[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0326453Y2 - - Google Patents

Info

Publication number
JPH0326453Y2
JPH0326453Y2 JP11209385U JP11209385U JPH0326453Y2 JP H0326453 Y2 JPH0326453 Y2 JP H0326453Y2 JP 11209385 U JP11209385 U JP 11209385U JP 11209385 U JP11209385 U JP 11209385U JP H0326453 Y2 JPH0326453 Y2 JP H0326453Y2
Authority
JP
Japan
Prior art keywords
liquid
pipe
sample
measurement cell
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11209385U
Other languages
Japanese (ja)
Other versions
JPS6220372U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11209385U priority Critical patent/JPH0326453Y2/ja
Publication of JPS6220372U publication Critical patent/JPS6220372U/ja
Application granted granted Critical
Publication of JPH0326453Y2 publication Critical patent/JPH0326453Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【考案の詳細な説明】 イ 技術の利用分野 本考案は、微小試料を取扱う自動分析装置のシ
ーケンス設定技術に関する。
[Detailed description of the invention] A. Field of application of the technology The present invention relates to a sequence setting technology for an automatic analyzer that handles minute samples.

ロ 従来技術 生体試料の自動分析においては、試料と試料の
間に空気層をセパレータとして介在させつつ連続
的に試料を測定セルに移送することが行なわれ、
試料相互の区別は、時間を基準とするシーケンス
に基づいて制御されている。このため、試料等の
流体を移送する管路が長時間の使用によりその流
路抵抗を変化すると、制御シーケンスと試料の流
れとの間にずれが生じて分析ミスを起すという問
題があつた。
B. Prior art In automatic analysis of biological samples, samples are continuously transferred to a measurement cell while interposing an air layer between the samples as a separator.
Discrimination between samples is controlled based on a time-based sequence. For this reason, when the flow path resistance of a pipe for transporting a fluid such as a sample changes due to long-term use, there is a problem that a discrepancy occurs between the control sequence and the flow of the sample, resulting in an analysis error.

このような問題を解消するため、分析装置を定
期的に分解して液体移送パイプを点検することを
行なつているが、人手を要するばかりでなく、装
置の稼動率に低下を来たすという問題があつた。
In order to solve these problems, we regularly disassemble the analyzer and inspect the liquid transfer pipe, but this not only requires more manpower, but also reduces the operating rate of the equipment. It was hot.

ハ 目的 本考案はこのような問題に鑑み、液体移送管路
の流体抵抗に拘りなく、常に試料の流れに合せて
シーケンスを設定することができる液体移送装置
を提供することを目的とする。
C. Purpose In view of these problems, it is an object of the present invention to provide a liquid transfer device that can always set a sequence in accordance with the flow of a sample, regardless of the fluid resistance of the liquid transfer conduit.

ニ 考案の構成 すなわち、本考案が特徴とするところは、液体
移送管路の一定距離を流れるに要する時間をパラ
メータとしてシーケンスタイミングを変化させる
ようにした点にある。
D. Structure of the invention In other words, the present invention is characterized in that the sequence timing is changed using the time required for the liquid to flow a certain distance in the liquid transfer pipe as a parameter.

ホ 実施例 そこで、以下に本考案の詳細を図示した実施例
に基づいて説明する。
E. Embodiments Therefore, details of the present invention will be explained below based on illustrated embodiments.

第1図は、本考案の一実施例を示すものであつ
て、図中符号1は、試料セル2の上流側に設けら
れた液センサで、一側が試料注入口3を介して分
岐管4により空気取入弁5と試薬取入弁6にパイ
プ7により連通し、また他側が試料セル2に連通
されている。8は、ペリスタポンプで、ポンプチ
ユーブ8aと偏心カム8bからなり、吸入側が測
定セル2に接続されてパイプ7に注入された流体
を液センサ1及び測定セル2を経由して排出させ
るものである。10は、シーケンス制御回路で、
分析モードにおいては試料の注入時点から一定時
間の経過後における測定セル2の出力を取込んで
試料成分の測定値とし、また流路モニターモード
においてはパイプ内の液体排出から計時動作の制
御までを行なうものである。11は、計時回路
で、流路モニターモードにおいて試薬取入弁6が
開となつた時点から液センサ1の信号がレベル変
動した時点までの計時を行なうものである。な
お、図中符号9は、試薬槽を示す。
FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 denotes a liquid sensor provided upstream of a sample cell 2, one side of which is connected to a branch pipe 4 through a sample injection port 3. The pipe 7 communicates with the air intake valve 5 and the reagent intake valve 6 through a pipe 7, and the other side communicates with the sample cell 2. Reference numeral 8 denotes a peristaltic pump, which is composed of a pump tube 8a and an eccentric cam 8b, and whose suction side is connected to the measurement cell 2 to discharge fluid injected into the pipe 7 via the liquid sensor 1 and the measurement cell 2. 10 is a sequence control circuit;
In the analysis mode, the output of the measurement cell 2 after a certain period of time has elapsed from the time of sample injection is taken in as the measured value of the sample component, and in the flow path monitor mode, everything from liquid discharge in the pipe to control of the timing operation is taken in. It is something to do. Reference numeral 11 denotes a timing circuit that measures time from the time when the reagent intake valve 6 is opened to the time when the level of the signal from the liquid sensor 1 changes in the channel monitor mode. Note that the reference numeral 9 in the figure indicates a reagent tank.

