JPH03265823A - Optical spatial connecting method between packaged substrates - Google Patents
Optical spatial connecting method between packaged substratesInfo
- Publication number
- JPH03265823A JPH03265823A JP6404690A JP6404690A JPH03265823A JP H03265823 A JPH03265823 A JP H03265823A JP 6404690 A JP6404690 A JP 6404690A JP 6404690 A JP6404690 A JP 6404690A JP H03265823 A JPH03265823 A JP H03265823A
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarization plane
- mounting board
- signal
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 title abstract description 4
- 230000010287 polarization Effects 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 230000001902 propagating effect Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000009429 electrical wiring Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子装置内の実装基板(配線基板)相互間の
信号の送受信を、空間を伝搬する光ビームを用いて行う
光空間結線法に係り、特に2発光素子、受光素子の個数
を減らし、小型で自由度の大きい光空間結線を実現する
ことを図った実装基板相互間光空間結線法に関するもの
である。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical space interconnection method for transmitting and receiving signals between mounting boards (wiring boards) in an electronic device using a light beam propagating in space. In particular, the present invention relates to an optical spatial connection method between mounting boards that aims to reduce the number of two light emitting elements and two light receiving elements and realize a compact optical spatial connection with a large degree of freedom.
電子装置内に実装された複数枚のボード(実装基板)間
で信号の授受が必要な場合、これらのボード間に信号送
受用の配線を施す必要がある。従来、このようなボート
間配線は電気的に行われていた。しかし、装置の大型化
に伴うボード数の増加、送受信信号の高速化が進むにつ
れ、これら電気的配線で生じるインダクタンス、浮遊容
量、電磁誘導が問題となってきた。こうした電気的配線
の問題点を解決する配線法として、空間を伝搬する平行
光ビームを信号伝送媒体とする光空間結線法が提案され
ている(野ロ、他、「多層光配線板」。When it is necessary to send and receive signals between a plurality of boards (mounted substrates) mounted in an electronic device, it is necessary to provide wiring for signal sending and receiving between these boards. Conventionally, such inter-boat wiring was performed electrically. However, as devices become larger, the number of boards increases, and the speed of transmitted and received signals increases, inductance, stray capacitance, and electromagnetic induction generated in these electrical wirings have become problems. As a wiring method to solve these electrical wiring problems, an optical spatial wiring method has been proposed in which a parallel light beam propagating in space is used as a signal transmission medium (Noro et al., ``Multilayer Optical Wiring Board'').
特願昭63−206473号)。(Patent Application No. 1983-206473).
第6図は、上記提案に開示されている説明図を示し、複
数枚(図示例では5枚)のボード間の結線を光空間結線
法により実現した例である。第6図において、1は発光
素子とレンズを一体化し。FIG. 6 shows an explanatory diagram disclosed in the above proposal, and is an example in which connections between a plurality of boards (five in the illustrated example) are realized by the optical space connection method. In FIG. 6, 1 integrates a light emitting element and a lens.
各実装基板上1−1〜11−5に生した信号を平行光ビ
ームに変換して空間に放射する発光素子モジュール、2
は受光素子とレンズを一体化した受光素子モジュール、
3は平行光ビームを通過させるための窓をそれぞれ表わ
す。すなわち、N枚(N22)のボードのそれぞれの面
上に(N−1,)個の発光素子と(N−1)個の受光素
子を設け。a light emitting element module that converts signals generated on each mounting board 1-1 to 11-5 into a parallel light beam and radiates it into space; 2;
is a photodetector module that integrates a photodetector and a lens,
3 each represents a window for passing a parallel light beam. That is, (N-1,) light emitting elements and (N-1) light receiving elements are provided on each surface of N (N22) boards.
任意の一つの発光素子が設けられたボードとその光を受
信する受光素子が設けられたボードとの間に別の第3.
第4 (これは↓枚のときも複数枚のときもある)のボ
ードが存在する場合は、この第3、第4のボードにその
光を通過させる窓を設ける構成とすることにより、N枚
のボードのうち任意の2ボ一ド間の信号授受を可能とし
たものである。Another third.
If there is a fourth board (this may be ↓ or multiple), by providing a window that allows the light to pass through the third and fourth boards, it is possible to It is possible to exchange signals between any two boards among the boards.
」1記した提案技術による光空間結線法においては、結
線されるべきボード数と同数の発光素子モジュール、受
光素子モジュールを各ボード上に配置する必要がある。In the optical space connection method according to the proposed technology described in 1., it is necessary to arrange on each board the same number of light emitting element modules and light receiving element modules as the number of boards to be connected.
すなわち、ボード数をNとすると、N(N−1)個の発
光素子モジュールとN(N−1)個の受光素子モジュー
ルとが必要になる。そのため、ボート数が増加すると、
各ボート上の発光素子モジュール、受光素子モジュール
。That is, if the number of boards is N, then N(N-1) light emitting element modules and N(N-1) light receiving element modules are required. Therefore, as the number of boats increases,
Light emitting element module and light receiving element module on each boat.
