光量は変化しな
いので(A十B)は変わらないが(A−B)は増加する
ので、(A−B)/(A十B)は増加し、それにより入
射ビームL1の入射(10) 位置の変化量が求められる。さらにこの状態で入射ビー
ムの光量が半分になったとすると、入射位置が変わらな
ければ各センサの出力比A:Bは変化しないが全光量が
半分になったのでA、Bはそれぞれ半分になり(A−B
)も半分になる。一方(A+B)も半分になるので結局
(A−B)/(A+B)の値は変化しない。よってこの
方法によれば入射ビームLLの光量変動の影響を受けず
にビームLlの入射位置変動のみが求められる。
The divided beams L2a and L2b are detected by two photosensors 3a and 3b, and the outputs of the photosensors 3a and 3b are defined as A and B, respectively (A-B)/
(A+B) is required. This value becomes O when the center of the light beam LL and the ridgeline of the prism 1 coincide, and increases in proportion to the amount of deviation from the center. For example, if the position where the center of the incident beam LL enters the ridgeline of the prism moves upward in the diagram, L2a of the reflected light from the prism increases,
L2b decreases. Therefore, the output of each photosensor is A
increases and B decreases. Since the total amount of light of the incident beam does not change, (A + B) does not change, but (A - B) increases, so (A - B) / (A + B) increases, thereby increasing the incidence of the incident beam L1. (10) The amount of change in position is determined. Furthermore, if the light intensity of the incident beam is halved in this state, the output ratio A:B of each sensor will not change unless the incident position changes, but since the total light intensity has been halved, A and B will each be halved ( A-B
) will also be halved. On the other hand, since (A+B) is also halved, the value of (A-B)/(A+B) does not change after all. Therefore, according to this method, only the variation in the incident position of the beam Ll can be determined without being affected by the variation in the light amount of the incident beam LL.

さらに鈍角プリズムlとフォトセンサ3a。Furthermore, an obtuse prism l and a photosensor 3a.

3bの間にレンズ2a、2bを挿入する。ビームL1の
入射位置が変化しても鈍角プリズム1の反射光L2a、
L2bはレンズ2a、2bによって常にフォトセンサ3
a、3bの中心付近に集光され、安定した信号を感知す
ることができる。さらにフォトセンサ3a、3b及びレ
ンズ2a、2bにおいて反射光L5や散乱光L4が発生
するが、反射光L5に関しては反射プリズム1が鈍角で
フォトセンサ3a、3bが対面した位置でないため図の
L5に示すように片側のセンサの反射光がもう片方のセ
ンサに直接入射することはない。散乱光L4に関しては
これを遮る遮光部4a、4bを設けたため図のL4に示
すように片側のセンサの散乱光がもう片方のセンサに直
接入射することがなくなるので外乱の少ない測定が可能
となる。
Lenses 2a and 2b are inserted between lens 3b. Even if the incident position of the beam L1 changes, the reflected light L2a of the obtuse prism 1,
L2b is always connected to the photo sensor 3 by lenses 2a and 2b.
The light is focused near the centers of a and 3b, and a stable signal can be sensed. Furthermore, reflected light L5 and scattered light L4 are generated at the photosensors 3a and 3b and the lenses 2a and 2b, but the reflected light L5 is reflected at L5 in the figure because the reflective prism 1 is at an obtuse angle and the photosensors 3a and 3b are not in a facing position. As shown, the reflected light from one sensor does not directly enter the other sensor. Regarding the scattered light L4, since the light shielding parts 4a and 4b are provided to block this, the scattered light from one sensor does not directly enter the other sensor as shown in L4 in the figure, so measurement with less disturbance is possible. .

さらに各フォトセンサ3a、3bは応答速度の速い素子
を選んで用いることにより極めて高い周波数を持つ回転
多面鏡の測定に対応できる。さらに本光ビーム位置検出
装置の感度は鈍角プリズム1の稜線に入射するビームL
工のビーム径を小さくすることにより幾らでも大きくで
きるので入射ビームL1のビーム径を調整することでい
かようにも感度を調整することができ、極めて高い感度
を持つ光ビーム位置センサが実現できる。実際にこの原
理を用いて試作した光ビーム位置測定装置では入射ビー
ム径150ILmで0.5μmのビーム移動量を測定で
きることを確認した。
Furthermore, each of the photosensors 3a and 3b is capable of measuring a rotating polygon mirror having an extremely high frequency by selecting and using an element with a fast response speed. Furthermore, the sensitivity of the optical beam position detection device is determined by the beam L incident on the ridge of the obtuse prism 1.
Since the beam diameter of the beam can be made as large as desired by reducing the beam diameter of the beam, the sensitivity can be adjusted in any way by adjusting the beam diameter of the incident beam L1, and an optical beam position sensor with extremely high sensitivity can be realized. It was confirmed that an optical beam position measuring device prototyped using this principle could measure a beam movement amount of 0.5 μm with an incident beam diameter of 150 ILm.