この実施例において、装置を作動するとシーケ
ンス制御回路10からの信号を受けてポンプ8が
設定速度により作動する。このような状態で空気
取入弁5を閉とし、また試薬取入弁6を開とし、
注入口3から試料を注入すると、試料は、試薬と
混合されながらポンプ8に吸引されて液センサ1
を通過して測定セル2に流入し、測定セル2内の
図示しない検出器により成分が測定され、ついで
系外に排出される。このようにして所定数の検体
を分析し終わつた時点で、試薬取入弁6を閉する
とともに、空気取入弁5を開としてパイプ7内の
液体を排出する。液体の排出が終了した時点で、
シーケンス制御回路10が各弁5,6に信号を出
力して空気取入弁5を閉、試薬取入弁6を開と
し、同時に計時回路11を起動する。このように
して、試薬取入弁6から流入した液体は、パイプ
7の流路抵抗やポンプ8の吸引能力に基づいた速
度で液センサ1に向けて移動を行なう。注入され
た試薬の先端が液センサ1に流入すると、液セン
サ1の信号レベルが変化し、計時回路11が計時
動作を停止する。これにより試薬取入弁6から液
センサ1までの一定距離Lを移動した時間Tが求
められる。云うまでもなく、この時間Tは、液体
を移送したパイプ7流路抵抗とポンプ8の吸引能
力に密接に関係している。シーケンス制御回路1
1は、この計測された時間、つまり試料の流速に
合せて測定セル2からの信号の取込みタイミング
を変更し、パイプ7の流路抵抗やポンプ8の吸引
能力の変動に拘りなく連続的に流入する試料の
夫々を区別して測定セル2からの信号を測定信号
として取込む。
In this embodiment, when the device is activated, the pump 8 receives a signal from the sequence control circuit 10 and operates at a set speed. In this state, the air intake valve 5 is closed, the reagent intake valve 6 is opened,
When a sample is injected from the injection port 3, the sample is mixed with the reagent and sucked into the pump 8, and is transferred to the liquid sensor 1.
The liquid flows into the measurement cell 2, the components are measured by a detector (not shown) in the measurement cell 2, and then discharged to the outside of the system. When a predetermined number of samples have been analyzed in this manner, the reagent intake valve 6 is closed, and the air intake valve 5 is opened to discharge the liquid in the pipe 7. Once the liquid has finished draining,
The sequence control circuit 10 outputs a signal to each valve 5, 6 to close the air intake valve 5, open the reagent intake valve 6, and at the same time start the timing circuit 11. In this way, the liquid flowing in from the reagent intake valve 6 moves toward the liquid sensor 1 at a speed based on the flow path resistance of the pipe 7 and the suction capacity of the pump 8. When the tip of the injected reagent flows into the liquid sensor 1, the signal level of the liquid sensor 1 changes, and the timing circuit 11 stops the timing operation. As a result, the time T required for moving the predetermined distance L from the reagent intake valve 6 to the liquid sensor 1 is determined. Needless to say, this time T is closely related to the flow path resistance of the pipe 7 through which the liquid was transferred and the suction capacity of the pump 8. Sequence control circuit 1
1 changes the timing of acquiring the signal from the measurement cell 2 according to the measured time, that is, the flow rate of the sample, and continuously inflows regardless of the flow resistance of the pipe 7 or the suction capacity of the pump 8. The signals from the measurement cell 2 are taken in as measurement signals by distinguishing each sample to be measured.

なお、上述した実施例においては、ペリスタポ
ンプに例を採つて説明したが、ピストンポンプ等
の他形式のポンプを使用する分析装置にも適用で
き、また流速測定時に蒸留水や洗浄液を使用する
ことにより、管路系の洗浄とコストの節減を図る
ことができる。
Although the above embodiments were explained using a peristaltic pump as an example, they can also be applied to analyzers that use other types of pumps such as piston pumps, and can also be applied to analyzers that use other types of pumps such as piston pumps. , it is possible to clean the pipe system and reduce costs.

また、上述の実施例においては、試薬取入弁と
液センサ間を試薬が流れるに要する時間を測定し
ているが、液センサをもう1個増設して任意の2
点間を測定するようにしてもよいことは云うまで
もない。さらに、上述の実施例においては、測定
信号の取込みタインミングを変更するようにして
いるが、ポンプ8の回転数を制御して流速を一定
に保持するようにしても同様の作用を奏する。
In addition, in the above embodiment, the time required for the reagent to flow between the reagent intake valve and the liquid sensor is measured.
It goes without saying that measurements may be made between points. Further, in the above-described embodiment, the timing at which the measurement signal is taken in is changed, but the same effect can be achieved by controlling the rotational speed of the pump 8 to maintain the flow rate constant.

