[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03257027A - Production of transparent porous body - Google Patents

Production of transparent porous body

Info

Publication number
JPH03257027A
JPH03257027A JP5476290A JP5476290A JPH03257027A JP H03257027 A JPH03257027 A JP H03257027A JP 5476290 A JP5476290 A JP 5476290A JP 5476290 A JP5476290 A JP 5476290A JP H03257027 A JPH03257027 A JP H03257027A
Authority
JP
Japan
Prior art keywords
porous body
formula
alkoxysilane
general formula
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5476290A
Other languages
Japanese (ja)
Inventor
Koichi Takahama
孝一 高濱
Masaru Yokoyama
勝 横山
Takashi Kishimoto
隆 岸本
Hiroshi Yokogawa
弘 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5476290A priority Critical patent/JPH03257027A/en
Publication of JPH03257027A publication Critical patent/JPH03257027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a transparent porous body hardly adsorbing moisture, etc., and hardly undergoing deterioration with the lapse of time by successively subjecting bi- or terfunctional alkoxysilane to hydrolysis, condensation polymn. and supercritical drying. CONSTITUTION:At least one of bifunctional alkoxysilane represented by formula I (where each of R, R<1> and R<2> is 1-5C alkyl or phenyl) and terfunctional alkoxysilane represented by formula II (where each of R<3> and R<4> is 1-5C alkyl or phenyl) is successively subjected to hydrolysis, condensation polymn. and supercritical drying with one or more kinds of media such as CO2, ethanol, methanol, water and dichlorodifluoromethane to obtain a desired transparent porous body. A catalyst is preferably added to a reaction system contg. the alkoxysilane so as to perform efficient hydrolysis and condensation polymn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光透過性を有する多孔体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a porous body having optical transparency.

〔従来の技術〕[Conventional technology]

従来、光透過性を有する多孔体を製造する方法としては
、金属水酸化物を縮重合して得られるゲル状化合物を臨
界点あるいはそれ以上の状態で乾燥する方法(U、S、
P、2,093,454参照)がある。また、アルコキ
シシランを用いた方法としては、テトラメチルオルソシ
リケー) (7MO3)を用い、超臨界状態で乾燥する
方法(U、S、P、4,327.065;U、S、P、
4.432.956参照)、あるいは、テトラエチルオ
ルソシリケートを用い、超臨界状態で乾燥する方法(U
、S、P、4,610,863参照)などがある。
Conventionally, as a method for manufacturing a porous body having optical transparency, a method of drying a gel-like compound obtained by condensation polymerization of a metal hydroxide at or above the critical point (U, S,
P, 2,093,454). In addition, as a method using alkoxysilane, a method of using tetramethylorthosilicate (7MO3) and drying it in a supercritical state (U, S, P, 4,327.065; U, S, P,
4.432.956), or a method of drying in a supercritical state using tetraethyl orthosilicate (U
, S, P, 4,610,863).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このようにして得られた多孔体は、経時的に
水分等を吸着して、光透過性が低下したり、多孔質材料
としての機能(たとえば、断熱性)の低下を招いたりす
るものとなっていた。
However, the porous material obtained in this way adsorbs moisture etc. over time, resulting in a decrease in light transmittance and a decrease in the function as a porous material (for example, heat insulation). It became.

