[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03266207A - Production of mig type magnetic head - Google Patents

Production of mig type magnetic head

Info

Publication number
JPH03266207A
JPH03266207A JP6589590A JP6589590A JPH03266207A JP H03266207 A JPH03266207 A JP H03266207A JP 6589590 A JP6589590 A JP 6589590A JP 6589590 A JP6589590 A JP 6589590A JP H03266207 A JPH03266207 A JP H03266207A
Authority
JP
Japan
Prior art keywords
film
magnetic
forming
alloy
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6589590A
Other languages
Japanese (ja)
Other versions
JPH07118054B2 (en
Inventor
Masateru Nose
正照 野瀬
Naoyuki Okamoto
直之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6589590A priority Critical patent/JPH07118054B2/en
Publication of JPH03266207A publication Critical patent/JPH03266207A/en
Publication of JPH07118054B2 publication Critical patent/JPH07118054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To make improvement in electromagnetic conversion characteristics and reproduced output by forming an Fe-Al-Si alloy film while successively changing the film forming speed from a low to high speed at the time of formation of this film. CONSTITUTION:The Fe-Al-Si alloy film 6 is formed while the film forming speed is successively changed stepwise from the low to the high speed at the time of forming this film by a vapor growth method after an interface reaction film consisting of a nonmagnetic inorg. material is deposited on a magnetic gap butt surface 2 of ferrite cores. Namely, the diffusion of the atoms at the boundary of the magnetic metallic film and ferrite is prevented by the interface reaction preventive film 5 of the 1st layer. The Fe-Al-Si alloy film layer 6 is formed along the crystal orientation of the initial layer formed at the low film forming speed at which the Fe-Al-Si alloy film becomes a substrate and the disturbance in the crystal orientation is decreased by forming the Fe-Al-Si alloy film 6 while successively changing the film forming speed from the low to the high speed at the time of forming this film. The improvement in the electromagnetic conversion characteristics and the reproduced output is made in this way.

Description

【発明の詳細な説明】 利用産業分野 この発明は、磁気ギャップ内に高飽和磁束密度の金属膜
を有するMIG(Metal In Gap)型磁気ヘ
ッドの製造方法に係り、フェライトコア上に界面反応防
止膜を設け、さらにFe−Al−Si合金膜を積層成膜
する際に、成膜速度を低速度から順次高速度へと変化さ
せながら成膜することにより、金属磁性膜の初期劣化層
をなくして疑似ギャップの発生を抑制し、電磁変換特性
の改善及び再生出力の向上を図ったMIG型磁気ヘッド
の製造方法に関する。
Detailed Description of the Invention Field of Application The present invention relates to a method for manufacturing an MIG (Metal In Gap) type magnetic head having a metal film with a high saturation magnetic flux density within a magnetic gap, in which an interfacial reaction prevention film is formed on a ferrite core. In addition, when depositing the Fe-Al-Si alloy film, the film formation speed is changed from low speed to high speed in order to eliminate the initial deterioration layer of the metal magnetic film. The present invention relates to a method of manufacturing an MIG magnetic head that suppresses the occurrence of pseudo gaps, improves electromagnetic conversion characteristics, and improves reproduction output.

背景技術 近年、磁気記録における技術的発展は目覚ましく、特に
記録密度の向上は著しいものがある。
BACKGROUND ART In recent years, technological developments in magnetic recording have been remarkable, and in particular, improvements in recording density have been remarkable.

例えば、オーディオテープレコーダやVTR(ビデオテ
ープレコーダ)等の磁気記録再生装置においては、記録
信号の高密度化や高品質化等が進められており、この高
記録密度化に対応して、磁気記録媒体として磁性粉にF
e、 Co、Ni等の金属あるいは合金からなる粉末を
用いた、所謂メタルテープや、強磁性金属材料を真空薄
膜形成技術によりベースフィルム上に直接被着した、所
謂蒸着テープや磁気ディスク等が開発され、各分野で実
用化されている。
For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the density and quality of recording signals are increasing, and in response to this increase in recording density, magnetic recording F to magnetic powder as a medium
So-called metal tapes using powders made of metals or alloys such as e, Co, and Ni, and so-called evaporated tapes and magnetic disks in which ferromagnetic metal materials are directly deposited on a base film using vacuum thin film formation technology were developed. and has been put into practical use in various fields.

ところで、このような高抗磁力を有する磁気記録媒体の
特性を発揮させるためには、磁気ヘッドのコア材料の特
性として、高い飽和磁束密度を有するとともに、同一の
磁気ヘッドで再生を行なおうとする場合においては、高
透磁率を併せて有することが要求される。
By the way, in order to make use of the characteristics of a magnetic recording medium having such high coercive force, the core material of the magnetic head must have a high saturation magnetic flux density, and the same magnetic head must be used for reproduction. In some cases, it is also required to have high magnetic permeability.

例えば、従来、磁気ヘッドのコア材料として多用されて
いるフェライト材では飽和磁束密度が低く、また、パー
マロイでは耐摩耗性に問題がある。
For example, ferrite materials, which have conventionally been widely used as core materials for magnetic heads, have a low saturation magnetic flux density, and permalloy has problems with wear resistance.

そこで上述の諸要求を満たすコア材料として、Fe−A
l−Si系合金からなる所謂センダスト合金が好適であ
ると考えられ、すでに実用に供されている。
Therefore, as a core material that satisfies the above requirements, Fe-A
A so-called sendust alloy made of l-Si alloy is considered suitable and has already been put into practical use.

しかしながら、このセンダスト合金のように軟磁気特性
に優れた材料においては、磁歪λSと結晶磁気異方性K
が共に零付近であることが望ましく、磁気ヘッドに使用
可能な材料組成はこれら両者の値を考慮して決められる
However, in materials with excellent soft magnetic properties such as this Sendust alloy, magnetostriction λS and magnetocrystalline anisotropy K
It is desirable that both of these values be around zero, and the material composition that can be used in the magnetic head is determined by taking these two values into consideration.

一方、MIG型磁気ヘッドにおいて、実際の磁性酸化物
コア上での金属磁性膜の特性はほとんど測定が困難であ
るため、金属磁性膜の特性は、非磁性基板上において評
価されていた。
On the other hand, in the MIG type magnetic head, since it is almost difficult to measure the characteristics of a metal magnetic film on an actual magnetic oxide core, the characteristics of the metal magnetic film have been evaluated on a nonmagnetic substrate.

しかし、本発明者の研究によれば、フェライト等磁性酸
化物基板上では、センダスト等金属磁性膜の特性は必ず
しも非磁性基板上での特性と一致するものではないこと
が判った。
However, according to research conducted by the present inventors, it has been found that the characteristics of a metal magnetic film such as Sendust on a ferrite-like magnetic oxide substrate do not necessarily match the characteristics on a non-magnetic substrate.