ヘ 効果 以上、説明したように本考案によれば、試料流
路系の一定距離を流れるに要する時間を計測し、
これに基づいてシーケンスタイミングを調整する
ようにしたので、パイプの流体抵抗やポンプの吸
引能力の経時変化に拘りなく連続する試料を正確
に区別して分析することができて分析ミスの発生
を防止できるばかりでなく、分析装置の点検、整
備サイクルを可及的に延長して装置の稼動率を向
上することができる。また、連続する試料を正確
に区別できるため、1つの試料流路長を可及的に
短縮して試料の微量化を推進することが可能とな
る。
Effects As explained above, according to the present invention, the time required for the sample to flow a certain distance in the flow path system is measured,
Since the sequence timing is adjusted based on this, successive samples can be accurately distinguished and analyzed regardless of changes in the fluid resistance of the pipe or the suction capacity of the pump over time, thereby preventing the occurrence of analysis errors. In addition, the inspection and maintenance cycle of the analyzer can be extended as much as possible, and the operating rate of the analyzer can be improved. Furthermore, since successive samples can be accurately distinguished, it is possible to shorten the length of one sample flow path as much as possible to promote miniaturization of the sample.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本考案の一実施例を示す装置の構成図で
ある。 1……液センサ、2……測定セル、5……空気
取込弁、6……試薬取込弁、7……パイプ、8…
…ポンプ。
The figure is a configuration diagram of an apparatus showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Liquid sensor, 2...Measurement cell, 5...Air intake valve, 6...Reagent intake valve, 7...Pipe, 8...
…pump.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一側が試料注入口を介して試薬槽に、他側が流
体吸引ポンプにパイプにより連通する測定セル
と、試料注入から分析の終了までを制御するシー
ケンス制御回路と、測定セルの上流側に配設した
液センサと、前記パイプ内の液体を排出された状
態で液体の注入開始時点から液体センサの信号レ
ベルが変化するまでの時間を測定する計時回路と
を備え、前記計時回路のデータに基づいてシーケ
ンス制御回路のシーケンス動作を設定することを
特徴とする自動分析装置。
A measurement cell is connected to the reagent tank via a sample injection port on one side and to a fluid suction pump on the other side via a pipe, and a sequence control circuit that controls everything from sample injection to the end of analysis is installed on the upstream side of the measurement cell. a liquid sensor; and a timing circuit that measures the time from the start of liquid injection until the signal level of the liquid sensor changes when the liquid in the pipe is discharged; An automatic analyzer characterized by setting the sequence operation of a control circuit.
JP11209385U 1985-07-20 1985-07-20 Expired JPH0326453Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11209385U JPH0326453Y2 (en) 1985-07-20 1985-07-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11209385U JPH0326453Y2 (en) 1985-07-20 1985-07-20

Publications (2)

Publication Number Publication Date
JPS6220372U JPS6220372U (en) 1987-02-06
JPH0326453Y2 true JPH0326453Y2 (en) 1991-06-07

Family

ID=30992636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11209385U Expired JPH0326453Y2 (en) 1985-07-20 1985-07-20

Country Status (1)

Country Link
JP (1) JPH0326453Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578296B2 (en) * 1992-09-02 1997-02-05 アロカ株式会社 Leak detection method in automatic dispensing equipment
EP0726466B1 (en) * 1993-08-31 2002-04-24 Aloka Co. Ltd. Pipetting apparatus equipped with closure detection function

Also Published As

Publication number Publication date
JPS6220372U (en) 1987-02-06

Similar Documents

Publication Publication Date Title
US4520108A (en) Method for continuous flow analysis of liquid sample
CN103033499B (en) A kind of water quality analytical system
CN107356458A (en) A kind of online air detection sample drying and control system
CN108051037A (en) A kind of syringe pump flow calibrating device and calibration method
CN209662677U (en) It is a kind of to match liquid layer analysis apparatus online
JPH0326453Y2 (en)
CN205562503U (en) Just, formula intelligence automobile exhaust detection device
JPS632051B2 (en)
CN207516351U (en) A kind of liquid line
CN111174098A (en) Flow path system of water quality analyzer and accurate quantification method
CN211424010U (en) Multi-range water quality analyzer flow path system
CN203572530U (en) Real-time gas volume flow measuring instrument
CA1286961C (en) Dilution apparatus and method
CN106645609A (en) Metering device for online hexavalent-chromium water quality monitor and using method of metering device
CN108732226A (en) Thioether class gas-detecting device and method
CN204694639U (en) The T-valve measuring apparatus of water quality on-line monitoring instrument
CN211118782U (en) Flow path system of water quality analyzer
JPH035906Y2 (en)
CA1223451A (en) Gas analyzer with aspirated test gas
CN107607437B (en) A kind of high-precision automatic shale air content test equipment and test method
JP2561587B2 (en) Particulate intermittent measurement method
US3799683A (en) Flow-through sample cells which determine their own fill level
CN209542535U (en) A kind of VOC monitoring device that accurate quantification sampling may be implemented
CN218470696U (en) Dynamic standard-matching quality control instrument
JPH0353158Y2 (en)