[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03252386A - Device for producing single crystal - Google Patents

Device for producing single crystal

Info

Publication number
JPH03252386A
JPH03252386A JP2051326A JP5132690A JPH03252386A JP H03252386 A JPH03252386 A JP H03252386A JP 2051326 A JP2051326 A JP 2051326A JP 5132690 A JP5132690 A JP 5132690A JP H03252386 A JPH03252386 A JP H03252386A
Authority
JP
Japan
Prior art keywords
raw material
crucible
single crystal
silicon
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2051326A
Other languages
Japanese (ja)
Inventor
Yoshio Mori
毛利 吉男
Kenji Araki
健治 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2051326A priority Critical patent/JPH03252386A/en
Priority to PCT/JP1991/000273 priority patent/WO1991013192A1/en
Priority to DE19914190411 priority patent/DE4190411T1/de
Priority to KR1019910701501A priority patent/KR920701531A/en
Publication of JPH03252386A publication Critical patent/JPH03252386A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To grow single crystal while continuously feeding a bulky raw material in high accuracy of feed amount by installing a storage column of raw material, a weighing column of receiving the raw material from the storage column and supplying to a crucible and a load cell of measuring the amount of the raw material to be supplied to the crucible in the metering column. CONSTITUTION:A crucible 6 is divided by a partition 2 into a raw material melting part at the outside and a crystal growing part at the inside. A bulky raw material 30 of silicon is supplied to a storage column 22 rotatable around an approximately horizontal central shaft and successively discharged from an opening part of the storage column 22 by rotary motion of the storage column 22. Then the raw material 30 is sent through a chute 25 to a metering column 24 and moved by rotary motion of the inclined metering column 24 to the end at the outlet side of the metering column 24 while controlling the flow rate of the raw material by a load cell 26 laid in the metering column 24. Then the bulky raw material 30 is fed through guide pipes 27 and 28 to the raw material melting part of the crucible 2, melted, introduced through a through hole 7 of the partition 6 of the crucible 2 to a crystal growing part to grow silicon single crystal 12.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、塊状原料を供給しながら単結晶を育成する
シリコン単結晶の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon single crystal manufacturing apparatus for growing a single crystal while supplying bulk raw material.

[従来の技術] 原料を坩堝内に連続的に供給しながら、単結晶の連続育
成を行うシリコン単結晶の製造方法(以下、cc−cz
法と略す)の開発が盛んに行われている。−例として、
特公昭61−17537がある。しかし、いずれもシリ
コン原料の供給量を高精度に制御する必要があること、
および貯蔵容器からの原料の切り出しが容易であること
から、原料シリコンの形状は粒状のものに限定されてい
る。この粒状原料の形状は球形で、直径は0.2乃至5
ミリメートルである。
[Prior art] A method for manufacturing a silicon single crystal (hereinafter referred to as cc-cz) in which a single crystal is continuously grown while continuously supplying raw materials into a crucible.
(abbreviated as law) is being actively developed. -For example,
There is a special public service No. 61-17537. However, in both cases, it is necessary to control the supply amount of silicon raw materials with high precision;
The shape of the raw material silicon is limited to granular ones because it is easy to cut out the raw material from the storage container. The shape of this granular raw material is spherical, and the diameter is 0.2 to 5.
It is in millimeters.

[発明が解決しようとする課題] しかしながら、上記の粒状シリコン原料は、広くは使わ
れていない、cc−cz法が広く普及するには、−船釣
に使われている原料を使用できるような結晶育成技術で
なければならない、汎用的に使用されている原料は、氷
あるいは硝子を破砕したような不定形な塊である。また
、その寸法も10乃至50ミリメートルと大きく、かつ
、ばらつきがある、このような塊状原料は、貯蔵容器か
らの切り出しおよび坩堝内への供給量制御がきわめて困
難である。従って、塊状原料を用いたcc−cz法はま
だ実用化されていない。
[Problems to be Solved by the Invention] However, the above-mentioned granular silicon raw materials are not widely used, and for the CC-cz method to become widespread, it is necessary to - be able to use raw materials used for boat fishing; The commonly used raw material required for crystal growth technology is an amorphous mass such as crushed ice or glass. Furthermore, it is extremely difficult to cut out such bulk raw material from the storage container and control the amount supplied into the crucible, as the size thereof is large and varies from 10 to 50 mm. Therefore, the cc-cz method using bulk raw materials has not yet been put to practical use.