特に、磁気異方性が著しく異なり、フェライト基板上に
おいては上述の膜は異方性の分散した膜となり、これを
磁気ヘッドに適応した場合、数〜数百pmのトラック幅
状態では必ずしもマクロに測定された軟磁性状態は実現
され得ない。
In particular, the magnetic anisotropy is significantly different, and on a ferrite substrate, the above-mentioned film becomes a film with dispersed anisotropy. The measured soft magnetic state cannot be realized.

すなわち、トラックを切り出す位置により、分散した単
磁区粒の困難軸方向が異なるため、ヘッドの電磁変換に
より磁化される方向の透磁率が異なり、磁気ヘッドの電
磁変換特性を劣化させる要因と見なすことができる。
In other words, since the difficult axis direction of the dispersed single domain grains differs depending on the position from which the track is cut out, the magnetic permeability in the direction of magnetization due to electromagnetic conversion of the head differs, which cannot be considered as a factor that deteriorates the electromagnetic conversion characteristics of the magnetic head. can.

また、MIG型磁気ヘッドにおいては、上述したように
、金属膜、初期層軟磁性の劣化並び磁性酸化物との熱処
理に伴う拡散による非磁性反応層の生成等に起因する疑
似ギャップも同時に抑制しなくてはならない。
In addition, in the MIG type magnetic head, as mentioned above, pseudo-gaps caused by deterioration of the soft magnetic properties of the metal film and the initial layer as well as the formation of a non-magnetic reaction layer due to diffusion during heat treatment with magnetic oxides are also suppressed. Must-have.

発明の目的 この発明は、金属磁性膜の初期劣化層をなくして疑似ギ
ャップの発生を抑制し、電磁変換特性の改善及び再生出
力の向上を達成できるMIG型磁気ヘッドの製造方法の
提供を目的としている。
Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing an MIG type magnetic head that can eliminate the initial deterioration layer of the metal magnetic film, suppress the occurrence of pseudo gaps, and improve electromagnetic conversion characteristics and reproduction output. There is.

発明の概要 この発明は、MIG型磁気ヘッド用のすぐれた特性を有
する軟磁性膜の製造方法を目的に種々検討した結果、F
e−Al−Si合金膜の成膜時に成膜速度を低速度から
順次高速度へと変化させながら成膜することにより、従
来の単一成膜速度で成膜した合金膜に比べて一段とすぐ
れた軟磁気特性が得られ、さらに、適切な熱処理を施す
ことにより、−軸異方性を有することを知見し、また、
フェライト等磁性酸化物と金属磁性膜との間にAl2O
3などの熱的に安定な非磁性無機材料からなる界面反応
防止膜層を形成して、金属磁性膜と酸化物基板界面の反
応を抑制でき疑似ギャップを抑制できることを知見し、
この発明を完成したものである。
Summary of the Invention The present invention was developed as a result of various studies aimed at producing a soft magnetic film with excellent characteristics for MIG type magnetic heads.
By forming the e-Al-Si alloy film while changing the film-forming speed from low to high in sequence, the film is much better than the conventional alloy film formed at a single film-forming speed. It was found that soft magnetic properties can be obtained, and furthermore, by applying appropriate heat treatment, -axis anisotropy can be obtained.
Al2O between the ferrite equimagnetic oxide and the metal magnetic film
We found that by forming an interfacial reaction prevention film layer made of a thermally stable non-magnetic inorganic material such as No. 3, it is possible to suppress the reaction at the interface between the metal magnetic film and the oxide substrate and to suppress the pseudo gap.
This invention has been completed.

従来、MIG型磁気ヘッド用のFe−Al−Si合金膜
は、スパッター装置等の気相成長装置を用いた工業的生
産の観点から、通常、20OÅ/分以上の高い一定の成
膜速度で成膜するが、本発明者らの研究によれば、Fe
−Al−Si合金膜の成膜開始時に50A1分を越える
成膜速度で成膜すると、初期層の結晶性が悪く、軟磁気
特性が劣り、かかる初期層が疑似ギャップを形成する一
つの要因となることを確認し、少なくとも所定厚みの初
期層は結晶性よくするため低成膜速度で成膜する必要が
あることを知見した。
Conventionally, Fe-Al-Si alloy films for MIG magnetic heads have been deposited at a constant high deposition rate of 200 Å/min or more from the viewpoint of industrial production using vapor phase growth equipment such as sputtering equipment. However, according to the research of the present inventors, Fe
- If the Al-Si alloy film is deposited at a deposition rate exceeding 50A1 min at the start of deposition, the crystallinity of the initial layer will be poor and the soft magnetic properties will be poor, which is one of the reasons why such an initial layer forms a pseudo gap. It was confirmed that at least the initial layer of a predetermined thickness needs to be formed at a low film formation rate in order to improve crystallinity.

すなわち、この発明は、 少なくとも一方の磁気コア半体がフェライトからなり、
磁気ギャップ内に高飽和磁束密度の金属膜を有するMI
G型磁気ヘッドの製造方法において、フェライトコアの
磁気ギャップ突合わせ面に、非磁性無機材料からなる界
面反応防止膜を被着した後、 前記界面反応防止膜上にFe−Al−Si合金膜を気相
成長方法で成膜する際に、成膜速度を低速度がら順次、
段階的にあるいは連続的に高速度へと変化させながら成
膜することを特徴とするMIG型磁気ヘッドの製造方法
である。
That is, in this invention, at least one magnetic core half is made of ferrite,
MI with a metal film with high saturation magnetic flux density in the magnetic gap
In a method for manufacturing a G-type magnetic head, an interfacial reaction prevention film made of a non-magnetic inorganic material is deposited on a magnetic gap abutting surface of a ferrite core, and then a Fe-Al-Si alloy film is deposited on the interfacial reaction prevention film. When forming a film using the vapor phase growth method, the film formation rate is gradually increased from low to low.
This is a method of manufacturing an MIG type magnetic head characterized by forming a film while changing the speed stepwise or continuously to a high speed.

また、この発明は、前記方法において、Fe−Al−S
i合金膜の成膜開始時から少なくとも501みまでの成
膜速度を、50Å/分以下の低速度としたことを特徴と
するMIG型磁気ヘッドの製造方法である。
Further, in the method, the present invention provides Fe-Al-S
This is a method for manufacturing an MIG type magnetic head, characterized in that the deposition rate from the start of deposition of the i-alloy film to at least 501 is as low as 50 Å/min or less.