第2図は本発明の第2の実施例であって11は鈍角透過
プリズム、12a、工2bはレンズ、13a、13bは
フォトセンサ、Li1−Li2は光ビームである。この
例では第1の例と同じ事を透過プリズムを用いて行って
いる。鈍角透過プリズム11の頂点に入射した光ビーム
Lllはプリズム11の屈折によって分割され、それぞ
れレンズ12a、12bをへて各フォトセンサ13a。
FIG. 2 shows a second embodiment of the present invention, in which 11 is an obtuse-angle transmission prism, 12a and 2b are lenses, 13a and 13b are photosensors, and Li1 and Li2 are light beams. In this example, the same thing as in the first example is performed using a transmission prism. The light beam Lll incident on the vertex of the obtuse-angle transmission prism 11 is split by the refraction of the prism 11, and passes through lenses 12a and 12b, respectively, to each photo sensor 13a.

13bに入射する。あとは第1の実施例と同様な議論が
展開できる。
13b. The rest of the discussion can be the same as in the first embodiment.

(発明の効果) 以上説明したように本発明によれば応答速度が速く、光
源の光量変化に影響されず、不用な反射光や散乱光を除
去した極めて感度の高い光ビーム位置センサを構成でき
る。
(Effects of the Invention) As explained above, according to the present invention, it is possible to construct an extremely sensitive light beam position sensor that has a fast response speed, is unaffected by changes in the light intensity of the light source, and eliminates unnecessary reflected light and scattered light. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による光ビーム位置検出装置の
第1の実施例を示し、第2図は第2の実施例を示す。第
3図、第4図、第5図は従来例の説明図である。 1・・・鈍角反射プリズム 2a、2b、12a、12b、2Sl・・レンズ3 a
、3 b、13 a、13 b、32 (1,32b。 (13) 44・・・フォトセンサ 4a、4b、14−遮光部 11・・・鈍角透過プリズム 21.41・・・光源 23.33,42・・・回転多面鏡 25・・・PSD 43・・・スリット 3工・・・直角反射プリズム L工、 L 2 a 、 L 2 b 、 L 4 、
 L 5 、 L 11 。 L12a、L12b、L3L、L32a、L32b。 L33・・・光ビーム
1 and 2 show a first embodiment of a light beam position detection device according to the present invention, and FIG. 2 shows a second embodiment. FIG. 3, FIG. 4, and FIG. 5 are explanatory diagrams of conventional examples. 1... Obtuse reflective prisms 2a, 2b, 12a, 12b, 2Sl... Lens 3 a
, 3 b, 13 a, 13 b, 32 (1, 32 b. (13) 44... Photosensor 4a, 4b, 14 - Light shielding part 11... Obtuse angle transmission prism 21.41... Light source 23.33 , 42...Rotating polygon mirror 25...PSD 43...3 slits...Right angle reflecting prism L, L 2 a, L 2 b, L 4,
L5, L11. L12a, L12b, L3L, L32a, L32b. L33...Light beam

Claims (2)

【特許請求の範囲】[Claims] (1)光ビームを反射によって2分割する、95度以上
の鈍角な頂点を持つ固定されたプリズムミラと、該プリ
ズムミラにより2分割された反射光を受光する二つの受
光素子とを備え、2分割された2つの光の光量比から光
ビームの入射位置を検出することを特徴とした光ビーム
位置検出装置であって、前記二つの受光素子の間に各々
の散乱光が相手の受光素子に入射しないようにするため
の遮光部を設け、さらに前記プリズムミラと二つの受光
素子との間にプリズムミラを反射した光ビームが常に受
光素子表面の中心付近に入射するようにレンズを設けた
ことを特徴とする光ビーム位置検出装置。
(1) A fixed prism mirror having an obtuse angle of 95 degrees or more that divides a light beam into two by reflection, and two light-receiving elements that receive the reflected light divided into two by the prism mirror; A light beam position detection device is characterized in that the incident position of the light beam is detected from the light intensity ratio of the two divided lights, wherein each scattered light is transmitted between the two light receiving elements to the other light receiving element. A light shielding portion is provided to prevent the light from entering, and a lens is further provided between the prism mirror and the two light receiving elements so that the light beam reflected from the prism mirror always enters near the center of the surface of the light receiving element. A light beam position detection device characterized by:
(2)前記プリズムミラに替えて、光ビームを透過によ
って2分割する、95度以上の鈍角な頂点を持つ固定さ
れたプリズムを用い、該プリズムにより2分割された透
過光を受光する二つの受光素子を備え、2分割された2
つの光の光量比から光ビームの入射位置を検出すること
を特徴とした光ビーム位置検出装置であって、前記二つ
の受光素子の間に各々の散乱光が相手の受光素子に入射
しないようにするための遮光部を設け、さらに前記プリ
ズムと二つの受光素子との間に、プリズムを透過した光
ビームが常に受光素子表面の中心付近に入射するように
レンズを設けたことを特徴とする光ビーム位置検出装置
(2) In place of the prism mirror, a fixed prism with an obtuse angle of 95 degrees or more is used to divide the light beam into two by transmission, and two light receiving methods are used to receive the transmitted light divided into two by the prism. It is equipped with an element and is divided into two parts.
A light beam position detection device is characterized in that the incident position of a light beam is detected from the light intensity ratio of two lights, the light beam position detecting device being characterized in that the light beam position detecting device detects the incident position of the light beam from the light intensity ratio of the two light beams, and the device is configured such that each scattered light does not enter the other light receiving element between the two light receiving elements. A light shielding part is provided for the purpose of transmitting the light, and a lens is further provided between the prism and the two light receiving elements so that the light beam transmitted through the prism always enters near the center of the surface of the light receiving element. Beam position detection device.
JP6848090A 1990-03-20 1990-03-20 Optical beam position detector Pending JPH03269311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6848090A JPH03269311A (en) 1990-03-20 1990-03-20 Optical beam position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6848090A JPH03269311A (en) 1990-03-20 1990-03-20 Optical beam position detector