このような事情に鑑み、この発明は、水分等を吸着しに
(<、経時的な劣化の少ない光透過性多孔体を得ること
ができる方法を提供することを課題とする。
In view of these circumstances, it is an object of the present invention to provide a method that can obtain a light-transmitting porous body that adsorbs moisture and the like and has little deterioration over time.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、この発明にかかる光透過性多
孔体の製造方法は、 下記一般式(I): R1−人i (OR”)z    (I)で表される2
官能アルコキシシランと、下記一般式(■): R” −3i  (OR’)=      (II)で
表される3官能アルコキシシラン のうちの少なくとも1種を加水分解し、縮重合した後、
超臨界乾燥するようにすることを第1の要旨とし、 上記一般式(1)で表される2官能アルコキシシランと
、上記一般式(II)で表される3官能アルコキシシラ
ンのうちの少なくとも1種と、下記一般式(■): S i  (OR’ ) 4      (III)で
表される4官能アルコキシシランと を加水分解し、縮重合した後、超臨界乾燥するようにす
ることを第2の要旨とする。
In order to solve the above problems, a method for manufacturing a light-transmitting porous body according to the present invention includes 2 represented by the following general formula (I):
After hydrolyzing the functional alkoxysilane and at least one of the trifunctional alkoxysilanes represented by the following general formula (■): R''-3i (OR')= (II) and performing condensation polymerization,
The first gist is to perform supercritical drying, and at least one of a bifunctional alkoxysilane represented by the above general formula (1) and a trifunctional alkoxysilane represented by the above general formula (II). The second step is to hydrolyze the seed and a tetrafunctional alkoxysilane represented by the following general formula (■): S i (OR' ) 4 (III), perform condensation polymerization, and then perform supercritical drying. The summary is as follows.

この発明で用いられる前記式(1)、(II)および(
1)でそれぞれ表される2官能、3官能および4官能の
各アルコキシシランとしては、特に限定されない。それ
らの具体例を挙げると、2官能アルコキシシランとして
は、たとえば、ジメチルジメトキシシラン、ジメチルジ
ェトキシシラン、ジフェニルジェトキシシラン、ジフェ
ニルジメトキシシラン、メチルフエニルジエトキシシラ
ン、メチルフエニルジメトキシシラン、ジエチルジメト
キシシラン、ジエチルジェトキシシラン等が用いられる
。3官能アルコキシシランとしては、たとえば、メチル
トリメトキシシラン、メチルトリエトキシシラン、エチ
ルトリメトキシシラン、エチルトリエトキシシラン、フ
ェニルトリエトキシシラン、フェニルトリメトキシシラ
ン等が用いられる。4官能アルコキシシランとしては、
たとえば、テトラエトキシシラン、テトラメトキシシラ
ン等が用いられる。
The formulas (1), (II) and (
The difunctional, trifunctional and tetrafunctional alkoxysilanes represented by 1) are not particularly limited. To give specific examples thereof, examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyljethoxysilane, diphenyljethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, and diethyldimethoxysilane. Silane, diethyljethoxysilane, etc. are used. Examples of the trifunctional alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, and phenyltrimethoxysilane. As a tetrafunctional alkoxysilane,
For example, tetraethoxysilane, tetramethoxysilane, etc. are used.

この発明で前記アルコキシシランを効率良く加水分解し
、縮重合を行うためには、同アルコキシシランを含む反
応系にあらかじめ触媒を添加しておくことが好ましい。
In order to efficiently hydrolyze the alkoxysilane and perform condensation polymerization in the present invention, it is preferable to add a catalyst in advance to the reaction system containing the alkoxysilane.

このような触媒としては、特に限定されないが、たとえ
ば、酸触媒、塩基触媒等が挙げられる。具体的に述べる
と、酸触媒としては、塩酸、クエン酸、硝酸、硫酸、フ
ッ化アンモニウム等が用いられ、塩基触媒としては、ア
ンモニア、ピペリジン等が用いられるが、それらに限定
されるものではない。
Such catalysts include, but are not particularly limited to, acid catalysts, base catalysts, and the like. Specifically, as acid catalysts, hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride, etc. are used, and as base catalysts, ammonia, piperidine, etc. are used, but are not limited to these. .

この発明で超臨界乾燥を行う際に用いられる媒体として
は、特に限定されないが、たとえば、二酸化炭素、エタ
ノール、メタノール、水、ジクロロジフルオロメタン等
の単独系または2種以上の混合系を挙げることができる
The medium used in supercritical drying in this invention is not particularly limited, but examples include carbon dioxide, ethanol, methanol, water, dichlorodifluoromethane, etc. alone or in combination of two or more. can.

この発明にかかる光透過性多孔体の製造方法は、特に限
定されるわけではないが、たとえば、以下のようにして
行われる。
Although the method for producing a light-transmitting porous body according to the present invention is not particularly limited, it may be carried out, for example, as follows.