発明の構成 詳述すれば、この発明は、公知の薄膜形成法を用いて、
各種フェライトコア上に、5i02、サイアロン、Al
2O3、CrN、 Crなどの非磁性無機材料のいずれ
か少なくとも1種を以上成膜したのち、成膜速度を低速
度から順次高速度へと変化させながらFe−Al−Si
合金膜を成膜積層し、所要の厚みの金属磁性膜となした
後、ガラス溶着の工程での高温雰囲気、あるいは用途、
膜厚み、積層構造及び厚み比率等に応じて適宜選定した
400℃〜800℃、1分〜100時間の熱処理を行な
うことを特徴とするMIG型磁気ヘッドの製造方法であ
る。
Structure of the Invention Specifically, this invention uses a known thin film forming method,
5i02, Sialon, Al on various ferrite cores
After forming a film of at least one of non-magnetic inorganic materials such as 2O3, CrN, and Cr, Fe-Al-Si is deposited while gradually changing the film-forming speed from low to high.
After the alloy film is formed and laminated to form a metal magnetic film of the required thickness, it is heated in a high temperature atmosphere during the glass welding process, or for various purposes.
This method of manufacturing an MIG magnetic head is characterized by performing heat treatment at a temperature of 400° C. to 800° C. for 1 minute to 100 hours, which is appropriately selected depending on the film thickness, laminated structure, thickness ratio, etc.

第1層の非磁性無機材料からなる界面反応防止膜により
、金属磁性膜と磁性酸化物との界面における原子の拡散
が防止され、成膜開始時に低成膜速度で成膜したことに
より、初期層の結晶性が著しく向上し、すぐれた−軸異
方性をもつ軟磁性膜が、酸化物基板上に形成可能となる
The first layer, an interfacial reaction prevention film made of a non-magnetic inorganic material, prevents the diffusion of atoms at the interface between the metal magnetic film and the magnetic oxide. The crystallinity of the layer is significantly improved, and a soft magnetic film with excellent -axis anisotropy can be formed on an oxide substrate.

すなわち、第1層の界面反応防止膜により、金属磁性膜
とフェライトとの界面における原子の拡散が防止され、
Fe−Al−Si合金膜を成膜時に成膜速度を低速度か
ら順次高速度へと変化させながら成膜することにより、
Fe−Al−Si合金膜が下地となる低成膜速度で成膜
した前記初期層の結晶配向に沿って成膜され、結晶配向
の乱れが少なくなり、所要の熱処理によって容易に軟磁
気特性が向上すると考えられる。
That is, the first layer of interfacial reaction prevention film prevents the diffusion of atoms at the interface between the metal magnetic film and the ferrite.
By forming the Fe-Al-Si alloy film while changing the film forming speed from low speed to high speed,
The Fe-Al-Si alloy film is deposited along the crystal orientation of the underlying initial layer, which is deposited at a low deposition rate, so that the crystal orientation is less disturbed and the soft magnetic properties can be easily improved by the required heat treatment. It is thought that this will improve.

Fe−Al−Si合金膜 MIG型磁気ヘッドにおいて、疑似ギャップの発生を抑
制し、電磁変換特性の改善及び再住出カの向上を図るに
は、前述した如く、Fe−Al−Si合金膜の成膜過程
をみれば、成膜初期層の結晶配向に沿って順次成膜され
ることがら、層全体の結晶配向の乱れを減少させるため
には、特に成膜開始時に結晶性を向上させた初期層を得
ることが重要である。
In the Fe-Al-Si alloy film MIG type magnetic head, in order to suppress the occurrence of pseudo gaps, improve the electromagnetic conversion characteristics, and improve the relocation ability, it is necessary to use the Fe-Al-Si alloy film. Looking at the film formation process, since the film is formed sequentially along the crystal orientation of the initial layer, it is necessary to improve the crystallinity, especially at the beginning of film formation, in order to reduce the disturbance of the crystal orientation of the entire layer. It is important to obtain an initial layer.

結晶性を向上させたFe−Al−Si合金膜初期層を得
るためには、成膜速度を5OÅ/分以下の低速度とする
ことが不可欠であり、望ましくは2OÅ/分以下、さら
に望ましくはIOÅ/分以下である。また、当該初期層
厚みとしては、少なくともの5OA厚みが必要となり、
望ましくは100Å以上、さらに望ましくは200A以
上である。
In order to obtain an initial Fe-Al-Si alloy film layer with improved crystallinity, it is essential to keep the deposition rate as low as 50 Å/min or less, preferably 20 Å/min or less, and more preferably 20 Å/min or less. It is less than IO Å/min. In addition, the initial layer thickness requires at least 5OA thickness,
The thickness is preferably 100 Å or more, more preferably 200 A or more.

必要とあらば、上記低成膜速度で必要とするFe−Al
−Si合金膜全体を成膜するとことも可能であり、結晶
配向性のすぐれた膜が得られるが、大半の成膜は前記初
期層の結晶配向に沿って成膜されること、特に、工業的
生産を考慮すれば、所要の初期層が得られた後は順次、
高成膜速度で成膜することが望ましい。また、低成膜速
度で成膜した該合金膜層と高成膜速度で成膜した該合金
膜層とは、熱処理による拡散等で組成変動が生じること
はない。
If necessary, Fe-Al required at the above-mentioned low deposition rate
It is also possible to deposit the entire -Si alloy film, and a film with excellent crystal orientation can be obtained, but most films are deposited along the crystal orientation of the initial layer, especially in industrial applications. Considering production, after the required initial layer is obtained,
It is desirable to form the film at a high film formation rate. Furthermore, compositional variations do not occur between the alloy film layer formed at a low film formation rate and the alloy film layer formed at a high film formation rate due to diffusion or the like due to heat treatment.

しかしながら、成膜速度が著しく異なる場合は、成膜さ
れたFe−Al−Si合金膜内部に応力が発生し易くな
り特性劣化などを招来するため、成膜開始時の低成膜速
度から段階的にあるいは連続的に高成膜速度へと変化さ
せながら成膜する必要があり、例えば、選定した初期層
の成膜速度に応じて、1〜数段階で所要の高成膜速度へ
と変化させたり、気相成長装置の能力に応じて連続的に
変化させるとよい、特に工業的生産では100Å/分〜
1oooo人/分の範囲から適宜選定するとよい。
However, if the film formation speeds are significantly different, stress is likely to occur inside the formed Fe-Al-Si alloy film, leading to deterioration of characteristics. It is necessary to form a film while continuously changing the film formation speed to a high film formation speed. For example, depending on the film formation speed of the selected initial layer, the film formation speed may be changed to a required high film formation speed in one to several steps. It is recommended to change the rate continuously according to the capacity of the vapor phase growth apparatus, especially in industrial production from 100 Å/min.
It is preferable to appropriately select from the range of 1oooo people/minute.

