JPH0325943B2 - - Google Patents
Info
- Publication number
- JPH0325943B2 JPH0325943B2 JP57065350A JP6535082A JPH0325943B2 JP H0325943 B2 JPH0325943 B2 JP H0325943B2 JP 57065350 A JP57065350 A JP 57065350A JP 6535082 A JP6535082 A JP 6535082A JP H0325943 B2 JPH0325943 B2 JP H0325943B2
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- resistor
- region
- semiconductor
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Analogue/Digital Conversion (AREA)
Description
【発明の詳細な説明】
本発明は半導体集積回路装置、特に電圧を抵抗
比に応じて分割する電圧分割回路に用いられる抵
抗装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and particularly to a resistor device used in a voltage divider circuit that divides voltage according to a resistance ratio.
半導体集積回路装置内で用いられるこの種の電
圧分割用の抵抗としては、ポリシリコン抵抗、高
不純物濃度の拡散抵抗、低不純物濃度のウエル抵
抗が考えられる。この不純物としてはP型不純物
を用いるのが通常である。 Possible examples of this type of voltage dividing resistor used in a semiconductor integrated circuit device include a polysilicon resistor, a diffused resistor with a high impurity concentration, and a well resistor with a low impurity concentration. As this impurity, a P-type impurity is usually used.
このうちポリシリコン抵抗と拡散抵抗(例えば
表面濃度1018原子/cm3)は、その抵抗値の電圧依
存性が小さいという利点がある。このため、一般
の抵抗として用いる他に、高い相対精度を要求さ
れる演算増幅器(OPアンプ)のゲイン調整部分
や、絶対精度を要求されるA/D変換等に使用さ
れる。しかし、これらはシート抵抗ρSが小さいた
め所望の抵抗値を得るには占有面積が大きくなる
という欠点がある。このため近年のICの高集積
化に伴い、シート抵抗ρSの大きい(不純物濃度の
低い)半導体領域例えばウエル領域(例えば表面
濃度1015原子/cm3)を抵抗として用いる考えがあ
る。しかしながら、このウエル抵抗のように低不
純物濃度の半導体領域の抵抗値には精度面で問題
があるので、高い相対または絶対精度が要求され
る分野では実用化されていない。この理由を詳細
に説明すると、基板とウエル領域との接合が低不
純物濃度領域同士の接合であるため、電圧印加時
に接合から空乏層が伸び易い。このために抵抗と
してのウエル領域の実効的な断面積が変調を受け
易くなるから、印加電圧の変動によつて抵抗値が
変動し、しかも場所によつて空乏層の伸びが異な
るために場所的に抵抗値がばらつく。 Among these, polysilicon resistors and diffused resistors (for example, surface concentration 10 18 atoms/cm 3 ) have the advantage that their resistance values are less dependent on voltage. Therefore, in addition to being used as a general resistor, it is also used in gain adjustment parts of operational amplifiers (OP amplifiers) that require high relative accuracy, and A/D conversion that requires absolute accuracy. However, since these have a small sheet resistance ρ S , they have the disadvantage that they require a large area to obtain a desired resistance value. For this reason, with the recent trend toward higher integration of ICs, there is an idea of using a semiconductor region with a large sheet resistance ρ S (low impurity concentration), such as a well region (for example, a surface concentration of 10 15 atoms/cm 3 ), as a resistor. However, since the resistance value of a semiconductor region with a low impurity concentration, such as the well resistance, has a problem in terms of accuracy, it has not been put to practical use in fields where high relative or absolute accuracy is required. To explain the reason in detail, since the junction between the substrate and the well region is a junction between low impurity concentration regions, a depletion layer tends to extend from the junction when a voltage is applied. For this reason, the effective cross-sectional area of the well region as a resistor becomes susceptible to modulation, so the resistance value fluctuates due to fluctuations in the applied voltage.Moreover, the extension of the depletion layer differs depending on the location, so The resistance value varies.
従つて、本発明の目的は、OPアンプのゲイン
調整やA/D変換器等のデバイスの消費電力を抑
えかつ占有面積を小さくするために高抵抗化を図
ると同時に、抵抗値の電圧依存性を解消した高精
度の抵抗(特に電圧分割用)を提供することにあ
る。 Therefore, an object of the present invention is to increase the resistance of devices such as gain adjustment of OP amplifiers and A/D converters in order to reduce the power consumption and occupy space, and at the same time to reduce the voltage dependence of the resistance value. The purpose of this invention is to provide a high-precision resistor (especially for voltage division) that eliminates this problem.