上記の塊状原料供給装置が満たさなければならない要件
は、下記の通りである。
The requirements that the above bulk raw material supply device must meet are as follows.

■多量の原料(50〜200 kgf>を貯蔵する貯蔵
部より、安定して原料を切り出せること。
- Raw materials can be stably cut out from a storage section that stores a large amount of raw materials (50 to 200 kgf>).

■微量供給(30〜100g/win)ができ、かつ、
供給量が高精度(目標値±10%)に制御できること。
■Able to supply small amounts (30-100g/win), and
The supply amount can be controlled with high precision (target value ±10%).

■原料の汚染のないこと、このためには、シリコン、石
英またはテフロンで装置を製作できる程度に、簡単な構
造であることが望ましい。
- No contamination of raw materials.To this end, it is desirable that the structure be simple enough that the device can be manufactured from silicon, quartz, or Teflon.

本願の分野以外の分野では、きわめて多種の塊状物体の
搬送方法が実用化されているが、これらの中には上記の
要件を満たすようなものはない。
Although a wide variety of methods for conveying bulk objects have been put into practice in fields other than the field of the present application, none of these methods satisfies the above requirements.

本発明はかかる事情に鑑みてなされたもので、本発明の
目的は、塊状原料を連続的に、かつ、供給量を高精度に
制御して、供給できる原料供給装置を備えた、単結晶製
造装置を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to manufacture a single crystal, which is equipped with a raw material supply device capable of supplying bulk raw materials continuously and controlling the supply amount with high precision. The purpose is to provide equipment.

[課題を解決するための手段] 本発明による単結晶製造装!は、結晶原料の融液を収容
し、鉛直軸の回りに回転する坩堝と、該坩堝の周囲に設
けられ、該坩堝を加熱する電気抵抗式の加熱手段と、該
融液がら単結晶を引き上げる引き上げ装置と、該融液の
貫通孔を有し、該坩堝内に設けられ外側の原料溶解部と
内側の結晶育成部に区分する仕切りと、該原料溶解部に
結晶原料を供給する原料供給装置とを有し、塊状原料を
供給しながら単結晶を育成するシリコン単結晶の製造装
置において、 該塊状原料を保持し、中心軸がほぼ水平で、該中心軸の
回りに回転可能に設けられた貯蔵筒と、塊状原料が一方
の端部より他方の端部へ通過できる内径を有し、かつ出
口となる端部が入口となる端部より高さが低くなるよう
に傾斜され、中心軸の回りに回転可能に、貯蔵筒の下流
側に設けられた計量筒と、該計量筒を通過する塊状原料
の重量を計測するなめ該計量筒に取り付けた荷重計とを
有する原料供給装置を設けたことを特徴とする。
[Means for solving the problem] Single crystal manufacturing equipment according to the present invention! A crucible containing a melt of a crystal raw material and rotating around a vertical axis, an electric resistance heating means provided around the crucible for heating the crucible, and pulling a single crystal from the melt. a pulling device, a partition having a through hole for the melt and provided in the crucible to divide it into an outer raw material melting section and an inner crystal growth section, and a raw material supplying device for supplying the crystal raw material to the raw material melting section. In a silicon single crystal production apparatus that grows a single crystal while supplying a lumpy raw material, the silicon single crystal manufacturing apparatus has a silicon single crystal manufacturing apparatus that holds the lumpy raw material, has a substantially horizontal central axis, and is rotatable around the central axis. The storage cylinder has an inner diameter that allows the bulk raw material to pass from one end to the other, and is inclined so that the end serving as the outlet is lower than the end serving as the inlet, and the central axis is A raw material supply device is provided, which is rotatable around the measuring cylinder and has a measuring cylinder provided on the downstream side of the storage cylinder, and a load meter attached to the measuring cylinder for measuring the weight of the lumped raw material passing through the measuring cylinder. It is characterized by