Fe−Al−Si系合金薄膜は、所謂センダスト合金で
あり、従来より複合型及び薄膜磁気ヘッドに多用されて
おり、磁気ヘッドの用途等に応じて、公知の組成が適宜
選定し得るが、3〜10wt%A1.6〜15wt%S
i、 80〜90wt%Feの範囲の合金を用いること
ができ、また、必要に応じて、Cr、 Ti、 Ta、
Ni、 Co、 Mo、 Zr、希土類元素や白金属元
素などを添加するのも良い。
The Fe-Al-Si alloy thin film is a so-called sendust alloy, which has been widely used in composite type and thin film magnetic heads, and a known composition can be appropriately selected depending on the purpose of the magnetic head. ~10wt%A1.6~15wt%S
i, an alloy in the range of 80 to 90 wt% Fe can be used, and optionally Cr, Ti, Ta,
It is also good to add Ni, Co, Mo, Zr, rare earth elements, platinum metal elements, etc.

また、Fe−Al−Si系合金膜の厚みは、高透磁率、
低保磁力を得るために適宜選定されるが、厚すぎる場合
には、磁気ヘッドの周波数特性が悪くなり、逆に薄い場
合には、オーバーライド特性が悪くなるなるので、通常
、1〜数戸である。
In addition, the thickness of the Fe-Al-Si alloy film has high magnetic permeability,
It is selected appropriately to obtain a low coercive force, but if it is too thick, the frequency characteristics of the magnetic head will deteriorate, and if it is thin, the override characteristics will deteriorate, so it is usually used for one to several units. be.

フェライトコア この発明において、フェライトコアには、用途に応じて
、Ni−ZnフェライトやMn−Znフェライトなどの
単結晶フェライト、HIP処理された焼結フェライトの
他、公知のあらゆるソフトフェライトが利用できる。
Ferrite Core In the present invention, the ferrite core can be made of any known soft ferrite, in addition to single crystal ferrite such as Ni--Zn ferrite or Mn--Zn ferrite, HIP-treated sintered ferrite.

界皿叉庭肱上医 この発明において、第1層の界面反応防止膜には、5i
02、サイアロン、Al2O3、CrN、 Crなどの
非磁性無機材料の1種または2種以上を成膜するが、膜
厚みが50A未満では拡散防止効果がな(、また、30
0Aを越えると、拡散防止膜自体が疑似ギャップとして
作用し好ましくないため、50〜300AI厚みとする
。さらに、好ましくは100〜200に享みである。
In this invention, the first layer of the interfacial reaction prevention film contains 5i.
02, one or more types of non-magnetic inorganic materials such as Sialon, Al2O3, CrN, and Cr are formed into a film, but if the film thickness is less than 50A, there is no diffusion prevention effect.
If it exceeds 0A, the diffusion prevention film itself acts as a pseudo gap, which is not preferable, so the thickness is set to 50 to 300 AI. Furthermore, it is preferably between 100 and 200.

製造条件 フェライトコアの磁気ギャップ突合わせ面に、界面反応
防止膜、Fe−A1−Si系合金薄膜を積層成膜するが
、その被着方法としては、各種スパッタリング法、CV
D法、蒸着法、イオンブレーティング等の公知の気相成
膜方法が利用できる。
Manufacturing conditions An interfacial reaction prevention film and a Fe-A1-Si alloy thin film are deposited on the magnetic gap abutment surface of the ferrite core, and the deposition methods include various sputtering methods, CV
Known vapor phase film forming methods such as the D method, vapor deposition method, and ion blating can be used.

好ましい被着条件としては、いずれの方法においても、
到達真空度は高い程好ましく、少なくとも1O−8To
rr台以下の高真空にする必要があり、望ましくは2x
lO−6Torr以下、さらに望ましくは1xlO’T
orr以下が良い。
Preferred deposition conditions for any method include:
The higher the ultimate vacuum degree, the better, at least 1O-8To
It is necessary to create a high vacuum below rr level, preferably 2x
lO-6 Torr or less, more preferably 1xlO'T
Orr or less is better.

スパッタリング法を用いる場合には、アルゴンガス等の
不活性ガスをスパッタリングガスとして用いるが、この
圧力はスパッタ装置の構造によって適宜選定すれば良い
When using the sputtering method, an inert gas such as argon gas is used as the sputtering gas, and the pressure may be appropriately selected depending on the structure of the sputtering apparatus.

さらに、被着形成するFe−Al−Si合金薄膜は、基
板の表面状態、例えば、残留歪応力や粗度等に強く影響
され、磁気特性が悪化する可能性があるため、当該合金
薄膜の下地となる界面反応防止膜、ひいてはフェライト
コア表面粗度を40Å以下にする必要があり、MCP(
メカノケミカルポリッシング)加工が有効である。
Furthermore, the Fe-Al-Si alloy thin film to be deposited is strongly influenced by the surface condition of the substrate, such as residual strain and roughness, and the magnetic properties may deteriorate. It is necessary to keep the interfacial reaction prevention film and the surface roughness of the ferrite core below 40 Å, and MCP (
Mechanochemical polishing) processing is effective.

熱処理は、成膜後所要の加工前に行なっても良く、例え
ば、磁気ヘッド等の部品の形状に加工してから行なって
も良い。さらにまた、磁気へラドコアの半体対のボンデ
ィング加工を行なう際にガラス溶着のための加熱を熱処
理と併用しても良い。
The heat treatment may be performed after film formation and before required processing, or may be performed, for example, after processing into the shape of a component such as a magnetic head. Furthermore, when bonding the pair of magnetic helad core halves, heating for glass welding may be used in combination with heat treatment.

熱処理の温度と時間は、複合金属磁性膜の磁気特性を向
上させるのに十分な温度と時間を適宜選定すると同時に
、コアとの熱膨張係数差、基板耐熱性、8膜の厚さ、コ
ア、拡散防止膜、FeまたはFe系合金膜と、Fe−A
l−Si系合金膜との3者間の相互拡散を同時に考慮し
て組成等によって適宜選定する必要がある。
The temperature and time of the heat treatment are selected appropriately to improve the magnetic properties of the composite metal magnetic film, and at the same time, the difference in thermal expansion coefficient with the core, the heat resistance of the substrate, the thickness of the film, the core, Diffusion prevention film, Fe or Fe-based alloy film, and Fe-A
It is necessary to select the material appropriately depending on the composition, etc., taking into consideration the mutual diffusion between the three materials with the l-Si alloy film.

熱処理温度は、400℃未満では、応力の緩和が不十分
で十分に高い透磁率が得られないため好ましくなく、ま
た800℃を越えると、膜及び膜間の相互拡散等により
返って磁気特性が劣化したり、膜の剥離が生じ安いため
、400℃〜800℃が好ましく、さらに好ましくは5
00℃〜700℃である。
If the heat treatment temperature is less than 400°C, stress relaxation will be insufficient and a sufficiently high magnetic permeability will not be obtained, which is undesirable. If it exceeds 800°C, the magnetic properties will deteriorate due to mutual diffusion between films, etc. The temperature is preferably 400°C to 800°C, more preferably 5°C because deterioration or peeling of the film is less likely to occur.
00°C to 700°C.