Publications (1)

Publication Number Publication Date
JPH03269311A true JPH03269311A (en) 1991-11-29

Family

ID=13374892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6848090A Pending JPH03269311A (en) 1990-03-20 1990-03-20 Optical beam position detector

Country Status (1)

Country Link
JP (1) JPH03269311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009636A (en) * 1998-06-19 2000-01-14 Mitsubishi Heavy Ind Ltd Ellipsometry apparatus
WO2019105664A1 (en) * 2017-11-29 2019-06-06 Asml Netherlands B.V. Laser beam monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681408A (en) * 1979-12-06 1981-07-03 Fujitsu Ltd Measuring method by laser beam
JPS56137205A (en) * 1980-03-31 1981-10-27 Tokyo Seimitsu Co Ltd Apparatus for measuring flatness
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body
JPS60238736A (en) * 1984-05-14 1985-11-27 Fujitsu Ltd Surface inclination angle measuring device of rotary mirror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681408A (en) * 1979-12-06 1981-07-03 Fujitsu Ltd Measuring method by laser beam
JPS56137205A (en) * 1980-03-31 1981-10-27 Tokyo Seimitsu Co Ltd Apparatus for measuring flatness
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body
JPS60238736A (en) * 1984-05-14 1985-11-27 Fujitsu Ltd Surface inclination angle measuring device of rotary mirror

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009636A (en) * 1998-06-19 2000-01-14 Mitsubishi Heavy Ind Ltd Ellipsometry apparatus
WO2019105664A1 (en) * 2017-11-29 2019-06-06 Asml Netherlands B.V. Laser beam monitoring system
JP2021504732A (en) * 2017-11-29 2021-02-15 エーエスエムエル ネザーランズ ビー.ブイ. Laser beam monitoring system
US11366399B2 (en) 2017-11-29 2022-06-21 Asml Netherlands B.V. Laser beam monitoring system
TWI782144B (en) * 2017-11-29 2022-11-01 荷蘭商Asml荷蘭公司 Laser beam monitoring system

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US5886777A (en) Electronic distance measuring device
JPH0726806B2 (en) Distance measuring device
JPH02231525A (en) Encoder
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH03269311A (en) Optical beam position detector
JPS6111637A (en) Liquid body sensor
JPS58106413A (en) Light reflecting sensor
JPH08128806A (en) Optical displacement sensor
JP3143889B2 (en) Distance measuring method and device
JPS60238736A (en) Surface inclination angle measuring device of rotary mirror
JPH09170983A (en) Sensor apparatus for judging gloss
RU1768967C (en) Surface roughness tester
JP2000121388A (en) Optical encoder
JPH0635147Y2 (en) Photo detector
JPH02204712A (en) Instrument for measuring face inclination
KR0178434B1 (en) Absolute measurement method of reflection rate using light splitter
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPS6312903A (en) Detector for tip position of lead
SU406180A1 (en) TWO-COORDINATE AUTO-COLLIMATOR
JPH01253629A (en) Measurement of specular reflectivity
JPH0530089Y2 (en)
RU1800289C (en) Method of measuring radiation flux density from distant source
JPH0678893B2 (en) Surface fine shape measuring device
JPS5987309A (en) Measuring device of inclination of face