[作用コ 中心軸がほぼ水平な貯蔵筒内に保持された塊状原料は、
該貯蔵筒の中心軸回りの回転運動によって、該貯蔵筒の
一方の開口した端部より排出される。この切り出し方法
は、原料がきわめて異形で、大きく、かつ、寸法のばら
つきが大きいにもかかわらず、原料を無理なく切り出せ
る。さらに、構造も簡単である。切り出し量の調節は、
貯蔵筒の回転数を調節することにより行われる。または
、貯蔵筒の中心軸の傾斜角度を調節する方法でもよい、
あるいは、それらを組み合わせた方法でもよい、貯蔵筒
より切り出された原料は計量筒内に送り込まれる。
[The bulk raw material is held in a storage cylinder whose central axis is approximately horizontal.
Rotational movement about the central axis of the storage cylinder causes the storage cylinder to be discharged from one open end. This cutting method allows the raw material to be cut out without difficulty even though the raw material is extremely irregularly shaped, large, and has large variations in size. Furthermore, the structure is simple. To adjust the cutting amount,
This is done by adjusting the rotation speed of the storage cylinder. Alternatively, a method may be used in which the inclination angle of the central axis of the storage cylinder is adjusted.
Alternatively, a combination of these methods may be used.The raw material cut out from the storage cylinder is fed into the measuring cylinder.

該計量筒は、塊状原料が一方の端部より他方の端部へ通
過できる内径を有している。さらに、前記貯蔵筒から排
出された塊状原料の入口となる端部が他方の出口となる
端部より高さが高くなるように傾斜して設けられている
。従って、前記貯蔵筒から排出された塊状原料は、前記
計量筒の中心軸回りの回転運動によって、計量筒内を滑
りながら入口側端部より出口側端部に向がって移動する
。移動にともない、原料は一列に配列する。そして、最
終的には出口側端部より一個づつ排出される。排出量の
調節は、計量筒の回転数を調節することにより行われる
。あるいは、計量筒の中心軸の傾斜角度を調節する方法
、または、それらを組み合わせた方法でもよい。
The metering tube has an inner diameter that allows bulk material to pass from one end to the other. Further, the storage cylinder is provided so as to be inclined so that the end that serves as an inlet for the raw material discharged from the storage cylinder is higher than the other end that serves as an outlet. Therefore, the bulk raw material discharged from the storage cylinder moves from the inlet end to the outlet end while sliding inside the measuring cylinder due to rotational movement around the central axis of the measuring cylinder. As they move, the raw materials are arranged in a line. Finally, they are discharged one by one from the outlet side end. The discharge amount is adjusted by adjusting the rotation speed of the measuring tube. Alternatively, a method of adjusting the inclination angle of the central axis of the measuring cylinder, or a method of combining these methods may be used.

前記計量筒には荷重計が取り付けられており、計量筒よ
り排出された塊状原料の重量が計量される。計量方法と
しては、前記荷重計にがける前記計量筒荷重のかけかた
によって、以下の2通りが考えられる。
A load meter is attached to the measuring cylinder, and the weight of the lumpy raw material discharged from the measuring cylinder is measured. As a measuring method, the following two methods can be considered depending on how the load of the measuring tube is applied to the load cell.

■前記計量筒の原料入口に近いところを軸支し、出口に
い近ところで荷重計に前記貯M、簡の荷重をかける方法
、■前記貯蔵筒の全荷重を荷重計にかける方法、が考え
られる。前記■、■の方法に対応した荷重計の作用は次
の通りである。
■ A method of pivoting the measuring cylinder near the raw material inlet and applying the storage M and L loads to the load cell near the outlet; ■ A method of applying the entire load of the storage cylinder to the load cell. It will be done. The function of the load cell corresponding to the methods (1) and (2) above is as follows.

■1個の塊状原料が排出された瞬間、排出端近傍に配置
されている荷重計の指示が急激に低下する0個々の原料
塊が排出されるたびに、荷重計の指示の急激な低下がお
こる。この指示の低下量の所定時間内の累計が排出量に
相当する。
■The moment a single lump of raw material is discharged, the reading on the load cell placed near the discharge end drops rapidly.0 Each time a lump of raw material is discharged, the reading on the load cell drops rapidly. It happens. The cumulative total of the amount of decrease in this instruction within a predetermined period of time corresponds to the amount of discharge.