処理時間は、1分未満では、十分に高い透磁率が得られ
ないため好ましくなく、また100時間を越えると、返
って磁気特性が劣化するため、1分〜100時間が好ま
しく、さらには5分以上、10時間以下がより好ましい
If the treatment time is less than 1 minute, it is not preferable because a sufficiently high magnetic permeability cannot be obtained, and if it exceeds 100 hours, the magnetic properties will deteriorate, so 1 minute to 100 hours is preferable, and more preferably 5 minutes. More preferably, the time is 10 hours or less.

冷却速度は、熱処理温度、時間と同様に使用した基板及
び複合金属磁性膜の組成や構成によって適宜選定する必
要があるが、通常、1°C/hr以上、10000”C
/hr以下が好ましく、特に、50”C/hr〜600
°C/hrの範囲が好ましい。
The cooling rate needs to be appropriately selected depending on the composition and configuration of the substrate and composite metal magnetic film used as well as the heat treatment temperature and time, but it is usually 1°C/hr or more and 10,000"C.
/hr or less is preferable, particularly 50”C/hr to 600
A range of °C/hr is preferred.

雰囲気は、金属磁性膜及び強磁性酸化物の磁気特性を著
しく劣化させるものでなければどのような雰囲気でも良
いが、真空または不活性ガスまたは窒素ガス中が好まし
く、特に10’Torr以上の真空が好ましい。
The atmosphere may be any atmosphere as long as it does not significantly deteriorate the magnetic properties of the metal magnetic film and the ferromagnetic oxide, but vacuum, inert gas, or nitrogen gas is preferable, and in particular, a vacuum of 10'Torr or more is preferable. preferable.

発明の効果 この発明によるMIG型磁気ヘッドは、フェライトコア
の磁気ギャップ突合わせ面に界面反応防止膜を設けたの
ち、Fe−Al−8層合金膜を成膜時に成膜速度を低速
度から順次高速度へと変化させながら成膜することによ
り、従来の単一成膜速度で成膜したFe−Al−8層合
金膜以上の軟磁気特性(透磁率、保磁力)を有する軟磁
性膜が得られることにより、高保磁力の媒体に適用でき
、高記録密度が得られる利点がある。
Effects of the Invention The MIG magnetic head according to the present invention provides an interfacial reaction prevention film on the magnetic gap abutment surface of the ferrite core, and then sequentially changes the film formation speed from low to high when forming the Fe-Al-8 layer alloy film. By forming the film while changing the speed to a high speed, a soft magnetic film with soft magnetic properties (magnetic permeability and coercive force) superior to that of an Fe-Al-8 layer alloy film formed at a conventional single film forming speed is created. This has the advantage that it can be applied to high coercive force media and that high recording density can be obtained.

また、この発明によるMIG型磁気ヘッドは、Fe−A
l−8層合金膜が一軸異方性を有し、がっ−軸異方性を
Fe−Al−8層合金膜の成膜時に容易に制御でき、例
えば、第1図でコアブロック半体の垂直下向きに困難軸
が向くように誘導することができ、極めて好ましい特性
を得ることができる。
Further, the MIG type magnetic head according to the present invention has Fe-A
The l-8 layer alloy film has uniaxial anisotropy, and the g-axis anisotropy can be easily controlled during film formation of the Fe-Al-8 layer alloy film. The difficult axis can be directed vertically downward, and extremely favorable characteristics can be obtained.

実施例 実施例l Mn−Zn多結晶フェライトからなる第1図に示す如き
C型コアとなるべきC型ブロツク半体(1)とI型コア
となるべき■型ブロック半体(3)を製造し、CIココ
ア磁気ギャップ突合わせ面(2)となるべきC型ブロツ
ク半体く1)の所要面を、ダイヤモンドパウダーを用い
て、鏡面化したのち、MCP加工を施し、前記面を高精
度な無歪面に仕上げた。
Examples Example 1 Manufacturing a C-shaped block half (1) to become a C-shaped core and a ■-shaped block half (3) to become an I-type core as shown in FIG. 1 made of Mn-Zn polycrystalline ferrite. Then, the required surfaces of the C-shaped block halves 1), which are to become the CI Cocoa magnetic gap abutting surfaces (2), are mirror-finished using diamond powder, and then MCP processing is applied to the surfaces with high precision. Finished with a distortion-free surface.

この際、タリステップ表面段差測定器による測定では、
粗度30Å以下であった。また、表面歪層の除去状態は
、エリプソメトリ−によって確認した。
At this time, when measuring with a Talystep surface level difference measuring device,
The roughness was 30 Å or less. Moreover, the state of removal of the surface strain layer was confirmed by ellipsometry.

上記の無歪加工されたC型ブロツク半体(1)の主面上
に、RF2極マグネトロンスパッタリング装置によって
、Al2O3膜を1001みて被着形成した後、さらに
、同様にCr膜をを100人厚みで被着形成した。
After forming an Al2O3 film with a thickness of 100 mm on the main surface of the strain-free processed C-shaped block half (1) using an RF 2-pole magnetron sputtering device, a Cr film with a thickness of 100 mm was further applied in the same manner. The adhesive was formed using

さらに、RF2極マグネトロンスパッタリング装置によ
って、Fe−6AI−10Si−0,7Cr膜を1.5
5戸厚みに積層成膜した。
Furthermore, an Fe-6AI-10Si-0,7Cr film was deposited at a rate of 1.5
The film was laminated to a thickness of 5 units.

Fe−Al−8層合金膜の成膜条件は、第2図に示す如
く、成膜開始時は20人1分の成膜速度で25分間成膜
し、次いで100人1分の成膜速度に上昇させて50分
間成膜し、その後さらに200人1分の成膜速度に上昇
させて50分間成膜した。
As shown in Figure 2, the deposition conditions for the Fe-Al-8 layer alloy film were as follows: At the start of deposition, the film was deposited for 25 minutes at a deposition rate of 1 minute for 20 people, and then at a deposition rate of 1 minute for 100 people. The deposition rate was increased to 50 minutes, and then the deposition rate was further increased to 1 minute for 200 people, and deposition was performed for 50 minutes.

なお、前記のスパッタリング条件は、ターゲットへの投
入電力を所要成膜速度となるように調整したもので、M
ガス圧力4xlO’Torrであった。
Note that the above sputtering conditions are such that the power input to the target is adjusted to achieve the required film formation rate, and M
The gas pressure was 4xlO'Torr.

次に、前記基板上に磁気ギャップを形成するためのガラ
ス膜をRF2極マグネトロンスパッタリング装置にて、
各コアにつき0.3−厚みに被着形成した。
Next, a glass film for forming a magnetic gap is formed on the substrate using an RF bipolar magnetron sputtering device.
Each core was deposited to a thickness of 0.3.