以下、本発明を図面に示す実施例について詳細
に説明する。 Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
第1図は、本発明が適用されるOPアンプの回
路図を示す。図示したOPアンプの非反転入力端
子には入力電圧VINが印加されており、反転入力
端子にはOPアンプの出力が抵抗R1を介して帰還
入力されている。抵抗R1とR2はその抵抗値の比
を調整することによつて帰還入力される電圧量を
調整してこのOPアンプのゲインGVを調整し、出
力電圧VOUTをその設計値に対して高い精度の値
に補正するためのものである。すなわち、VINに
対してVOUTは
VOUT=VIN・(R1+R2)/R2
で示される。ゲインGV=(R1+R2)/R2とすれ
ば、VOUTはVINをGV倍して得られる。したがつて
個々のICにおいて入力電圧がその設計値から例
えば±10%ばらついた場合でも、GVを調整する
こと、即ちR1とR2の値を調整することによつて
VOUTを設計値に対して高い精度(例えば±1%)
で得ることができる。 FIG. 1 shows a circuit diagram of an OP amplifier to which the present invention is applied. The input voltage V IN is applied to the non-inverting input terminal of the illustrated OP amplifier, and the output of the OP amplifier is fed back to the inverting input terminal via a resistor R 1 . Resistors R 1 and R 2 adjust the amount of feedback input voltage by adjusting the ratio of their resistance values, adjust the gain G V of this OP amplifier, and adjust the output voltage V OUT to its design value. This is to correct the value to a highly accurate value. That is, V OUT with respect to V IN is expressed as V OUT = V IN · (R 1 + R 2 )/R 2 . If the gain G V = (R 1 + R 2 )/R 2 , then V OUT is obtained by multiplying V IN by G V. Therefore, even if the input voltage of an individual IC varies by, for example, ±10% from its design value, it can be corrected by adjusting G V , that is, by adjusting the values of R 1 and R 2 .
High accuracy of V OUT to design value (e.g. ±1%)
You can get it at
このような抵抗R1,R2を主体とするOPアンプ
のゲイン調整部分は、本発明によれば具体的には
第2図の如くに構成される。このゲイン調整部分
は、抵抗R1,R2を形成するための抵抗部1と、
この抵抗部1のR1とR2の抵抗値を調整するため
のスイツチ群2と、スイツチ群2を制御するため
のスイツチ群制御回路3からなる。なお、図中a
点、b点およびc点は第1図のa点、b点および
c点に対応する。 According to the present invention, the gain adjustment portion of the OP amplifier mainly composed of such resistors R 1 and R 2 is specifically constructed as shown in FIG. 2. This gain adjustment section includes a resistor section 1 for forming resistors R 1 and R 2 ;
It consists of a switch group 2 for adjusting the resistance values of R 1 and R 2 of this resistance section 1, and a switch group control circuit 3 for controlling the switch group 2. In addition, a in the figure
Points A, b and c correspond to points a, b and c in FIG.
抵抗部1は、低不純物濃度領域からなる抵抗
R0が多数個接続されたものからなつている。R10
はm個のR0からなるR1のうちの固定抵抗分、R20
はn個のR0からなるR2のうちの固定抵抗分であ
る。そして、R10とR20との間の7個のR0をスイ
ツチ群2によつてR1又はR2側へ振り分け、これ
に基いてR1とR2との抵抗値の比を夫々調整する。 The resistor section 1 is a resistor made of a low impurity concentration region.
It consists of a large number of R0s connected together. R10
is the fixed resistance of R 1 consisting of m R 0 , R 20
is the fixed resistance portion of R 2 consisting of n R 0 s. Then, the seven R 0 between R 10 and R 20 are distributed to R 1 or R 2 by switch group 2, and based on this, the ratio of the resistance values of R 1 and R 2 is adjusted respectively. do.
スイツチ群2はtree状のNチヤネルMOSFET
(Metal Oxide Semicnnductor Field Effect
Transistot)Q11〜Q32を選択的に導通させ、tree
状の配線中にR1とR2の接点(c点)からb点に
到る1本の電流路を形成する。 Switch group 2 is a tree-shaped N-channel MOSFET
(Metal Oxide Semiconductor Field Effect
Transistot) selectively conducts Q 11 to Q 32 and
One current path is formed in the shaped wiring from the contact point (point c) of R 1 and R 2 to point b.