まず、前記アルコキシシランにアルコール、水および前
記触媒を混合したものを加え、混合し、アルコキシシラ
ンを加水分解し、縮重合させる。
First, a mixture of alcohol, water, and the catalyst is added to the alkoxysilane, mixed, and the alkoxysilane is hydrolyzed and polycondensed.

なお、この際に用いられるアルコールは、たとえば、メ
タノール、エタノール、イソプロパツール、ブタノール
等でよく、特に限定されない。
Note that the alcohol used at this time may be, for example, methanol, ethanol, isopropanol, butanol, etc., and is not particularly limited.

縮重合反応が充分に進行すると、前記反応混合物がゲル
化する。
When the polycondensation reaction progresses sufficiently, the reaction mixture turns into a gel.

次に、このゲル化物にアルコールを添加し、加熱する、
いわゆる熟成を行った後、超臨界乾燥する。なお、この
際、必要に応じては、熟成工程を省いてもよい。
Next, alcohol is added to this gelled product and heated.
After so-called aging, it is supercritically dried. Note that at this time, the aging step may be omitted if necessary.

超臨界乾燥を行う方法としては、特に限定されないが、
たとえば、前記のようにして得られたアルコキシシラン
のゲル化物を液化炭酸(50〜60気圧程度)中に浸漬
した後、二酸化炭素を超臨界状態にして乾燥する方法、
あるいは、溶媒として使用しているアルコールの超臨界
状態で乾燥する方法等が挙げられるが、特に限定されな
い。
The method of performing supercritical drying is not particularly limited, but
For example, a method in which the alkoxysilane gel obtained as described above is immersed in liquefied carbonic acid (approximately 50 to 60 atm) and then dried by bringing the carbon dioxide to a supercritical state;
Alternatively, a method of drying in a supercritical state of alcohol used as a solvent may be used, but is not particularly limited.

このような超臨界乾燥を行い、前記ゲル化物から含有す
る流体を除去することにより、光透過性多孔体が得られ
る。
By performing such supercritical drying and removing the fluid contained in the gelled product, a light-transmitting porous body can be obtained.

〔作   用〕[For production]

アルコキシシランを加水分解し、縮重合して得られたゲ
ル化物を超臨界乾燥するようにすると、溶媒が液体から
気体に変化して前記ゲル化物の構造体中から除去される
際に起こる溶媒の表面張力が弱くなり、前記構造体の破
壊、凝集が妨げられるため、得られる多孔体は、光透過
性を有する。
When the gelled product obtained by hydrolyzing and polycondensing alkoxysilane is subjected to supercritical drying, the solvent is removed when the solvent changes from a liquid to a gas and is removed from the structure of the gelled product. Since the surface tension is weakened and destruction and aggregation of the structure is prevented, the resulting porous body has light transparency.

しかも、アルコキシシランとして、2官能アルコキシシ
ランおよび/または3官能アルコキシシランを用いるよ
うにすると、得られる多孔体に撥水性が付与され、水分
等の吸着が少なくなるため、同多孔体の経時的な劣化が
抑えられる。
Moreover, when bifunctional alkoxysilane and/or trifunctional alkoxysilane are used as the alkoxysilane, water repellency is imparted to the resulting porous material, and adsorption of water, etc. is reduced, so that the porous material becomes more stable over time. Deterioration can be suppressed.

〔実 施 例〕〔Example〕

以下に、この発明の具体的な実施例および比較例を示す
が、この発明は下記実施例に限定されない。
Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.