■原料塊を計量筒に間欠的に装入する0個々の原料塊が
排出されるたびに、計量筒全体を支持している荷重計の
指示が低下する。原料塊の装入が停止している間の荷重
計の指示の低下量の所定時間内の累計が排出量に相当す
る。
■Intermittently charging raw material lumps into the measuring cylinder 0 Each time an individual raw material lump is discharged, the reading on the load cell that supports the entire measuring cylinder decreases. The cumulative total of the amount of decrease in the load cell indication during a predetermined period of time while charging of the raw material block is stopped corresponds to the discharge amount.

シリコン塊状原料の坩堝内への供給量の調節は、前記荷
重計の計測重量に基づき計量筒の回転速度または中心軸
の傾斜角度を制御することにより行われる。
The amount of silicon lump raw material supplied into the crucible is adjusted by controlling the rotational speed of the measuring tube or the inclination angle of the central axis based on the weight measured by the load cell.

この計量方法は、原料がきわめて異形で、がっ、寸法の
ばらつきも大きいにもかがゎらず、原料を無理なく移送
でき、従って、供給量を高精度に計測、制御できる。さ
らに、構造も簡単である。
This measuring method allows raw materials to be transferred without difficulty even though the raw materials are extremely irregularly shaped and have large variations in size, and therefore the supply amount can be measured and controlled with high precision. Furthermore, the structure is simple.

以上のような原料供給装置は構造が簡単であるので、不
純物の混入を低減させるため、シリコン原料と接触する
部材をテフロン、石英またはシリコンで製作することが
できる。
Since the raw material supply device as described above has a simple structure, the members that come into contact with the silicon raw material can be made of Teflon, quartz, or silicon in order to reduce the contamination of impurities.

口実施例] 本発明の実施例を添付の図面を参照しながら詳細に説明
する。第1図は本実施例の単結晶製造装置の縦断面図で
ある。
Embodiments] Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of the single crystal manufacturing apparatus of this embodiment.

1は中心部に坩堝2が設けられたチャンバで、1aはそ
の蓋である。チャンバ1の中に、黒鉛坩堝3を回転およ
び上下動可能に支持する支持軸4、加熱手段としてヒー
タ8とその周りに設けられた断熱材9が配!されている
。前記坩堝2は石英製で、黒鉛坩堝3内にセットされて
いる。6は坩堝2内のシリコン融液5を外側の原料溶解
部と内側の結晶育成部に区分する仕切りである。仕切り
6には貫通孔7が設けられている。12は種結晶11に
より成長し、シリコン融液5がら引き上げられた柱状の
シリコン単結晶である。
1 is a chamber in which a crucible 2 is provided in the center, and 1a is a lid thereof. In the chamber 1, a support shaft 4 that supports the graphite crucible 3 in a rotatable and vertically movable manner, a heater 8 as a heating means, and a heat insulating material 9 provided around it are arranged! has been done. The crucible 2 is made of quartz and is set within a graphite crucible 3. Reference numeral 6 denotes a partition that divides the silicon melt 5 in the crucible 2 into an outer raw material melting section and an inner crystal growth section. A through hole 7 is provided in the partition 6. 12 is a columnar silicon single crystal grown by the seed crystal 11 and pulled up from the silicon melt 5.

40は引き上げ装置で引き上げチャンバ1b、シードチ
ャックを介して種結晶11が取り付けられたワイヤ10
、前記ワイヤが巻回されたワイヤ巻取装置13およびゲ
ートバルブ14で構成されている。
Reference numeral 40 denotes a pulling device, which includes a pulling chamber 1b and a wire 10 to which a seed crystal 11 is attached via a seed chuck.
, a wire winding device 13 around which the wire is wound, and a gate valve 14.