スイツチ群制御回路3においては、ボンデイン
グパツドP1〜P3のいずれかとP4との間に高電圧
を印加して、対応するポリシリコンのフユーズf1
〜f3を溶解、切断(溶断)し、MOSFETQ11〜
Q32のゲート電極に印加される信号を固定する。 In the switch group control circuit 3, a high voltage is applied between one of the bonding pads P1 to P3 and P4 to connect the corresponding polysilicon fuse f1.
~ Melt and cut (fuse) f 3 , MOSFETQ 11 ~
Fix the signal applied to the gate electrode of Q32 .
例えば、第2図においては、f1およびf2を溶断
してc点からQ12,Q21,Q31を通つてb点に到る
電流路を形成している。すなわち、抵抗RIと抵
抗RfとはRI>Rfの関係にあるので、動作時にP0
にVDD、P4に−VSSを印加すれば、溶断されたフ
ユーズに対応するパツドP1,P2の電位は+VDD
となり、パツドP3の電位は−VSSとなる。これ
らの信号はインバータIV11〜IV32を介してスイツ
チ群2に印加される。したがつて、スイツチ群2
の中で導通するMISFETはQ12,Q14,Q16,Q18,
Q21,Q23,Q31であり、他は非導通となる。ゆえ
にTree状のスイツチによつて一本の電流路が設
定される。 For example, in FIG. 2, f 1 and f 2 are fused to form a current path from point c through Q 12 , Q 21 , and Q 31 to point b. In other words, since the resistance R I and the resistance R f have a relationship of R I > R f , P 0
If V DD is applied to P 4 and −V SS is applied to P 4 , the potential of pads P 1 and P 2 corresponding to the blown fuse becomes +V DD
Therefore, the potential of pad P3 becomes -V SS . These signals are applied to switch group 2 via inverters IV 11 to IV 32 . Therefore, switch group 2
The MISFETs conducting in Q 12 , Q 14 , Q 16 , Q 18 ,
Q 21 , Q 23 , Q 31 , and the others are non-conducting. Therefore, one current path is set by the tree-shaped switch.
次に、抵抗部1の構造について詳述する。 Next, the structure of the resistance section 1 will be explained in detail.
第3図は、上記した抵抗部1のレイアウトパタ
ーンを示し、抵抗として用いられる低不純物濃度
領域(表面濃度1015原子/cm3)P−WELLの一端
はa点に、他端はアースGNDに接続されている。
高濃度領域(表面濃度1018原子/cm3)SR1,SR2,
SR3……は、第4図に明示するようにフイールド
酸化膜4のパターンに自己整合された状態でその
酸化膜4の存在しない位置に選択的に形成され、
また電気的には他のいずれの領域にも接続されな
いように設けられる。また、先述したスイツチ群
2へ接続されるべき部分では、高濃度領域はスイ
ツチ群へ伸びており、例えばMISFETのソー
ス・ドレイン領域を形成している。 FIG. 3 shows the layout pattern of the resistor section 1 described above, in which one end of the P-WELL with a low impurity concentration region (surface concentration 10 15 atoms/cm 3 ) used as a resistor is connected to point a, and the other end is connected to the ground GND. It is connected.
High concentration region (surface concentration 10 18 atoms/cm 3 ) SR 1 , SR 2 ,
SR 3 ... is selectively formed in a position where the oxide film 4 does not exist in a self-aligned state with the pattern of the field oxide film 4, as shown in FIG.
Further, it is provided so as not to be electrically connected to any other area. Further, in the portion to be connected to the switch group 2 mentioned above, the high concentration region extends to the switch group, and forms, for example, the source/drain region of MISFET.