一実施例1− メチルトリエトキシシラン(東しダウコーニング■製試
薬)に、エタノール(半井化学薬品■製特級試薬)と0
.01 mol/ 1のアンモニア水溶液とを混合した
ものを徐々に添加した。この際、反応は室温で行い、混
合比は、メチルトリエトキシシラン:エタノール:アン
モニア水=1:5:4(モル比)であった。2時間程度
攪拌後、静置し、ゲル化させた。ゲル化後、エタノール
を加え、40℃で加熱し、さらにエタノールの添加を繰
り返して、ゲルが乾燥しないように縮重合反応を加速(
熟成)した。
Example 1 - Methyltriethoxysilane (reagent manufactured by Toshi Dow Corning ■), ethanol (special grade reagent manufactured by Hanui Chemicals ■) and 0
.. A mixture of 0.01 mol/1 ammonia aqueous solution was gradually added. At this time, the reaction was carried out at room temperature, and the mixing ratio was methyltriethoxysilane:ethanol:ammonia water=1:5:4 (molar ratio). After stirring for about 2 hours, the mixture was allowed to stand still to form a gel. After gelation, add ethanol, heat at 40°C, and repeat the addition of ethanol to accelerate the polycondensation reaction to prevent the gel from drying out (
matured).

次に、このゲル化物を18℃、55気圧の二酸化炭素中
に入れ、ゲル化物内のエタノールを二酸化炭素に置換す
る操作を2〜3時間行った。その後、系内を二酸化炭素
の超臨界条件である40℃、80気圧にし、超臨界乾燥
を約24時間行って、多孔体を得た。
Next, this gelled product was placed in carbon dioxide at 18°C and 55 atmospheres, and an operation was performed for 2 to 3 hours to replace ethanol in the gelled product with carbon dioxide. Thereafter, the inside of the system was set to 40° C. and 80 atm, which are supercritical conditions for carbon dioxide, and supercritical drying was performed for about 24 hours to obtain a porous body.

一実施例2一 実施例1において、メチルトリエトキシシランを単独で
用いる代わりにテトラエトキシシランおよびメチルトリ
エトキシシラン(いずれも東しダウコーニング■製試薬
)を1:1のモル比で併用するようにした以外は実施例
1と同様にして、多孔体を得た。
Example 2 In Example 1, instead of using methyltriethoxysilane alone, tetraethoxysilane and methyltriethoxysilane (both reagents manufactured by Toshi Dow Corning ■) were used together in a 1:1 molar ratio. A porous body was obtained in the same manner as in Example 1, except that.

一実施例3 実施例1において、メチルトリエトキシシランを単独で
用いる代わりにテトラエトキシシランおよびジメチルジ
ェトキシシラン(いずれも東しダウコーニング■製試薬
)を1=1のモル比で併用するようにした以外は実施例
1と同様にして、多孔体を得た。
Example 3 In Example 1, instead of using methyltriethoxysilane alone, tetraethoxysilane and dimethyljethoxysilane (both reagents manufactured by Toshi Dow Corning ■) were used together at a molar ratio of 1=1. A porous body was obtained in the same manner as in Example 1 except for the following steps.

一実施例4 実施例1において、二酸化炭素を媒体とする超臨界乾燥
を行う代わりにエタノールの超臨界条件(250℃、8
0気圧)下で超臨界乾燥を行うようにした以外は実施例
1と同様にして、多孔体を得た。
Example 4 In Example 1, instead of performing supercritical drying using carbon dioxide as a medium, ethanol was used under supercritical conditions (250°C, 8°C).
A porous body was obtained in the same manner as in Example 1, except that the supercritical drying was carried out under (0 atm).

一実施例5一 実施例4において、メチルトリエトキシシランを単独で
用いる代わりにジエチルジメトキシシランおよびエチル
トリエトキシシラン(いずれも東しダウコーニング■製
試薬)を1:1のモル比で併用するようにした以外は実
施例4と同様にして、多孔体を得た。
Example 5 In Example 4, instead of using methyltriethoxysilane alone, diethyldimethoxysilane and ethyltriethoxysilane (both reagents manufactured by Toshi Dow Corning ■) were used together in a 1:1 molar ratio. A porous body was obtained in the same manner as in Example 4, except that.

一比較例1一 実施例1において、メチルトリエトキシシランの代わり
にテトラエトキシシラン(東しダウコーニング■製試薬
)を用いるようにした以外は実施例1と同様にして、多
孔体を得た。
Comparative Example 1 A porous body was obtained in the same manner as in Example 1 except that tetraethoxysilane (reagent manufactured by Toshi Dow Corning ■) was used instead of methyltriethoxysilane.