20は原料供給装置である。チャンバ1の上部にチャン
バ1内と連通ずる箱体21が設けられている。この箱体
21の上部にはシリコン塊状原料30を補充する際の開
閉用蓋31が設けられており、シール用の0リング32
を介して箱体21にボルト締めされている。22は箱体
21の内部に設けられ、図示しない駆動機構により中心
軸周りの回転運動が可能であるとともに、傾筒軸23を
中心として中心軸の傾斜角度を調節可能とした貯蔵筒で
ある。24はシリコン塊状原料30の入口側端部が、出
口側端部より高さが高くなるように傾斜して設けられ、
図示しない駆動機構により中心軸周りの回転運動を可能
とした計量筒である。
20 is a raw material supply device. A box body 21 is provided at the top of the chamber 1 and communicates with the inside of the chamber 1. A lid 31 for opening and closing when replenishing the bulk silicon raw material 30 is provided at the top of the box body 21, and an O-ring 32 for sealing is provided.
It is bolted to the box body 21 via. Reference numeral 22 denotes a storage cylinder that is provided inside the box body 21 and is rotatable around a central axis by a drive mechanism (not shown), and the inclination angle of the central axis can be adjusted around a tilting cylinder shaft 23. 24 is inclined so that the inlet side end of the silicon bulk raw material 30 is higher than the outlet side end;
This is a measuring cylinder that can be rotated around a central axis by a drive mechanism (not shown).

貯蔵筒22の出口部分と計量筒24の入口側端部の間に
は貯蔵筒22より排出されたシリコン塊状原料30を計
量筒24に導くシュート25が設けられている。計量筒
24にはシリコン塊状原料30の重量を計測する荷重計
26が取り付けられている。計量筒24よりシリコン塊
状原料30が排出された瞬間に、排出されたシリコン塊
状原料30の重量骨だけ計測値が低下するので、前1己
荷重計26により所定時間内におけるこの低下量の累計
値を演算して、シリコン塊状原料30の坩堝2への供給
量を計量することができる。27は計量筒出口の下方に
設けられた第1の案内管である。28はゲートバルブ2
つを介し原料溶解部のシリコン融液に原料を供給する第
2の案内管である。
A chute 25 is provided between the outlet of the storage cylinder 22 and the inlet end of the measuring cylinder 24 for guiding the silicon lump raw material 30 discharged from the storage cylinder 22 to the measuring cylinder 24. A load meter 26 for measuring the weight of the silicon lump raw material 30 is attached to the measuring cylinder 24 . The moment the silicon block raw material 30 is discharged from the measuring tube 24, the measured value decreases by the weight of the discharged silicon block raw material 30, so the front 1 self-load meter 26 calculates the cumulative value of this decrease within a predetermined time. can be calculated to measure the amount of silicon lump raw material 30 to be supplied to the crucible 2. 27 is a first guide pipe provided below the measuring tube outlet. 28 is gate valve 2
This is a second guide pipe that supplies the raw material to the silicon melt in the raw material melting section through the second guide pipe.

次に、上記のように構成された本実施例の作用を説明す
る。シリコン単結晶12の育成中は、原料供給装置20
により仕切り6で区分された外側の原料溶解部のシリコ
ン融液5に、第2の案内管28を通してシリコン塊状原
料30が投入される。その量は単結晶の育成量と同等で
ある。
Next, the operation of this embodiment configured as described above will be explained. During the growth of the silicon single crystal 12, the raw material supply device 20
A silicon lump raw material 30 is introduced into the silicon melt 5 in the outer raw material melting section divided by the partition 6 through the second guide pipe 28. The amount is equivalent to the amount of single crystal growth.

貯蔵筒22内に装入されたシリコン塊状原料30は、該
貯蔵筒22の回転運動によって貯蔵筒22の開口部より
排出される。ついでシュート25を経て計量筒24に供
給される。計量筒24の入口側端部は出口側端部より高
さが高くなるように設けられているので、計量筒24の
入口側端部に供給されたシリコン塊状原料30は、計量
筒24の回転運動によって計量筒内を高さの低い出口側
端部に向かって軸方向に移動する。
The silicon lump raw material 30 charged into the storage cylinder 22 is discharged from the opening of the storage cylinder 22 by the rotational movement of the storage cylinder 22 . It is then supplied to the measuring tube 24 via the chute 25. Since the inlet side end of the measuring cylinder 24 is provided so as to be higher than the outlet side end, the silicon lump raw material 30 supplied to the inlet side end of the measuring cylinder 24 is The movement causes it to move axially within the metering barrel toward the outlet end with a lower height.