さらに、C型ブロツク半体と巻線溝を有しないI型ブロ
ック半体を、N2ガス雰囲気中(680℃xlO分)に
よってガラスボンディングし、同時に、金属磁性膜の磁
気特性を向上させた後、所定寸法、形状となるように外
形加工を施し、MIG型モメモノリシックヘッド化。
Furthermore, the C-type block half and the I-type block half without a winding groove were glass-bonded in an N2 gas atmosphere (680°C x 1O min), and at the same time, after improving the magnetic properties of the metal magnetic film, External processing is performed to obtain the specified dimensions and shape, resulting in a MIG type monolithic head.

比較のため、Al2O3膜及びCr膜の成膜までは、前
述と同一の条件で製造した後、Fe−6AI−10Si
−0,7Cr膜を成膜開始時から一定の200A 7分
の成膜速度で125分間成膜し1.55pm厚みに積層
成膜し、さらに前記条件でガラス膜を成膜し、ガラスボ
ンディングしたのちMIG型モメモノリシックヘッド化
For comparison, after forming the Al2O3 film and Cr film under the same conditions as described above, Fe-6AI-10Si
A -0,7Cr film was deposited for 125 minutes at a constant 200A 7 minute deposition rate from the start of deposition to a thickness of 1.55 pm, and a glass film was further deposited under the above conditions for glass bonding. Later, the MIG type monolithic head was developed.

従って、上記2種のモノリシックヘッドは、第4図Aに
示す如く、ヘッドコア(4)の磁気ギャップ突合わせ面
は、Al2O3膜及びCr膜の2層からなる拡散防止膜
(5)、Fe−Al−Si膜(6)が積層成膜され、さ
らに磁気ギャップ用のガラス膜(7)が成膜されている
Therefore, in the above two types of monolithic heads, as shown in FIG. A -Si film (6) is formed in a layered manner, and a glass film (7) for a magnetic gap is further formed.

さらに、Fe−Al−Si膜(6)について詳述すれば
、この発明のヘッドの場合は、第4図Bに示す如く、拡
散防止膜(5)の上に、成膜速度20A1分の層(61
)、成膜速度100Å/分の層(62)、成膜速度20
0八/分の層(63)の3層からなると考えられる。ま
た、比較例のFe−Al−Si膜(6)は、第4図りに
示す如く、従来の製造方法と同様の成膜速度200人!
分の層(63)のみである。
Furthermore, to explain the Fe-Al-Si film (6) in detail, in the case of the head of the present invention, as shown in FIG. (61
), a layer (62) with a deposition rate of 100 Å/min, a deposition rate of 20
It is thought to consist of three layers: 08/min layer (63). Furthermore, as shown in the fourth diagram, the Fe-Al-Si film (6) of the comparative example was formed at a deposition rate of 200 people, which is the same as the conventional manufacturing method!
There is only one layer (63).

次に、上記2種のモノリシックヘッドの電磁変換特性を
下記条件で、各20個ずつ測定し、平均値、最大値、最
小値を第1表に示す。
Next, the electromagnetic conversion characteristics of the above two types of monolithic heads were measured under the following conditions, 20 each, and the average value, maximum value, and minimum value are shown in Table 1.

なお、第1表の疑似ギャップは、再生出力波形観察によ
るメインピークaと疑似ギャップ出力すの出力比b/a
の測定の結果の平均値、最大値、最小値である。
Note that the pseudo gap in Table 1 is the output ratio b/a between the main peak a and the pseudo gap output obtained by observing the reproduced output waveform.
These are the average value, maximum value, and minimum value of the measurement results.

磁気ディスクの保磁力; 12000e磁気デイスクの
回転数; 3600rpmコイルの巻数;24 浮上高さ;0.1顔m 第1表から明らかな如く、この発明によるヘッドの場合
の方は、疑似ギャップの効果は実質的に問題とならない
程度に著しく減少し、比較例に対して一段とすぐれた電
磁変換特性を有することが確認できた。
Coercive force of magnetic disk; 12000e Rotational speed of magnetic disk; 3600 rpm Number of turns of coil; 24 Flying height; 0.1 face m As is clear from Table 1, in the case of the head according to the present invention, the effect of the pseudo gap is It was confirmed that the electromagnetic conversion characteristics were significantly reduced to such an extent that there was no substantial problem, and that the electromagnetic conversion characteristics were even better than those of the comparative example.

第1表 Mn−Zn単結晶フェライトを用いて、実施例1と同様
条件でブロック半体を作製し、MCP加工により高精度
な平坦無歪面に仕上げたコア面に、RF2F2ノマグネ
トロンスパッタリング装置って、Al2O3膜を100
人厚みで被着形成した。
Table 1 Using Mn-Zn single-crystal ferrite, a block half was produced under the same conditions as in Example 1, and an RF2F2 nomagnetron sputtering device was applied to the core surface, which had been finished with a highly accurate flat and distortion-free surface by MCP processing. Then, the Al2O3 film was
The adhesive was formed to a human thickness.

この際、タリステップ表面段差測定器による測定では、
粗度20Å以下であった。また、表面歪層の除去状態は
、エリプソメトリ−によって確認した。
At this time, when measuring with a Talystep surface level difference measuring device,
The roughness was 20 Å or less. Moreover, the state of removal of the surface strain layer was confirmed by ellipsometry.

さらに、RF2F2ノマグネトロンスパッタリング装置
って、Fe−6AI−10Si膜を、成膜開始時は20
人ノ分の成膜速度で25分間、500AJ厚み成膜し、
次いで200人1分の成膜速度に上昇させて100分間
、1.5μ厚み成膜して、1.55pm厚みに積層成膜
した。
Furthermore, the RF2F2 nomagnetron sputtering equipment can produce a Fe-6AI-10Si film at 20%
A film with a thickness of 500AJ was formed in 25 minutes at a speed comparable to that of a human.
Next, the film forming speed was increased to 1 minute for 200 people, and a film was formed to a thickness of 1.5 μm for 100 minutes, and a layered film was formed to a thickness of 1.55 pm.

次に、前記基板上に磁気ギャップを形成するためのガラ
ス膜をRF2F2ノマグネトロンスパッタリング装置、
各コアにつき0.3μ厚みに被着形成した。
Next, a glass film for forming a magnetic gap is formed on the substrate using an RF2F2 no magnetron sputtering device.
Each core was coated to a thickness of 0.3 μm.

さらに、C型半体と巻線溝を有しないI型半体を、N2
ガス雰囲気中(680℃×10分)によってガラスボン
ディングし、同時に、金属磁性膜の磁気特性を向上させ
た後、さらに、トラックを形成するためのトラック溝巻
線溝を多数形成し、スライシングし、所定寸法、形状と
なるように外形加工を施し、MIG型磁気ヘッドチップ
化した。
Furthermore, a C-type half body and an I-type half body without a winding groove are N2
After glass bonding in a gas atmosphere (680°C x 10 minutes) and at the same time improving the magnetic properties of the metal magnetic film, a large number of track grooves and winding grooves for forming tracks were formed, and slicing was performed. External processing was performed to obtain predetermined dimensions and shape, and a MIG type magnetic head chip was produced.