これらの高濃度領域の間隔L1は、P−WELL
の拡散深さXjと同じか或いはそれ以下に形成さ
れている。この間隔L1で低濃度領域P−WELL
が持つ抵抗分が第2図に示す抵抗R0であり、抵
抗体1は多数のR0が直列に配されてなつている。
もちろん高不純物濃度領域SR1,SR2……も抵抗
を持つので、その値は考慮する必要があるが、こ
のSR1,SR2は不純物濃度も高く、接合からの影
響を受けないように接合面から十分に浅く形成さ
れているので、その抵抗値は設計値に対して精度
よく形成される。 The interval L 1 between these high concentration regions is P-WELL
The diffusion depth is equal to or less than the diffusion depth of X j . With this interval L 1 , the low concentration area P-WELL
The resistance component of the resistor 1 is the resistance R 0 shown in FIG. 2, and the resistor 1 is made up of a large number of R 0 arranged in series.
Of course, the high impurity concentration regions SR 1 , SR 2 ... also have resistance, so their value needs to be taken into account, but these SR 1 and SR 2 also have high impurity concentrations, so the junctions should be placed so that they are not affected by the junction. Since it is formed to be sufficiently shallow from the surface, its resistance value can be formed accurately with respect to the design value.
このように、複数個の高濃度領域SR1,SR2,
SR3……を低濃度領域P−WELLを横切つて一定
のピツチでしかもP−WELLよりも充分浅く形
成したことによつて、第4図に示す如く、電流路
を示す電気力線(等電位線と直交)5が隣接し合
う高濃度領域間を結ぶように発生することにな
る。即ち、P−WELLによる抵抗Rとして寄与
するのは、電気力線5が切る領域(つまり表面近
傍領域)のみとなり、このために空乏層6は一点
鎖線で示すように低濃度領域P−WELL側へ拡
がるものの抵抗Rの実効部分には実質的に影響を
及ぼさない。従つて、印加電圧(a点の電圧)に
より空乏層6の伸びが異なつて低濃度領域P−
WELLの断面積が変調を受けたとしても、抵抗
値Rは変化しないことになり、電圧依存性のない
高精度の抵抗を得ることができ、上記のR0,
R10,R20を設計値通りに形成できる。したがつ
て、第1図に示した如き回路、特にVINが±10%
程度の精度でVOUTを高精度に調整したい場合に
有効であることが理解されよう。実測によれば、
VINに設計値から±10%のばらつきがあるときに
VOUTは設計値に対し±0.4%と高精度で得ること
ができた。 In this way, multiple high concentration regions SR 1 , SR 2 ,
By forming SR 3 ... across the low concentration region P-WELL at a constant pitch and at a depth sufficiently shallower than the P-WELL, lines of electric force (equal (perpendicular to the potential line) 5 is generated so as to connect adjacent high concentration regions. That is, only the region cut by the electric lines of force 5 (that is, the region near the surface) contributes to the resistance R due to the P-WELL, and therefore the depletion layer 6 is located on the low concentration region P-WELL side as shown by the dashed line. Although it spreads to , it does not substantially affect the effective portion of the resistance R. Therefore, the extension of the depletion layer 6 varies depending on the applied voltage (voltage at point a), and the low concentration region P-
Even if the cross-sectional area of the WELL is modulated, the resistance value R will not change, making it possible to obtain a highly accurate resistance with no voltage dependence, and the above R 0 ,
R 10 and R 20 can be formed as designed values. Therefore, in a circuit like the one shown in Figure 1, especially when V IN is ±10%,
It will be understood that this is effective when it is desired to adjust V OUT with high accuracy. According to actual measurements,
When V IN varies by ±10% from the design value
V OUT was achieved with high accuracy of ±0.4% of the design value.
また、低濃度領域P−WELLを抵抗として用
いたことによつて、その抵抗のシート抵抗ρSが大
となつて流れる電流が少なく、低消費電力化を図
れると共に、小さな面積で所望の抵抗を形成で
き、高集積化も図れる。こうした効果は、第1図
および第2図の如き回路では大きな利点である。 In addition, by using the low concentration region P-WELL as a resistor, the sheet resistance ρ S of the resistor becomes large and the current flowing through it is small, reducing power consumption, and the desired resistance can be achieved in a small area. can be formed, and high integration can be achieved. This effect is a great advantage in circuits such as those shown in FIGS. 1 and 2.