計量筒24の出口側端部から排出されたシリコン塊状原
料30は、第1の案内管27および第2の案内管28を
経て、坩堝2の原料溶解部のシリコン融液5に投入され
る。シリコン塊状原料30のシリコン融液面への投入量
は、計量筒24内のシリコン塊状原料30が該計量筒内
を軸方向に移動する速度によって決まる。また、原料の
該計量筒内移動速度は計量筒の回転速度によって調整す
ることができる。従って、計量筒24に取り付けた荷重
計26の計測値を監視しながら、計量筒24の回転数を
調節することにより投入量が調節される。
The bulk silicon raw material 30 discharged from the outlet end of the measuring tube 24 passes through the first guide pipe 27 and the second guide pipe 28 and is introduced into the silicon melt 5 in the raw material melting section of the crucible 2 . The amount of the silicon lump raw material 30 charged to the silicon melt surface is determined by the speed at which the silicon lump raw material 30 in the measuring cylinder 24 moves in the axial direction within the measuring cylinder. Furthermore, the moving speed of the raw material within the measuring cylinder can be adjusted by the rotational speed of the measuring cylinder. Therefore, the input amount is adjusted by adjusting the rotation speed of the measuring cylinder 24 while monitoring the measured value of the load cell 26 attached to the measuring cylinder 24.

貯蔵筒22内にシリコン塊状原料30を補充する際は、
ゲートバルブ29を閉じ、傾筒軸23を中心として貯蔵
筒22の中心軸が垂直になるように貯蔵筒を回転する。
When replenishing the silicon lump raw material 30 into the storage cylinder 22,
The gate valve 29 is closed, and the storage cylinder is rotated about the tilting cylinder shaft 23 so that the central axis of the storage cylinder 22 becomes vertical.

ついで、箱体21上部の開閉用蓋31を開けてシリコン
塊状原料30を補充する。
Next, the opening/closing lid 31 on the top of the box 21 is opened and the silicon block raw material 30 is replenished.

また本発明に係る原料供給装置20において、シリコン
塊状原料30が接触する貯蔵筒22、計量筒24、シュ
ート25、第1の案内管27、第2の案内管28等を、
テフロン、石英またはシリコンで構成すれば、不純物が
混入することを防止することができる。
In addition, in the raw material supply device 20 according to the present invention, the storage cylinder 22, measuring cylinder 24, chute 25, first guide pipe 27, second guide pipe 28, etc., which the silicon lump raw material 30 comes into contact with,
If it is made of Teflon, quartz, or silicon, it is possible to prevent contamination with impurities.

[発明の効果] 本発明の単結晶製造装置によれば、原料の貯蔵筒、前記
貯蔵筒から原料を受けて坩堝に供給する計量筒および計
量筒内の原料の坩堝への供給量を計量する荷重計が設け
られであるので、単結晶の育成に一般に広く使用されて
いるシリコン塊状原料を坩堝内に連続的に供給しながら
シリコン単結晶を育成することが可能となる。
[Effects of the Invention] According to the single crystal manufacturing apparatus of the present invention, there is provided a raw material storage cylinder, a measuring cylinder that receives the raw material from the storage cylinder and supplies it to the crucible, and a measuring cylinder that measures the amount of the raw material in the measuring cylinder to be supplied to the crucible. Since a load meter is provided, it becomes possible to grow a silicon single crystal while continuously supplying a bulk silicon raw material, which is generally widely used for growing single crystals, into the crucible.