およびそれらのモジュールに接続される光電気変換回路
の数も増大して、光空間結線部の消費電力が増大する。The number of opto-electric conversion circuits connected to these modules also increases, and the power consumption of the optical space connection section increases.
ボード面積のうち光空間結線部の占める割合が増大する
等の問題があった。There were problems such as an increase in the proportion of the board area occupied by the optical space connection section.
本発明の目的は、従来技術での上記した問題を解決し2
発光素子、受光素子の数を減らすことができ、結線自由
度の増大、結線部の小型化を実現することができる実装
基板間の光空間結線法を提4
供することにある。The purpose of the present invention is to solve the above-mentioned problems in the prior art.
It is an object of the present invention to provide an optical spatial connection method between mounting boards that can reduce the number of light emitting elements and light receiving elements, increase the degree of freedom in connection, and reduce the size of the connection part.
上記目的を達成するために2本発明においては。 In order to achieve the above object, there are two aspects of the present invention.
次に述べるような光空間結線法とする。すなわち。The following optical space connection method is used. Namely.
複数N枚(N22)の実装基板間の信号授受を空間を伝
搬する平行光を用いて行う光空間結線法において、各実
装基板の面上に、電気信号を直線偏光成分のみの信号光
に変換して空間に放射する発光素子の1個と、入射され
る信号光を電気信号に変換する受光素子のN−1個とを
それぞれ設け。In the optical space connection method, which uses parallel light propagating in space to exchange signals between a plurality of N (N22) mounted boards, electrical signals are converted into signal light with only linearly polarized components on the surface of each mounted board. One light-emitting element that emits the signal light into space, and N-1 light-receiving elements that convert the incident signal light into an electrical signal are provided.
各発光素子からの信号光の経路上にそれぞれ2通過する
信号光の偏光面を外部からの制御により任意角度回転さ
せる偏光面制御素子と、入射する信号光と入射点におけ
る反射面の法線とが作る平面に平行なP偏光成分は透過
し、垂直なS偏光成分は直角だけ進路を変えて反射する
反射面を有する光路変換素子と、光路変換素子内を前記
放射信号光と平行な方向に進んできた信号光の偏光面を
90度回転させて上記反射面に向けて逆進させる反射素
子とを設け、各光路変換素子相互間にも偏光面制御素子
をそれぞれ配置し、これらの偏光面制御素子での偏光面
回転角度を制御して、任意の実装基板の発光素子からの
信号光を、まず自実装基板用の光路変換素子で進路を直
角だけ変えて他の実装基板用の光路変換素子に入射させ
2次いでこの入射光を取り込んだ光路変換素子において
再び進路を直角だけ変えて結線しようとする実装基板の
受光素子に向けて放射させることにより、任意の実装基
板相互間を光空間結線する方法とする。A polarization plane control element that rotates the polarization plane of the signal light passing twice on the path of the signal light from each light emitting element by an arbitrary angle under external control; an optical path converting element having a reflecting surface that transmits the P polarized light component parallel to the plane created by the plane, and reflects the perpendicular S polarized light component by changing its course by a right angle; A reflecting element is provided which rotates the polarization plane of the signal light that has advanced by 90 degrees and moves it backward toward the reflecting surface, and a polarization plane control element is also arranged between each optical path conversion element, and these polarization planes are rotated by 90 degrees. By controlling the rotation angle of the polarization plane with the control element, the signal light from the light emitting element of any mounting board is first changed by a right angle with the optical path conversion element for the own mounting board, and then the optical path for the other mounting board is changed. By making the incident light enter the element, and then changing the path by a right angle in the optical path conversion element that takes in the incident light and emitting it toward the light receiving element of the mounting board to be connected, optical space connection can be made between arbitrary mounting boards. This is the method to do so.
本発明は、偏光制御による光路変換機能を実装基板間の
結線部に適用することにより9発光素子の個数を減らし
、小型で自由度の大きい光空間結線を実現したことを最
大の特徴としており、この点において従来技術とは明確
に異なる。The main feature of the present invention is that the number of light emitting elements is reduced by applying the optical path conversion function by polarization control to the connection section between the mounting boards, and a compact optical space connection with a large degree of freedom is realized. This point clearly differs from the prior art.
以下2図面により本発明の詳細な説明する。 The present invention will be explained in detail with reference to the following two drawings.
実施例1
第1図に本発明の第1の実施例の光経路説明図を、第2
図に立体的な斜視図を示す。なお、第工図においては、
光経路の説明を容易にするために。Example 1 FIG. 1 shows an explanatory diagram of the optical path of the first example of the present invention, and
The figure shows a three-dimensional perspective view. In addition, in the first engineering drawing,
To facilitate the explanation of light paths.