従って、C型コアの磁気ギャップ突合わせ面は、Al2
O3拡散防止膜、Fe−Al−Si膜が積層成膜され、
さらに磁気ギャップ用のガラス膜が成膜されている。
Therefore, the magnetic gap abutting surface of the C-shaped core is Al2
An O3 diffusion prevention film and a Fe-Al-Si film are laminated,
Furthermore, a glass film for a magnetic gap is formed.

比較のため、Al2O3膜の成膜までは、前述と同一の
条件で製造した後、Fe−6AI−10Si膜を成膜開
始時から一定の200人1分の成膜速度で125分間成
膜し1.55−厚みに積層成膜し、さらに前記条件でガ
ラス膜を成膜し、ガラスボンディングしたのちMIG型
磁気へラドチップ化した。
For comparison, after forming the Al2O3 film under the same conditions as described above, a Fe-6AI-10Si film was formed for 125 minutes at a constant deposition rate of 200 people/1 minute from the start of film formation. Laminated films were formed to a thickness of 1.55 mm, a glass film was further formed under the above conditions, and after glass bonding, a MIG type magnetic rad chip was formed.

次に、コンポジットヘッド化し、電磁変換特性を測定し
た。再生出力波形観察によるメインピークaと疑似ギャ
ップ出力すの出力比b/aの測定の結果、本発明のb/
aは0.02、従来法のb/aは0.1であり、この発
明によるヘッドの場合の方は、疑似ギャップの効果は実
、質的に問題とならない程度に著しく減少し、良好な記
録再生特性を有することが確認できた。
Next, a composite head was made and the electromagnetic conversion characteristics were measured. As a result of measuring the output ratio b/a between the main peak a and the pseudo gap output by observing the reproduced output waveform, it was found that b/a of the present invention
a is 0.02, and b/a of the conventional method is 0.1. In the case of the head according to the present invention, the effect of the pseudo gap is actually significantly reduced to the extent that it is not a qualitative problem, and a good result is obtained. It was confirmed that it had recording and reproducing characteristics.

また、この発明によるコンポジットヘッドの再生周波数
特性のうねりは大幅に改善され、1dB以下であった。
Further, the waviness of the reproduction frequency characteristics of the composite head according to the present invention was significantly improved, and was less than 1 dB.

実施例3 Mn−Zn多結晶フェライトからなる第1図に示すC型
ブロツク半体(1)の磁気ギャップ突合わせ面(2)に
、無歪み加工を施し、その上に拡散防止膜としてサイア
ロンを200人成膜した。
Example 3 The magnetic gap abutment surface (2) of the C-type block half (1) shown in FIG. 1 made of Mn-Zn polycrystalline ferrite was subjected to strain-free processing, and Sialon was applied thereon as a diffusion prevention film. 200 people formed films.

さらに、RF2極マグネトロンスパッタリング装置によ
って、Fe−6AI−10Si膜を、成膜開始時は45
人1分の成膜速度で約11分間、500に享み成膜し、
次いで20OÅ/分の成膜速度に上昇させて100分間
、1.5μ厚み成膜して、1.55−厚みに積層成膜し
た。
Furthermore, an Fe-6AI-10Si film was deposited using an RF bipolar magnetron sputtering device at 45%
A film of 500% was formed in about 11 minutes at a film formation speed of 1 person.
Next, the film formation rate was increased to 200 Å/min, and a film was formed to a thickness of 1.5 μm for 100 minutes to form a layered film to a thickness of 1.55 μm.

C型ブロツク半体(1)とI型ブロック半体(3)のギ
ャップ膜として、ガラス膜を各々0.;%m厚みに被着
形成し、ギャップ形成面どうしを付き合わせ、N2ガス
雰囲気中(680℃×10分)によってガラスボンディ
ングした。
Glass films were used as gap films for the C-type block half (1) and the I-type block half (3), each with a thickness of 0. % m thickness, the gap forming surfaces were brought together, and glass bonding was performed in an N2 gas atmosphere (680° C. x 10 minutes).

二のボンディングしたブロックを加工してMIGモノリ
シックスライダーを作製し、電磁変換特性を測定した。
A MIG monolithic slider was fabricated by processing the second bonded block, and its electromagnetic conversion characteristics were measured.

その結果、実施例1と同様に、疑似ギャップの効果は実
質的に問題とならない程度に著しく減少し、良好な記録
再生特性を有することが確認できた。
As a result, as in Example 1, it was confirmed that the effect of the pseudo gap was significantly reduced to the extent that it did not pose a substantial problem, and that good recording and reproducing characteristics were obtained.

実施例4 Mn−Zn多結晶フェライトからなる第1図に示すC型
ブロツク半体(1)の磁気ギャップ突合わせ面(2)に
、無歪み加工を施し、その上に拡散防止膜としてサイア
ロンを200に成膜した。
Example 4 The magnetic gap abutting surface (2) of the C-type block half (1) shown in FIG. 1 made of Mn-Zn polycrystalline ferrite was subjected to strain-free processing, and Sialon was applied thereon as a diffusion prevention film. The film was formed at a temperature of 200.

さらに、RF2極マグネトロンスパッタリング装置によ
って、Fe−6AI−10Si膜を1.5p厚みに積層
成膜した。
Further, a Fe-6AI-10Si film was laminated to a thickness of 1.5p using an RF bipolar magnetron sputtering device.

Fe−Al−8層合金膜の成膜条件は、第3図に示す如
く、成膜開始時はのOから200人/分の成膜速度まで
、100分間、毎分1.72W/mm2の傾斜でターゲ
ットへの投入電力を調整することにより連続的に増加さ
せて1.0μ厚み成膜し、その後さらに200八1分の
成膜速度のまま25分間、0.5戸厚み成膜した。
As shown in Fig. 3, the deposition conditions for the Fe-Al-8 layer alloy film were as shown in Figure 3. By adjusting the power input to the target with a tilt, the power applied to the target was continuously increased to form a film with a thickness of 1.0 μm, and then a film with a thickness of 0.5 μm was formed for 25 minutes while maintaining the film forming speed of 20081 minutes.

その後、C型ブロツク半体(1)とI型ブロック半体(
3)のギャップ膜として、ガラス膜を各々0.3pm厚
みに被着形成し、ギャップ形成面同志を付き合わせ、N
2ガス雰囲気中(720℃×10分)によってガラスボ
ンディングした。
After that, the C-type block half (1) and the I-type block half (
As the gap film in 3), glass films were deposited to a thickness of 0.3 pm each, and the gap forming surfaces were brought into contact with each other, and N
Glass bonding was performed in a two-gas atmosphere (720°C x 10 minutes).