1・・チャンバ、1a・・チャンバの菱、1b・・・弓
き上げチャンバ、2・・・坩堝、3・・黒鉛坩堝、4・
・・支持軸、5・・・シリコン融液、6・・仕切り、7
・・貫通孔、8・・ヒータ、9・・・断熱材、1o・・
・弓き上げワイヤ、11・・・種結晶、12・・シリコ
ン単結晶、13・ワイヤ巻取装置、14.29・・・ゲ
トバルブ、2o・・原料供給装置、21・・・箱体、2
2・・・貯蔵筒、23・・傾簡軸、24川計量筒、25
・・・シュート、26・・・荷重計、27・・第1の案
内管、28・・第2の案内管、3o・・・シリコン塊状
原料、31・・・開閉用蓋、32・・0リング、40・
・・引き上げ装置。
1...Chamber, 1a...Chamber diamond, 1b...Archive chamber, 2...Crucible, 3...Graphite crucible, 4...
...Support shaft, 5...Silicon melt, 6...Partition, 7
...Through hole, 8...Heater, 9...Insulating material, 1o...
- Bow raising wire, 11... Seed crystal, 12... Silicon single crystal, 13. Wire winding device, 14. 29... Gate valve, 2o... Raw material supply device, 21... Box body, 2
2...Storage tube, 23...Tilt axis, 24 River measuring tube, 25
...Chute, 26...Load cell, 27...First guide tube, 28...Second guide tube, 3o...Silicon block raw material, 31...Opening/closing lid, 32...0 Ring, 40・
...Lifting device.

Claims (3)

【特許請求の範囲】[Claims] (1)結晶原料の融液を保持し、鉛直軸の回りに回転す
る坩堝と、該坩堝の周囲に設けられ、該坩堝を加熱する
電気抵抗式の加熱手段と、該融液から単結晶を引き上げ
る引き上げ装置と、該融液の貫通孔を有し、該坩堝内に
設けられ外側の原料溶解部と内側の結晶育成部に区分す
る仕切りと、該原料溶解部に結晶原料を供給する原料供
給装置とを有し、塊状原料を供給しながら単結晶を育成
するシリコン単結晶の製造装置において、 該塊状原料を保持し、中心軸がほぼ水平で、該中心軸の
回りに回転可能に設けられた貯蔵筒と、塊状原料が一方
の端部より他方の端部へ通過できる内径を有し、かつ出
口となる端部が入口となる端部より高さが低くなるよう
に傾斜され、中心軸の回りに回転可能に、貯蔵筒の下流
側に設けられた計量筒と、該計量筒を通過する塊状原料
の重量を計測するため該計量筒に取り付けた荷重計と、
を有する原料供給装置を設けたことを特徴とする単結晶
製造装置。
(1) A crucible that holds a melt of crystal raw material and rotates around a vertical axis, an electric resistance heating means provided around the crucible to heat the crucible, and a single crystal from the melt. a pulling device, a partition having a through hole for the melt and provided in the crucible to divide it into an outer raw material melting section and an inner crystal growth section, and a raw material supply supplying the crystal raw material to the raw material melting section. In a silicon single crystal production device that grows a single crystal while supplying a lumpy raw material, the silicon single crystal manufacturing device has a device that holds the lumpy raw material, has a substantially horizontal central axis, and is rotatable around the central axis. The storage cylinder has an inner diameter that allows the bulk raw material to pass from one end to the other, and is inclined so that the end serving as the outlet is lower in height than the end serving as the inlet, and has a central axis. a measuring cylinder rotatably provided on the downstream side of the storage cylinder; a load cell attached to the measuring cylinder for measuring the weight of the lumped raw material passing through the measuring cylinder;
1. A single-crystal production device characterized by being provided with a raw material supply device having the following.
(2)前記貯蔵筒と前記計量筒の形状が円筒形であるこ
とを特徴とする特許請求範囲第1項に示す単結晶製造装
置。
(2) The single crystal manufacturing apparatus as set forth in claim 1, wherein the storage cylinder and the measuring cylinder are cylindrical in shape.
(3)前記貯蔵筒と前記計量筒の材質をテフロン、石英
またはシリコンで構成したことを特徴とする特許請求範
囲第1項および第2項に示す単結晶製造装置。
(3) The single crystal manufacturing apparatus as set forth in claims 1 and 2, wherein the storage cylinder and the measuring cylinder are made of Teflon, quartz, or silicon.
JP2051326A 1990-03-02 1990-03-02 Device for producing single crystal Pending JPH03252386A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2051326A JPH03252386A (en) 1990-03-02 1990-03-02 Device for producing single crystal
PCT/JP1991/000273 WO1991013192A1 (en) 1990-03-02 1991-03-01 Single crystal production apparatus
DE19914190411 DE4190411T1 (en) 1990-03-02 1991-03-01
KR1019910701501A KR920701531A (en) 1990-03-02 1991-03-01 Single Crystal Manufacturing Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051326A JPH03252386A (en) 1990-03-02 1990-03-02 Device for producing single crystal