第2図の発光素子、受光素子の部分を直角だけ回転させ
て、光路変換素子に対向するように図示しである。本実
施例は4枚の実装基板間の任意の2基板間の結線を実現
した例である。〕−1〜1−4は発光素子、レンズ、偏
光子を一体化し、単一偏光の平行光ビームを放射する発
光素子モジュール、2−l〜2−3.:3−1〜3−3
.4−1〜4−3.5−1〜5−3は受光素子とレンズ
を一体化した受光素子モジュール、6−1〜6−4は偏
光ビームスプリッタ、7−1〜7−4は1/4波長板、
8−土〜8−4は全反射ミラーをそれぞれ表わしている
。偏光ビームスプリッタは2反射面の法線と入射平行光
が作る平面に平行な偏光成分(P偏光成分)は透過し、
垂直な成分(S偏光成分)は入射光と直角をなす方向に
反射する素子である。9−王〜9−4.10−1〜10
−3は偏光面制御素子であり、具体的には液晶スイッチ
。The light emitting element and light receiving element in FIG. 2 are rotated by a right angle and are shown facing the optical path changing element. This embodiment is an example in which connection between any two of four mounting boards is realized. ]-1 to 1-4 are light emitting element modules that integrate a light emitting element, a lens, and a polarizer and emit a single polarized parallel light beam; 2-l to 2-3. :3-1~3-3
.. 4-1 to 4-3. 5-1 to 5-3 are light receiving element modules that integrate a light receiving element and a lens, 6-1 to 6-4 are polarizing beam splitters, and 7-1 to 7-4 are 1/ 4 wavelength plate,
8-Sat to 8-4 represent total reflection mirrors, respectively. A polarizing beam splitter transmits the polarized light component (P polarized light component) parallel to the plane formed by the normal line of the two reflecting surfaces and the incident parallel light,
The vertical component (S-polarized component) is an element that reflects the incident light in a direction perpendicular to it. 9-King~9-4.10-1~10
-3 is a polarization plane control element, specifically a liquid crystal switch.
強誘電体スイッチなどが挙げられる。また111〜11
−4は実装基板、」2は実装基板117
2から11−4へ信号を伝送する場合の光路。Examples include ferroelectric switches. Also 111-11
-4 is a mounting board, and 2 is an optical path for transmitting a signal from the mounting board 1172 to 11-4.
工3は実装基板11−3から11−1へ信号を伝送する
場合の光路をそれぞれ表わしている。各実装基板上の発
光素子モジュール、受光素子モジュールは同一平面上に
1次元あるいは2次元的に配列されており、その数は全
実装基板数をNとするとそれぞれ上側、(N−1)個で
ある。Symbols 3 each represent an optical path when transmitting a signal from the mounting board 11-3 to the mounting board 11-1. The light-emitting element modules and light-receiving element modules on each mounted board are arranged one-dimensionally or two-dimensionally on the same plane, and their number is (N-1) on the upper side, where N is the total number of mounted boards. be.
本実施例の動作を実装基板11−2から1↓−4へ信号
を伝送する場合、実装基板1↑−3から工1−1−八信
号を伝送する場合を例にとって説明する。まず実装基板
1ニー2から11−4へ信号を伝送する場合について説
明する。実装基板112から出力された電気信号は発光
素子モジュールJ−−2によって単一偏光の平行光ビー
ムエ2に変換され、空間に放射される。平行光ビーム1
2は偏光面制御素子9−2によってS偏光に変換され偏
光ビームスプリッタ6−2に入射する。偏光ビームスプ
リッタ6−2に入射した信号光12はS偏光成分のみを
持つので入射光と直角で図の下方向に光路を変換して出
射され、偏光面制御素子10−2に入射する。偏光面制
御素子10−2は信号光12の偏光を90度回転し、P
偏光として出射する。P偏光に変換された信号光12は
偏光ビームスプリッタ6−3をそのまま通過し、偏光面
制御素子10−3に入射する。偏光面制御素子10−3
は信号光の偏光を再び90度回転させ。The operation of this embodiment will be explained by taking as an example the case where a signal is transmitted from the mounting board 11-2 to 1↓-4, and the case where the signal 1-1-8 is transmitted from the mounting board 1↑-3. First, a case will be described in which a signal is transmitted from the knee 2 of the mounting board 1 to the knee 11-4. The electrical signal output from the mounting board 112 is converted into a single polarized parallel light beam E2 by the light emitting element module J--2, and is radiated into space. parallel light beam 1
2 is converted into S-polarized light by the polarization plane control element 9-2 and enters the polarization beam splitter 6-2. Since the signal light 12 incident on the polarizing beam splitter 6-2 has only an S-polarized component, the optical path is changed downward in the figure at right angles to the incident light, and the signal light 12 is emitted and enters the polarization plane control element 10-2. The polarization plane control element 10-2 rotates the polarization of the signal light 12 by 90 degrees, and
Emit as polarized light. The signal light 12 converted into P-polarized light passes through the polarization beam splitter 6-3 as it is, and enters the polarization plane control element 10-3. Polarization plane control element 10-3
rotates the polarization of the signal light by 90 degrees again.