上記高濃度領域間の間隔Lは、低濃度領域の深
さxjより小さく(xj/L≧1)することが重要で
あることが実験的に確認されている。第5図に示
すように、テストサンプルとして、N-型基板7
中にP-型の低濃度抵抗領域P−WELLを形成し、
この両端に端子領域としてのP+型領域SR,
SR′を形成したものを用意し、P−WELLのxjと
高濃度領域SR−SR′間の間隔Lとの比(xj/L)
に応じたSR−SR′間の抵抗値を測定した。この
場合、Lを一定にしてxjの異なるサンプルを用意
して各xj/Lについての抵抗値を求めたところ、
第5図の如くになつた。抵抗値はxj=Lの時の値
を1とした相対値で示してある。これによれば、
xj/Lが1.0以上のときには抵抗値が殆んど変化
せず、低濃度領域の深さによる影響を受けないこ
とが分る。これに対し、xj/L<1.0のときには
抵抗値が増大し、低濃度領域の深さの影響を受け
易くなる。このことは、高濃度領域SR−SR′間、
即ち第3図及び第4図のSR1−SR2、SR2−SR3
間……のピツチ又は間隔をP−WELLの深さと
同じか或いはそれより小さくする方が、抵抗値の
変動を少なくする上で望ましいことを示唆してい
る。言い換えれば、xj/L≧1.0では、空乏層6
を切る電気力線5(第4図参照)の数が急激に減
少するために、空乏層により抵抗の実効部分が受
ける影響が非常に少なくなる。 It has been experimentally confirmed that it is important that the interval L between the high concentration regions is smaller than the depth x j of the low concentration regions (x j /L≧1). As shown in FIG. 5, an N - type substrate 7 is used as a test sample.
A P - type low concentration resistance region P-WELL is formed inside.
P + type region SR as a terminal region on both ends of this,
SR' is prepared, and the ratio of x j of P-WELL to the distance L between high concentration region SR-SR' (x j /L)
The resistance value between SR and SR′ was measured according to In this case, when L is kept constant and samples with different x j are prepared and the resistance value for each x j /L is determined,
It became as shown in Figure 5. The resistance value is shown as a relative value with the value when x j =L being 1. According to this,
It can be seen that when x j /L is 1.0 or more, the resistance value hardly changes and is not affected by the depth of the low concentration region. On the other hand, when x j /L<1.0, the resistance value increases and becomes susceptible to the influence of the depth of the low concentration region. This means that between the high concentration region SR−SR′,
That is, SR 1 - SR 2 and SR 2 - SR 3 in Figures 3 and 4.
This suggests that it is preferable to make the pitch or interval between the holes the same as or smaller than the depth of the P-WELL in order to reduce fluctuations in resistance value. In other words, when x j /L≧1.0, the depletion layer 6
Since the number of electric lines of force 5 (see FIG. 4) that cut the current decreases rapidly, the effect of the depletion layer on the effective portion of the resistance becomes very small.
第6図〜第8図は別の実施例を示すものであ
る。 6 to 8 show another embodiment.
この例は全並列比較型A/D変換装置に係るも
のであつて、第1図において参照電圧VREFを複数
の抵抗体Rで分割し、コンパレータOP1〜OP4の
基準電圧(4/5VREF〜1/5VREF)を発生せしめ
ている。各コンパレータは、入力信号電圧VINが
夫々の基準電圧より大きいときに“H”信号を出
力する。 This example relates to a fully parallel comparison type A/D converter, in which the reference voltage V REF is divided by a plurality of resistors R in FIG . 1 , and the reference voltage ( 4/5 V REF ~ 1/5V REF ) is generated. Each comparator outputs an "H" signal when the input signal voltage V IN is greater than the respective reference voltage.
第2図は複数の抵抗体Rのパターンを示してい
る。各抵抗体Rは低濃度領域(表面濃度1015原
子/cm3)P−WELLを横切つて形成された各高
濃度領域(表面濃度1018原子/cm3)を端子として
各コンパレータに接続されている。そして重要な
ことは各抵抗体Rの両端子間において、第3図と
同様の高濃度領域SR1,SR2,SR3が一定のピツ
チL2を置いて形成されていることである。これ
らのSR1〜SR3はP−WELLより浅くかつP−
WELLの深さ以下のピツチL2で形成され、電気
的には他のいずれの領域にも接続されていない。 FIG. 2 shows a pattern of a plurality of resistors R. Each resistor R is connected to each comparator using each high concentration region (surface concentration 10 18 atoms/cm 3 ) formed across the low concentration region (surface concentration 10 15 atoms/cm 3 ) P-WELL as a terminal. ing. What is important is that between both terminals of each resistor R, high concentration regions SR 1 , SR 2 and SR 3 similar to those shown in FIG. 3 are formed at a constant pitch L 2 . These SR 1 to SR 3 are shallower than P-WELL and P-
It is formed with a pitch L 2 below the depth of the WELL and is not electrically connected to any other area.