Publications (1)

Publication Number Publication Date
JPH03252386A true JPH03252386A (en) 1991-11-11

Family

ID=12883798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051326A Pending JPH03252386A (en) 1990-03-02 1990-03-02 Device for producing single crystal

Country Status (4)

Country Link
JP (1) JPH03252386A (en)
KR (1) KR920701531A (en)
DE (1) DE4190411T1 (en)
WO (1) WO1991013192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266017A (en) * 2007-03-29 2008-11-06 Sharp Corp Solid material supply device, solid material processing device and solid material supply method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754104B2 (en) * 1991-10-15 1998-05-20 信越半導体株式会社 Granular material feeder for pulling semiconductor single crystal
US5997234A (en) * 1997-04-29 1999-12-07 Ebara Solar, Inc. Silicon feed system
US10202704B2 (en) 2011-04-20 2019-02-12 Gtat Ip Holding Llc Side feed system for Czochralski growth of silicon ingots
KR101977049B1 (en) * 2011-04-20 2019-05-10 지티에이티 아이피 홀딩 엘엘씨 Side feed system for czochralski growth of silicon ingots
CN104264229B (en) * 2014-10-09 2016-08-24 河北晶龙阳光设备有限公司 A kind of online doper of single crystal growing furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523580Y2 (en) * 1987-02-27 1993-06-16
JPH01282194A (en) * 1988-01-19 1989-11-14 Osaka Titanium Co Ltd Production of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266017A (en) * 2007-03-29 2008-11-06 Sharp Corp Solid material supply device, solid material processing device and solid material supply method

Also Published As

Publication number Publication date
WO1991013192A1 (en) 1991-09-05
DE4190411T1 (en) 1992-05-14
KR920701531A (en) 1992-08-12

Similar Documents

Publication Publication Date Title
EP0537988B1 (en) An apparatus for supplying granular raw material for a semiconductor single crystal pulling apparatus
US6217649B1 (en) Continuous melt replenishment for crystal growth
EP2699716B1 (en) Side feed system for czochralski growth of silicon ingots
US8652257B2 (en) Controlled gravity feeding czochralski apparatus with on the way melting raw material
KR950003431B1 (en) Continuous liquid silicon recharging process in czochralski crucible pulling
JPS5919913B2 (en) Continuous semiconductor crystal growth equipment
JPS6337313B2 (en)
US5242667A (en) Solid pellet feeder for controlled melt replenishment in continuous crystal growing process
US5762491A (en) Solid material delivery system for a furnace
JPH03252386A (en) Device for producing single crystal
KR101243579B1 (en) Upper-docking type raw material supply apparatus for continuous growing single crystals
JPH03290392A (en) Single crystal production device
US20230366123A1 (en) Continuous ingot growth apparatus and control method thereof
JPH03290391A (en) Single crystal production device
US10202704B2 (en) Side feed system for Czochralski growth of silicon ingots
JPH061688A (en) Method and device for feeding granular dopant
WO2002000967A1 (en) Crucible supporting device, and method and device for filling material
JPH04362088A (en) Granular silicon supplying device
KR20120003223A (en) Side-docking type raw material supply apparatus for continuous growing single crystals
JPH01286987A (en) Production of single crystal and apparatus therefor
JPH0333092A (en) Granular silicon feeder
WO2019126413A1 (en) Czochralski growth apparatus conversion assembly
KR100797585B1 (en) Silicon Ingot Growing Apparatus
JPH07126095A (en) Single crystal growing device
JPS59217695A (en) Apparatus for pulling single crystal