S偏光に変換する。そのため信号光12は偏光ビームス
プリッタ6−4で直角方向に反射され、]−]/4波長
波長77瓦47
長板7ー4を経て偏光が90度回転し,P偏光に変換さ
れて再び偏光ビームスプリッタ6−4に入射される。信
号光工2はP偏光に変換されているので,偏光ビームス
プリッタ6−4をそのまま通過し2図の左方向に出射さ
れる。出射された信号光12は受光素子モジュール5−
2により電気信号に変換され,実装基板11−4へ導か
れる。次に実装基板上1−3から工1−1へ信号を伝送
する場合について説明する。実装基板11−3から出力
された電気信号は発光素子モジュール1−3。Convert to S polarized light. Therefore, the signal light 12 is reflected in the right angle direction by the polarizing beam splitter 6-4, and the polarized light is rotated by 90 degrees after passing through the long plate 7-4, converted into P-polarized light, and polarized again. The beam is incident on the beam splitter 6-4. Since the signal light beam 2 has been converted into P-polarized light, it passes through the polarization beam splitter 6-4 as it is and is emitted to the left in FIG. The emitted signal light 12 is sent to the light receiving element module 5-
2, it is converted into an electrical signal and guided to the mounting board 11-4. Next, a case will be described in which a signal is transmitted from the mounting board 1-3 to the workpiece 1-1. The electrical signal output from the mounting board 11-3 is sent to the light emitting element module 1-3.
偏光面制御素子9−3によってP偏光の平行光ビ−ムと
して偏光ビームスプリッタ6−3に入射される。入射し
た信号光13は、偏光ビームスプリッタ6−3.]]/
4波長波長77灰39スプリッタ6−3で反射されて4
図の上方向へ出射される。出射信号光13の偏光は偏光
面制御素子1 0 − 2でP偏光に,10−1でS偏
光にそれぞれ変換され,結局信号光13は偏光ビームス
プリッタ6−1で反射され受光素子モジュール2−2に
導かれる。受光素子モジュール2−2は信号光を電気信
号に変換し,実装基板11−1へ出力する。以上説明し
たように2発光素子モジュールから放射された信号光は
,その経路の途中で偏光痢制御(P偏光とS偏光のスイ
ッチング)とこれらの偏光面に依存する経路変換を行う
ことにより任意の実装基板上の受光素子モジュールと結
合することが可能である。従って本実施例によれば発光
素子モジュールおよび発光素子駆動用電子回路の数を,
それぞれ従来の1/(N−1)個に減らすことが可能と
なり,実装基板における光空間結線に関わる電子回路,
光学系が小型化されることになる。The polarization plane control element 9-3 causes the light to enter the polarization beam splitter 6-3 as a P-polarized parallel light beam. The input signal light 13 is transmitted to the polarizing beam splitter 6-3. ]]/
4 wavelength Wavelength 77 Gray 39 Reflected by splitter 6-3 4
The light is emitted upward in the figure. The polarization of the output signal light 13 is converted into P polarization by the polarization plane control element 10-2 and into S polarization by the polarization plane control element 10-1, and finally the signal light 13 is reflected by the polarization beam splitter 6-1 and sent to the light receiving element module 2-. 2. The light receiving element module 2-2 converts the signal light into an electrical signal and outputs it to the mounting board 11-1. As explained above, the signal light emitted from the two-light emitting element module can be arbitrarily changed by polarization control (switching between P-polarized light and S-polarized light) and path conversion depending on these polarization planes in the middle of its path. It is possible to combine with a light receiving element module on a mounting board. Therefore, according to this embodiment, the number of light emitting element modules and light emitting element driving electronic circuits is
It is now possible to reduce the number of electronic circuits to 1/(N-1) of the conventional number, and the number of electronic circuits related to optical spatial connections on the mounting board.
The optical system will be made smaller.
実施例2 本発明の第2の実施例の光経路説明図を第3図に示す。Example 2 An explanatory diagram of the optical path of the second embodiment of the present invention is shown in FIG.
本発明の第1の実施例では,偏光面制御素子がS偏光,
P偏光のスイッチとして用いられ。In the first embodiment of the present invention, the polarization plane control element is used for S-polarized light,
Used as a switch for P-polarized light.