実施例1〜5および比較例1で得られた多孔体について
、比表面積、光透過性および経時劣化を調べた。比表面
積は、窒素吸着法におけるBET法を利用して求めた。
The porous bodies obtained in Examples 1 to 5 and Comparative Example 1 were examined for specific surface area, light transmittance, and deterioration over time. The specific surface area was determined using the BET method in the nitrogen adsorption method.

光透過性は、目視によって調べ、透明なものを○、半透
明なものを△、不透明なものを×として評価した。経時
劣化は、多孔体を室温下、湿度40〜50R)1%の空
気中に2日間放置した後の光透過性の変化を目視で評価
したそれらの結果を第1表に示す。
The light transmittance was visually inspected and evaluated as ◯ for transparent, △ for translucent, and × for opaque. Regarding deterioration over time, Table 1 shows the results of visually evaluating changes in light transmittance after leaving the porous body in air at room temperature and humidity 40-50R) 1% for 2 days.

第1表にみるように、実施例にかかる多孔体は、比較例
にかかる多孔体に比べ、比表面積および光透過性の点で
は間等であるが、経時的劣化がないものとなっている。
As shown in Table 1, the porous bodies according to Examples are inferior to the porous bodies according to Comparative Examples in terms of specific surface area and light transmittance, but do not deteriorate over time. .

〔発明の効果〕〔Effect of the invention〕

この発明にかかる光透過性多孔体の製造方法によれば、
断熱性など多孔質材料に特有の機能や光透過性等に優れ
、しかも、水分等の吸着による上記性能の経時的劣化が
少ない多孔体を得ることができる。
According to the method for manufacturing a light-transmitting porous body according to the present invention,
It is possible to obtain a porous body which has excellent functions specific to porous materials such as heat insulation, light transmittance, etc., and which exhibits little deterioration of the above-mentioned properties over time due to adsorption of moisture and the like.

得られた光透過性多孔体は、たとえば、断熱材、音響材
料、チェレンコフ素子等の様々な用途に用いることがで
きる。
The obtained light-transmitting porous body can be used for various purposes such as a heat insulating material, an acoustic material, a Cerenkov element, and the like.

Claims (1)

【特許請求の範囲】 1 下記一般式( I ): ▲数式、化学式、表等があります▼( I ) 〔式中、R、R^1、R^2は炭素数1〜5のアルキル
基またはフェニル基を表す〕 で表される2官能アルコキシシランと、 下記一般式(II): R^3−Si(OR^4)_3(II) 〔式中、R^3、R^4は炭素数1〜5のアルキル基ま
たはフェニル基を表す〕 で表される3官能アルコキシシランのうちの少なくとも
1種を加水分解し、縮重合した後、超臨界乾燥するよう
にする光透過性多孔体の製造方法。 2 下記一般式( I ): ▲数式、化学式、表等があります▼( I ) 〔式中、R、R^1、R^2は炭層数1〜5のアルキル
基またはフェニル基を表す〕 で表される2官能アルコキシシランと、 下記一般式(II): R^3−Si(OR^4)_3(II) 〔式中、R^3、R^4は炭素数1〜5のアルキル基ま
たはフェニル基を表す〕 で表される3官能アルコキシシランのうちの少なくとも
1種と、 下記一般式(III): Si(OR^5)_4(III) 〔式中、R^5は炭層数1〜5のアルキル基またはフェ
ニル基を表す〕 で表される4官能アルコキシシランとを加水分解し、縮
重合した後、超臨界乾燥するようにする光透過性多孔体
の製造方法。 3 超臨界乾燥が二酸化炭素を用いるものである請求項
1または2記載の光透過性多孔体の製造方法。
[Claims] 1 The following general formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula, R, R^1, R^2 are alkyl groups having 1 to 5 carbon atoms or represents a phenyl group] and the following general formula (II): R^3-Si(OR^4)_3(II) [In the formula, R^3 and R^4 are the number of carbon atoms 1 to 5 alkyl group or phenyl group] Production of a light-transmitting porous body in which at least one trifunctional alkoxysilane represented by the following is hydrolyzed, polycondensed, and then supercritically dried. Method. 2 The following general formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula, R, R^1, and R^2 represent an alkyl group or a phenyl group with 1 to 5 carbon layers] The difunctional alkoxysilane represented by the following general formula (II): R^3-Si(OR^4)_3(II) [In the formula, R^3 and R^4 are alkyl groups having 1 to 5 carbon atoms. or represents a phenyl group] and at least one trifunctional alkoxysilane represented by the following general formula (III): Si(OR^5)_4(III) [wherein R^5 is the number of carbon layers 1 ~5 represents an alkyl group or a phenyl group] A method for producing a light-transmitting porous body, which comprises hydrolyzing and polycondensing a tetrafunctional alkoxysilane represented by the following formula, followed by supercritical drying. 3. The method for producing a light-transmitting porous body according to claim 1 or 2, wherein the supercritical drying uses carbon dioxide.
JP5476290A 1990-03-05 1990-03-05 Production of transparent porous body Pending JPH03257027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5476290A JPH03257027A (en) 1990-03-05 1990-03-05 Production of transparent porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5476290A JPH03257027A (en) 1990-03-05 1990-03-05 Production of transparent porous body