このように構成すれば、抵抗Rの中間域におい
てSR1−SR2、SR2−SR3間に第4図で述べた如
き電気力線が生じ、これに伴なつて電流路が表面
近傍に形成されてP−WELLの深さ(即ち空乏
層)の影響を受けることがなくなる。つまり、各
高濃度領域間には、第8図の如くに安定な抵抗
R0が形成され、複数の抵抗R0によつて各Rが同
等に構成されたのと等価となる。このため、上述
したと同様に、抵抗Rをすべて設計値通りに高精
度に形成でき、しかも低消費電力化及び高集積化
も図れる。この例のようなA/D変換装置におい
ては、抵抗Rの絶対精度が直接A/D変換の精
度、特に非直線性誤差(微分直線性誤差、直線性
誤差)に影響するが、本例によれば、R0,Rを
設計通りに実現できるために抵抗に起因する非直
線性誤差を殆んど解消できる。 With this configuration, electric lines of force as shown in Fig. 4 will occur between SR 1 - SR 2 and SR 2 - SR 3 in the intermediate region of the resistance R, and the current path will move near the surface. This eliminates the influence of the depth of the P-WELL (i.e., the depletion layer). In other words, there is a stable resistance between each high concentration region as shown in Figure 8.
R 0 is formed, which is equivalent to each R being equally configured by a plurality of resistors R 0 . Therefore, as described above, all the resistors R can be formed with high accuracy according to the designed values, and furthermore, low power consumption and high integration can be achieved. In an A/D conversion device like this example, the absolute accuracy of the resistor R directly affects the accuracy of A/D conversion, especially the nonlinearity error (differential linearity error, linearity error). According to this method, since R 0 and R can be realized as designed, non-linearity errors caused by resistance can be almost eliminated.
以上述べた例は更に変形可能であり、A/D変
換装置全般に適用できる。例えば第1図及び第2
図において、a点をVOUTから切り離して入力
とし、VINを入力とし、抵抗部1においてR0
(又は2R0,3R0……)毎にスイツチ群2への出力
を設け、スイツチ群制御回路3は外部からの信号
により任意の電流路を形成するようにもできる。
この場合には、入力=VREF、入力=VINとし
てA/D変換を行なえる。なお、上述した各半導
体領域のパターンや導電型を変化させてよい。 The example described above can be further modified and can be applied to A/D conversion devices in general. For example, Figures 1 and 2
In the figure, point a is separated from V OUT and used as an input, V IN is used as an input, and R 0
(or 2R 0 , 3R 0 . . . ), an output to the switch group 2 can be provided, and the switch group control circuit 3 can also form an arbitrary current path based on an external signal.
In this case, A/D conversion can be performed with input=V REF and input=V IN . Note that the pattern and conductivity type of each semiconductor region described above may be changed.
図面は本発明の実施例を示すものであつて、第
1図は演算増幅器のゲイン調整を行なうための回
路図、第2図はその具体的構成を示す回路図、第
3図はゲイン調整用の抵抗部のパターン図、第4
図は第3図におけるX−X線拡大断面図、第5図
はテストサンプルにおける低濃度領域の深さと高
濃度領域間の間隔との比に応じた抵抗変化を示す
グラフ、第6図は他の実施例である全並列比較型
A/D変換装置の回路図、第7図はその電圧分割
用抵抗のパターン図、第8図は各抵抗を直列接続
された小抵抗で示す回路図である。
なお、図面に示された符号において、1は抵抗
部、2はスイツチ群、3はスイツチ群制御回路、
5は電気力線、6は空乏層、SR1〜SR3……は高
濃度領域、P−WELLへP-型低濃度ウエルであ
る。
The drawings show an embodiment of the present invention, in which Fig. 1 is a circuit diagram for adjusting the gain of an operational amplifier, Fig. 2 is a circuit diagram showing its specific configuration, and Fig. 3 is a circuit diagram for adjusting the gain of an operational amplifier. Pattern diagram of the resistor part, 4th
The figure is an enlarged cross-sectional view taken along the line X-X in Figure 3, Figure 5 is a graph showing the resistance change according to the ratio of the depth of the low concentration region to the distance between the high concentration regions in the test sample, and Figure 6 is the other graph. FIG. 7 is a circuit diagram of a fully parallel comparison type A/D converter which is an embodiment of the present invention, FIG. 7 is a pattern diagram of its voltage dividing resistors, and FIG. 8 is a circuit diagram showing each resistor as a small resistor connected in series. . In addition, in the symbols shown in the drawings, 1 is a resistor section, 2 is a switch group, 3 is a switch group control circuit,
5 is a line of electric force, 6 is a depletion layer, SR 1 to SR 3 . . . are high concentration regions, and P-WELL is a P - type low concentration well.