任意実装基板間の1対1結線を実現している。本発明の
第1の実施例の構成において偏光面制御素子が入射光の
偏光面を任意角度回転させる機能を有する場合,第1図
と同し構成で放送型の結線が可能となる。偏光面の任意
角度回転は2例えば強誘電体スイッチの印加電圧を調整
することにより実現できる。第3図には,放送型結線が
可能な本発明の第2の実施例を示す。構成は第1図と同
じであるが,入射光の偏光面を任意角度回転させる機能
を有する偏光面制御素子(22−1−〜224、、23
−1〜23−3)を用いているところが第1図と異なる
。24は実装基板11−2から他の全実装基板へ放送型
結線した場合の光路を示している。実装基4fi.1.
1 − 2から出力された電気信1
号は発光素子モジュール1−2によって単一偏光の平行
光ビーム24に変換され,空間に放射される。平行光ビ
ーム24は偏光面制御素子22−2によってS偏光面と
30度の角度を持つ偏光面に変換され偏光ビームスプリ
ッタ6−2に入射する。One-to-one connection between arbitrary mounting boards is realized. In the configuration of the first embodiment of the present invention, if the polarization plane control element has a function of rotating the polarization plane of incident light by an arbitrary angle, broadcast type connection is possible with the same configuration as in FIG. 1. An arbitrary angle rotation of the plane of polarization can be realized by adjusting the voltage applied to a ferroelectric switch, for example. FIG. 3 shows a second embodiment of the present invention that allows broadcast type connection. The configuration is the same as that in Fig. 1, except that polarization plane control elements (22-1- to 224, 23
-1 to 23-3) is used, which is different from Fig. 1. Reference numeral 24 indicates an optical path in the case of broadcast type connection from the mounting board 11-2 to all other mounting boards. Mounting base 4fi. 1.
The electrical signal No. 1 outputted from the light emitting element module 1-2 is converted into a single polarized parallel light beam 24 and radiated into space. The parallel light beam 24 is converted by the polarization plane control element 22-2 into a polarization plane having an angle of 30 degrees with the S polarization plane, and enters the polarization beam splitter 6-2.
偏光ビームスプリッタ6−2に入射した信号光24はS
偏光成分とP偏光成分が2:lの比率で含まれており,
S偏光成分は図の下方向に,P偏光成分は図の上方向に
出射される。上方向に出射された信号光は偏光面制御素
子23−1によってS偏光となるようにその偏光面が回
転され,偏光ビームスプリッタ6−]−で反射されて受
光素子モジュール21−に導かれる。図の下方向に出射
された光は偏光面制御素子23−2によって,S偏光と
45度の角度をなすようにその偏光面が変換される。変
換された信号光はP偏光成分とS偏光成分を]:ユの比
率で持っている。従って偏光ビームスプリッタ6−3は
入射光のうちP偏光成分をそのまま図のド方向へ出射し
2S偏光成分を受光素r− 4−2に導く。P偏光成分
のみを持つ偏光2
ビームスプリッタ6−3からの出射光は偏光面制御素子
23−3によってS偏光に変換され,受光素子モジュー
ル5−2に導かれる。以上から9発光素子モジュール1
−2から放射された信号光は他の全ての受光素子モジュ
ールに結合されたことになる。このように、第3図の構
成を用いれば任意実装基板の出力信号光を他の全ての実
装基板上の受光素子へ結合する放送型の結線が実現でき
る。The signal light 24 incident on the polarization beam splitter 6-2 is S
Contains polarized light components and P-polarized light components at a ratio of 2:l,
The S-polarized light component is emitted downward in the figure, and the P-polarized light component is emitted upward in the figure. The signal light emitted upward has its polarization plane rotated by the polarization plane control element 23-1 so that it becomes S-polarized light, is reflected by the polarization beam splitter 6-]-, and is guided to the light-receiving element module 21-. The polarization plane of the light emitted downward in the figure is converted by the polarization plane control element 23-2 so that it forms an angle of 45 degrees with the S-polarized light. The converted signal light has a P polarization component and an S polarization component in a ratio of ]:Y. Therefore, the polarizing beam splitter 6-3 outputs the P-polarized component of the incident light as it is in the direction shown in the figure, and guides the 2S-polarized component to the light-receiving element r-4-2. Polarized light having only P-polarized light component 2 The light emitted from the beam splitter 6-3 is converted into S-polarized light by the polarization plane control element 23-3, and guided to the light receiving element module 5-2. From the above, 9 light emitting element modules 1
This means that the signal light emitted from -2 is coupled to all other light receiving element modules. In this way, by using the configuration shown in FIG. 3, it is possible to realize a broadcast type connection in which the output signal light of any mounting board is coupled to the light receiving elements on all other mounting boards.