このボンディングしたブロックを加工してMIGモノリ
シックスライダーを作製し、電磁変換特性を測定した。
This bonded block was processed to produce a MIG monolithic slider, and its electromagnetic conversion characteristics were measured.

従って、上記モノリシックヘッドは、第4図Aに示す如
く、ヘッドコア(4)の磁気ギャップ突合わせ面は、サ
イアロンからなる拡散防止膜(5)、Fe−Al−Si
膜(6)が積層成膜され、さらに磁気ギャップ用のガラ
ス膜(7)が成膜されており1、Fe−Al−Si膜(
6)について詳述すれば、同図Cに示す如く、拡散防止
膜(5)の上に、成膜速度O〜200人/分の層(64
)、成膜速度20OÅ/分の層(63)の2層からなる
と考えられる。
Therefore, in the above monolithic head, as shown in FIG.
A film (6) is laminated, and a glass film (7) for a magnetic gap is further formed.
6), as shown in Figure C, a layer (64
) and a layer (63) with a deposition rate of 20 Å/min.

電磁変換特性の測定の結果、実施例1と同様に、疑似ギ
ャップの効果は実質的に問題とならない程度に著しく減
少し、良好な記録再生特性を有することが確認できた。
As a result of measuring the electromagnetic conversion characteristics, it was confirmed that, as in Example 1, the effect of the pseudo gap was significantly reduced to the extent that it did not pose a substantial problem, and it was confirmed that the sample had good recording and reproducing characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMIG型磁気ヘッドの製造を示すC型ブロツク
半体とI型ブロック半体の斜視説明図である。 第2図、第3図はこの発明によるFe−Al−8層合金
膜の成膜速度を示すグラフである。 第4図Aはへラドコアの磁気ギャップ突合わせ面上の成
膜を示す断面説明図であり、同図B−DはFe−Al−
Si膜の詳細を示す断面説明図である。 1・・・C型ブロツク半体、 2・・・磁気ギャップ突合わせ面、 3・・・I型ブロック半体、4・・・コア、5・・・拡
散防止膜、6・・・Fe−Al−Si膜、7・・・ガラ
ス膜。
FIG. 1 is a perspective explanatory view of a C-type block half and an I-type block half, showing the manufacture of an MIG type magnetic head. FIGS. 2 and 3 are graphs showing the deposition rate of the Fe-Al-8 layer alloy film according to the present invention. FIG. 4A is a cross-sectional explanatory diagram showing the film formation on the magnetic gap abutting surface of the herad core, and B-D in the same figure is
FIG. 3 is a cross-sectional explanatory diagram showing details of a Si film. DESCRIPTION OF SYMBOLS 1... C-type block half body, 2... Magnetic gap abutting surface, 3... I-type block half body, 4... Core, 5... Diffusion prevention film, 6... Fe- Al-Si film, 7... Glass film.

Claims (1)

【特許請求の範囲】 1 少なくとも一方の磁気コア半体がフェライトからなり、
磁気ギャップ内に高飽和磁束密度の金属膜を有するMI
G型磁気ヘッドの製造方法において、フェライトコアの
磁気ギャップ突合わせ面に、非磁性無機材料からなる界
面反応防止膜を被着した後、 前記界面反応防止膜上にFe−Al−Si合金膜を気相
成長方法で成膜する際に、成膜速度を低速度から順次、
段階的にあるいは連続的に高速度へと変化させながら成
膜することを特徴とするMIG型磁気ヘッドの製造方法
。 2 Fe−Al−Si合金膜の成膜開始時から少なくとも5
0Å厚みまでの成膜速度を、50Å/分以下の低速度と
したことを特徴とする請求項1記載のMIG型磁気ヘッ
ドの製造方法。
[Claims] 1. At least one magnetic core half is made of ferrite,
MI with a metal film with high saturation magnetic flux density in the magnetic gap
In a method for manufacturing a G-type magnetic head, an interfacial reaction prevention film made of a non-magnetic inorganic material is deposited on a magnetic gap abutting surface of a ferrite core, and then a Fe-Al-Si alloy film is deposited on the interfacial reaction prevention film. When forming a film using the vapor phase growth method, the film forming speed is gradually increased from low to low.
A method for manufacturing an MIG type magnetic head, characterized by forming a film while changing the speed stepwise or continuously to a high speed. 2 At least 5 times from the start of film formation of Fe-Al-Si alloy film
2. The method of manufacturing an MIG magnetic head according to claim 1, wherein the film formation rate up to a thickness of 0 Å is as low as 50 Å/min or less.
JP6589590A 1990-03-15 1990-03-15 Method for manufacturing MIG type magnetic head Expired - Lifetime JPH07118054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6589590A JPH07118054B2 (en) 1990-03-15 1990-03-15 Method for manufacturing MIG type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6589590A JPH07118054B2 (en) 1990-03-15 1990-03-15 Method for manufacturing MIG type magnetic head

Publications (2)

Publication Number Publication Date
JPH03266207A true JPH03266207A (en) 1991-11-27
JPH07118054B2 JPH07118054B2 (en) 1995-12-18

Family

ID=13300161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6589590A Expired - Lifetime JPH07118054B2 (en) 1990-03-15 1990-03-15 Method for manufacturing MIG type magnetic head

Country Status (1)

Country Link
JP (1) JPH07118054B2 (en)

Also Published As

Publication number Publication date
JPH07118054B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
EP0380136B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
US6238492B1 (en) Soft magnetic thin film, method for preparing same and magnetic head
US5439754A (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
US5585984A (en) Magnetic head
JPH07302711A (en) Soft magnetic alloy thin film and its manufacture
JPH0624044B2 (en) Composite type magnetic head
US5786103A (en) Soft magnetic film and magnetic head employing same
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH0484403A (en) Soft magnetic thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JPH03266207A (en) Production of mig type magnetic head
WO1992016934A1 (en) A magnetic head for high-frequency, high-density recording
JP2570337B2 (en) Soft magnetic laminated film
JP2519554B2 (en) MIG type magnetic head
JPS63311611A (en) Composite type magnetic head
JP3452594B2 (en) Manufacturing method of magnetic head
JP2522284B2 (en) Soft magnetic thin film
JPH0565042B2 (en)
JPH0555036A (en) Soft magnetic thin film and its manufacture, soft magnetic multilayer film and its manufacture as well as magnetic head
JPH03203008A (en) Production of laminated film of fe-si-al ferromagnetic alloy for magnetic head
JPH02185707A (en) Composite type magnetic head and production thereof
JPH08241813A (en) Soft magnetic thin film material for magnetic head
JPH0746656B2 (en) Crystalline soft magnetic thin film
JPH053121A (en) Magnetic member
JPH0522284B2 (en)