Claims (1)
た第2導電型の第1半導体領域を用いた抵抗を有
する半導体集積回路装置において、前記抵抗は前
記第1半導体領域より不純物濃度が高い第2導電
型の複数の第2半導体領域が、前記第1半導体領
域中にこの領域を横切るように、かつ前記第1半
導体領域よりも浅く形成されてなることを特徴と
する半導体集積回路装置。 2 前記複数の第2半導体領域の互いの間隔は、
前記第1半導体領域の深さと同じか或いはより小
さく形成されていることを特徴とする特許請求の
範囲第1項に記載の半導体集積回路装置。[Scope of Claims] 1. In a semiconductor integrated circuit device having a resistor using a first semiconductor region of a second conductivity type formed on one main surface side of a semiconductor substrate of a first conductivity type, the resistor is connected to the first semiconductor substrate. A plurality of second semiconductor regions of a second conductivity type having a higher impurity concentration than the first semiconductor region are formed in the first semiconductor region so as to cross the region and to be shallower than the first semiconductor region. Semiconductor integrated circuit device. 2. The mutual spacing between the plurality of second semiconductor regions is
2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is formed to have a depth equal to or smaller than the depth of the first semiconductor region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57065350A JPS58182860A (en) | 1982-04-21 | 1982-04-21 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57065350A JPS58182860A (en) | 1982-04-21 | 1982-04-21 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58182860A JPS58182860A (en) | 1983-10-25 |
JPH0325943B2 true JPH0325943B2 (en) | 1991-04-09 |
Family
ID=13284412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57065350A Granted JPS58182860A (en) | 1982-04-21 | 1982-04-21 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182860A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867058A (en) * | 1981-10-16 | 1983-04-21 | Nec Corp | semiconductor equipment |
-
1982
- 1982-04-21 JP JP57065350A patent/JPS58182860A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867058A (en) * | 1981-10-16 | 1983-04-21 | Nec Corp | semiconductor equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS58182860A (en) | 1983-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5061863A (en) | Transistor provided with a current detecting function | |
US7119527B2 (en) | Voltage reference circuit using PTAT voltage | |
US7852148B2 (en) | Method of forming a sensing circuit and structure therefor | |
JPH04312107A (en) | constant voltage circuit | |
US3567965A (en) | Temperature compensated zener diode | |
US4181878A (en) | Integrated-circuit chip with voltage divider | |
US20180143659A1 (en) | Reference voltages | |
US4158804A (en) | MOSFET Reference voltage circuit | |
US4424461A (en) | Semiconductor integrated circuit providing temperature compensation | |
US20240355923A1 (en) | Transistor arrangement with a load transistor and a sense transistor | |
US6441460B1 (en) | Largely voltage-independent electrical resistor formed in an integrated semiconductor circuit | |
JP2944442B2 (en) | Digital-to-analog converter | |
JP2001168651A (en) | Semiconductor device | |
US5365085A (en) | Power semiconductor device with a current detecting function | |
US5023693A (en) | Transistor with current sensing function | |
US4199733A (en) | Extended-drain MOS mirrors | |
US4104575A (en) | Constant current semiconductor circuit arrangement | |
JPH0325943B2 (en) | ||
KR900008046B1 (en) | Comparator | |
US5130529A (en) | Semiconductor optical position sensing device | |
US6771116B1 (en) | Circuit for producing a voltage reference insensitive with temperature | |
US20030030128A1 (en) | Transistor configuration for a bandgap circuit | |
JP2819787B2 (en) | Constant current source circuit | |
US20240272010A1 (en) | Temperature sensor | |
JPH04297061A (en) | Semiconductor resistor |