もちろん本実施例の構成を用いて任意実装基板間の1対
l結線も可能である。従って本実施例によれば,結線形
態(1対1結線,放送型結線)の切り替え,結線端子の
切り替えを外部からの制御により容易に実現することが
でき,従来の実装基板間の光空間結線に比べて結線の自
由度が大幅に向上している。Of course, one-to-one connection between arbitrary mounting boards is also possible using the configuration of this embodiment. Therefore, according to this embodiment, it is possible to easily switch the connection form (one-to-one connection, broadcast type connection) and switch the connection terminal by external control, and it is possible to easily realize the switching of the connection form (one-to-one connection, broadcast type connection) and the connection terminal by external control. The degree of freedom in wiring has been greatly improved compared to the previous version.
実施例3
本発明の第3の実施例の光経路説明図を第4図に,立体
的な斜視図を第5図に示す。14−1〜14−4は受光
用1/4波長板,15−1〜1−5−4は受光用全反射
ミラー、16−1〜16−4は発光用1/4波長板、]
−]7−1〜17−は発光用全反射ミラー、18−1〜
1−8−4は集光レンズ、19−1〜19−4は受光素
子をそれぞれ表わしている。これらの集光レンズと受光
素子との位置関係は、各集光レンズの光軸上のレンズ焦
点位置に各受光素子が配置されるようにする。また20
は発光素子1−2から受光素子1−9−4へ信号を伝送
する場合の光路、2]−は発光素子13から受光素子t
9−1へ信号を伝送する場合の光路をそれぞれ表わし
ている。本実施例は、工/4波長板と全反射ミラーから
構成される反射素子を発光素子モジュールからの出射光
用と受光素子への入射光用に分割して配置し、かつ受光
素子への入射光は集光レンズを介して一つの受光素子に
結合されるところが第工の実施例と異なる。本実施例に
おいても本発明の第1.第2の実施例と同様の機能を実
現することが可能であり、しかも全実装基板数Nに対し
2発光素子数、受光素子数ともにN個とすることができ
る。従って本実施例の光空間結線は、実装基板面積の光
空間結線部が占める割合を大幅に小さくすることができ
る。Embodiment 3 An explanatory view of the optical path of a third embodiment of the present invention is shown in FIG. 4, and a three-dimensional perspective view is shown in FIG. 14-1 to 14-4 are quarter-wave plates for light reception, 15-1 to 1-5-4 are total reflection mirrors for light reception, and 16-1 to 16-4 are quarter-wave plates for light emission.]
- ] 7-1 to 17- are total reflection mirrors for light emission, 18-1 to
1-8-4 represents a condenser lens, and 19-1 to 19-4 represent light receiving elements, respectively. The positional relationship between these condensing lenses and the light receiving elements is such that each light receiving element is arranged at a lens focal position on the optical axis of each condensing lens. 20 again
is the optical path when transmitting a signal from the light emitting element 1-2 to the light receiving element 1-9-4, and 2]- is the optical path from the light emitting element 13 to the light receiving element t.
Each shows an optical path when transmitting a signal to 9-1. In this example, a reflection element consisting of a quarter-wave plate and a total reflection mirror is arranged separately for light emitted from the light emitting element module and for light incident on the light receiving element, and This embodiment differs from the first embodiment in that light is coupled to one light receiving element via a condensing lens. In this embodiment as well, the first aspect of the present invention. It is possible to realize the same functions as in the second embodiment, and moreover, both the number of light emitting elements and the number of light receiving elements can be set to N for the total number of mounted boards N. Therefore, the optical spatial connection of this embodiment can significantly reduce the proportion of the mounting board area occupied by the optical spatial connection section.
なお、上記第3の実施例の方法においては2発光素子は
各実装基板に1個であるが、その−次元方向での配置位
置は7図示のようい、各基板ごとに順次ずらして設ける
必要があり、この点で、相互結線できる実装基板の枚数
が制限を受けることになる。これに対して2発光素子が
配置され得る位置をmXn個(m、nがそれぞれ1以上
でm+nが3以上)の二次元のマトリクス状とし2発光
素子からの放射信号線が各実装基板間で重ならないよう
にし、これに応じた反射素子の分割方式とすることによ
り、受光素子側は集光レンズを介して1個の受光素子に
信号光を受ける構成のままとして、全部でm x n枚
の実装基板の相互間結線が可能となり、結線の自由度が
大幅に向上することになる。In addition, in the method of the third embodiment, each mounting board has one two-light emitting element, but the arrangement position in the -dimensional direction must be shifted sequentially for each board as shown in Figure 7. In this respect, the number of mounting boards that can be interconnected is limited. On the other hand, the positions where the two light emitting elements can be placed are arranged in a two-dimensional matrix of mXn (m and n are each 1 or more and m+n is 3 or more), and the radiation signal lines from the two light emitting elements are connected between each mounting board. By avoiding overlapping and dividing the reflecting elements accordingly, the light receiving element side remains configured to receive signal light into one light receiving element via a condensing lens, resulting in a total of m x n pieces. This makes it possible to interconnect the mounting boards, greatly increasing the degree of freedom in connection.