Publications (1)

Publication Number Publication Date
JPH03257027A true JPH03257027A (en) 1991-11-15

Family

ID=12979783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5476290A Pending JPH03257027A (en) 1990-03-05 1990-03-05 Production of transparent porous body

Country Status (1)

Country Link
JP (1) JPH03257027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017450A1 (en) * 2004-08-03 2006-02-16 Honeywell International Inc. Low temperature curable materials for optical applications
JP2007191582A (en) * 2006-01-19 2007-08-02 Toyota Central Res & Dev Lab Inc Composite material of organic particles with polymetalloxane-based material and method for producing the same
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017450A1 (en) * 2004-08-03 2006-02-16 Honeywell International Inc. Low temperature curable materials for optical applications
US7445953B2 (en) 2004-08-03 2008-11-04 Honeywell International Inc. Low temperature curable materials for optical applications
JP2007191582A (en) * 2006-01-19 2007-08-02 Toyota Central Res & Dev Lab Inc Composite material of organic particles with polymetalloxane-based material and method for producing the same
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Similar Documents

Publication Publication Date Title
JP2725573B2 (en) Manufacturing method of hydrophobic airgel
US5830387A (en) Process of forming a hydrophobic aerogel
EP1770063A1 (en) Process for producing silica aerogel
JP2659155B2 (en) Method for producing hydrophobic airgel
EP2705896B1 (en) Method for producing a methane separation membrane and carbon dioxide separation membrane
JPH07506325A (en) Sol-gel method yields tailored gel microstructure
JPH07507991A (en) Method for making inorganic gel
JPH0834678A (en) Aerogel panel
JP2000264620A (en) Production of hydrophobic aerogel
JPH08300567A (en) Manufacture of aerogel panel
US20060178496A1 (en) Silica aerogels with high-temperature hydrophobation synthesized by using co-precursor solutions
Kajihara et al. Macroporous morphology of the titania films prepared by a sol-gel dip-coating method from the system containing poly (ethylene glycol). II. Effect of solution composition
JPH03257027A (en) Production of transparent porous body
US6156223A (en) Xerogels and their preparation
EP0585456B1 (en) Process for producing hydrophobic aerogel
JP2005154195A (en) Aerogel material and article formed of the aerogel material
JP2756366B2 (en) Method for producing hydrophobic airgel
CN114180581B (en) Synthetic method of silicon dioxide aerogel
JP3431197B2 (en) Method for producing porous silica body by sol-gel method
JPH04193708A (en) Porous silica gel and its production
CN111393885A (en) PET film with excellent gas barrier property and preparation process thereof
JPH08231213A (en) Production of transparent porous body having water repellency
JPH04270108A (en) Production of transparent inorganic porous material
JP3045411B2 (en) Method for producing inorganic microporous body
JP3520601B2 (en) Aerogel manufacturing method