また、上記した二次元配置方式は9本発明の前述した第
1及び第2の実施例にも適用可能であり。Further, the above-described two-dimensional arrangement method is also applicable to the above-described first and second embodiments of the present invention.
実装基板の枚数が多数のときの相互結線に適用して大き
な効果を発揮させることができる。It can be applied to mutual connection when a large number of mounting boards are mounted, and a great effect can be exhibited.
5
16
以上に挙げた実施例は、実装基板間結線への適用の他に
、光の画人出力素子(面発光レーザ、アレイ受光素子、
光双安定素子など)間の結線にも適用可能である。5 16 The above-mentioned embodiments are applicable not only to interconnections between mounted boards, but also to optical output elements (surface-emitting lasers, array light-receiving elements,
It can also be applied to connections between optical bistable devices (optical bistable devices, etc.).
以上説明したように9本発明によれば、偏光面回転角度
制御による光路変換機能を実装基板間の結線部に適用し
たことにより、従来技術ではN枚の実装基板相互間を結
線するのにN−1個の発光素子とN−l個の受光素子と
をそれぞれ各実装基板に設ける必要があったのに対し5
本発明の請求項Jの方法によれば2発光素子の個数を各
実装基板に上側とすることができ、また請求項2の方法
によれば、受光素子の個数をも各実装基板に1個とする
ことができ、これにより、光空間結線部の小型化、結線
の自由度の増大を可能とする効果がある。As explained above, according to the present invention, by applying the optical path conversion function by controlling the rotation angle of the polarization plane to the connection section between the mounting boards, N -While it was necessary to provide one light emitting element and N-l light receiving elements on each mounting board, 5
According to the method of claim J of the present invention, the number of light emitting elements can be set to two on the upper side of each mounting board, and according to the method of claim 2, the number of light receiving elements can also be set to one on each mounting board. This has the effect of making it possible to downsize the optical space connection section and increase the degree of freedom in connection.
第1−図は本発明の第1の実施例の光経路説明図。
第2図は第]−の実施例に対する立体的な斜視図。
第3図は本発明の第2の実施例の光経路説明図。
第4図は本発明の第3の実施例の光経路説明図。
第5図は第3の実施例に対する立体的な斜視図。
第6図は従来技術を示す斜視図である。
〈符号の説明〉
6 偏光ビームスプリッタ
7・ 174波長板 8 全反射ミラー9.10・
・・偏光面制御素子
工1・実装基板
14・・受光用174波長板
15・受光用全反射ミラー
↓6・・発光用174波長板
]7・発光用全反射ミラー
18・・・集光レンズ
○印・発光素子モジュール
■印 受光素子モジュールFIG. 1 is an explanatory diagram of the optical path of the first embodiment of the present invention. FIG. 2 is a three-dimensional perspective view of the embodiment shown in FIG. FIG. 3 is an explanatory diagram of the optical path according to the second embodiment of the present invention. FIG. 4 is an explanatory diagram of the optical path of the third embodiment of the present invention. FIG. 5 is a three-dimensional perspective view of the third embodiment. FIG. 6 is a perspective view showing the prior art. <Explanation of symbols> 6 Polarizing beam splitter 7・174 wavelength plate 8 Total reflection mirror 9.10・
... Polarization plane control element work 1 - Mounting board 14 - 174 wavelength plate for light reception 15 - Total reflection mirror for light reception ↓ 6 - 174 wavelength plate for light emission] 7 - Total reflection mirror for light emission 18 - Condensing lens ○ mark/light emitting element module ■ mark light receiving element module
Claims (1)
を伝搬する平行光を用いて行う光空間結線法において、
各実装基板の面上に、電気信号を直線偏光成分のみの信
号光に変換して空間に放射する発光素子の1個と、入射
された信号光を電気信号に変換する受光素子のN−1個
とをそれぞれ設け、各発光素子からの放射信号光の経路
上にそれぞれ、通過する信号光の偏光面を外部からの制
御により任意角度回転させる偏光面制御素子と、入射す
る信号光と入射点における反射面の法線とが作る平面に
平行な偏光成分は透過し、垂直な偏光成分は直角だけ進
路を変えて反射する反射面を有する光路変換素子と、こ
の光路変換素子内を前記放射信号光と平行な方向に進ん
できた信号光の偏光面を90度回転させて上記反射面に
向けて逆進させる反射素子とを設け、上記各光路変換素
子相互間にも偏光面制御素子をそれぞれ設け、これらの
偏光面制御素子での偏光面回転角度を外部より制御して
、任意の発光素子からの信号光を、まず自実装基板用の
光路変換素子で進路を直角だけ変えて他の実装基板用の
光路変換素子に入射させ、次いでこの入射光を取り込ん
だ光路変換素子において再び進路を直角だけ変えて結線
しようとする実装基板上の受光素子に向けて放射させる
ことにより、任意の実装基板相互間を光空間結線するこ
とを特徴とする実装基板相互間の光空間結線法。 2、請求項1記載における前記実装基板上に設ける受光
素子の個数を各実装基板ごとに1個とし、前記反射素子
を発光素子からの信号光を受ける部分と受光素子への入
射光を反射する部分とに分割して配置し、前記光路変換
素子と上記受光素子との間に集光レンズを、各集光レン
ズの光軸上の焦点位置に各受光素子がそれぞれ配置され
るように、設けたことを特徴とする実装基板相互間の光
空間結線法。[Claims] 1. In an optical space connection method in which signals are exchanged between a plurality of N (N≧2) mounted boards using parallel light propagating in space,
On the surface of each mounting board, there is one light-emitting element that converts an electrical signal into signal light with only linearly polarized components and radiates it into space, and N-1 light-receiving elements that convert the incident signal light into an electrical signal. On the path of the emitted signal light from each light emitting element, there is a polarization plane control element that rotates the polarization plane of the passing signal light by an arbitrary angle under external control, and a polarization plane control element that rotates the polarization plane of the signal light passing through it by an arbitrary angle, and An optical path converting element has a reflecting surface in which polarized light components parallel to the plane formed by the normal line of the reflecting surface are transmitted, and perpendicular polarized light components are reflected by changing their course by a right angle. A reflection element is provided to rotate the polarization plane of the signal light traveling in a direction parallel to the light by 90 degrees and reverse the polarization plane toward the above-mentioned reflecting surface, and a polarization plane control element is also provided between each of the above-mentioned optical path conversion elements. The polarization plane rotation angle of these polarization plane control elements is controlled externally, and the signal light from any light emitting element is first changed by a right angle using an optical path conversion element for the own mounting board, and then transferred to another mounting board. By making the incident light enter an optical path converting element for the board, and then changing the course by a right angle again in the optical path converting element that takes in this incident light, and emitting it toward the light receiving element on the mounting board to be connected, it can be applied to any mounted board. An optical space connection method between mounted boards, which is characterized by optical space connection between them. 2. The number of light-receiving elements provided on the mounting board according to claim 1 is one for each mounting board, and the reflecting element is a part that receives signal light from a light-emitting element and reflects incident light to the light-receiving element. and a condenser lens is provided between the optical path converting element and the light receiving element so that each light receiving element is disposed at a focal position on the optical axis of each condensing lens. An optical spatial connection method between mounted boards, which is characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6404690A JP2733121B2 (en) | 1990-03-16 | 1990-03-16 | Optical space connection method between mounting boards |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6404690A JP2733121B2 (en) | 1990-03-16 | 1990-03-16 | Optical space connection method between mounting boards |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03265823A true JPH03265823A (en) | 1991-11-26 |
JP2733121B2 JP2733121B2 (en) | 1998-03-30 |
Family
ID=13246770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6404690A Expired - Lifetime JP2733121B2 (en) | 1990-03-16 | 1990-03-16 | Optical space connection method between mounting boards |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2733121B2 (en) |
-
1990
- 1990-03-16 JP JP6404690A patent/JP2733121B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2733121B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0477036B1 (en) | Optical information transmitting device | |
US5363228A (en) | Optical device with spatial light modulators for switching arbitrarily polarized light | |
JP3651221B2 (en) | Optical bus system and signal processing apparatus | |
JP4167013B2 (en) | Imaging technology for utilizing MEMS optical devices | |
JP5079086B2 (en) | Optical wiring | |
JP2000509509A (en) | Completely optical switch | |
JP2003507767A (en) | All-optical interconnect using polarization gate | |
EP1288704A1 (en) | Optical crossbar switch based on switchable diffraction gratings | |
JPH03265823A (en) | Optical spatial connecting method between packaged substrates | |
JP3360547B2 (en) | Optical bus and signal processing device | |
JPS6076707A (en) | Semiconductor laser duplex module | |
JPH1131035A (en) | Optical bus and signal processor | |
CA2308390A1 (en) | Free space optical interconnect system | |
US5793906A (en) | Switching using optical tunnels | |
Jahns et al. | Integrated-optical split-and-shift module based on planar optics | |
JP3033659B2 (en) | Optical connection device for planar optical function element | |
JP3111541B2 (en) | Optical connection device | |
US20020131143A1 (en) | Polarization independent non-blocking all-optical switching device | |
JP2742550B2 (en) | Multi-terminal optical switch | |
JP3204416B2 (en) | Spatial optical encoder | |
JP2979175B2 (en) | Optical space distributor | |
US20210083773A1 (en) | Optical Shuffle Computation Network | |
JP3197611B2 (en) | Multi-terminal optical switch | |
JP2993516B2 (en) | Optical connection device | |
JPH1054949A (en) | Optical interconnection device between boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071226 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081226 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091226 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 13 |