JPH03255918A - Thermally sensitive type gas flow rate detecting device - Google Patents
Thermally sensitive type gas flow rate detecting deviceInfo
- Publication number
- JPH03255918A JPH03255918A JP2055316A JP5531690A JPH03255918A JP H03255918 A JPH03255918 A JP H03255918A JP 2055316 A JP2055316 A JP 2055316A JP 5531690 A JP5531690 A JP 5531690A JP H03255918 A JPH03255918 A JP H03255918A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- heat
- glass substrate
- sensitive resistor
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000011521 glass Substances 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910003450 rhodium oxide Inorganic materials 0.000 claims description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910000629 Rh alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、掃除機、自動車用エンジン、空調機器等の吸
引空気流量を検出素子の熱的効果を利用して検出する感
熱式空気流量検出器に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal air flow rate detector that detects the flow rate of suction air in vacuum cleaners, automobile engines, air conditioners, etc. by utilizing the thermal effect of a detection element. .
従来の技術
従来、この種の空気流量計測法は圧力センサによる空気
流量を空気圧力変化で間接的に検出するものが多かった
。BACKGROUND OF THE INVENTION Conventionally, in most air flow measurement methods of this type, the air flow rate was indirectly detected by a pressure sensor based on changes in air pressure.
このような圧力センサを利用する従来の構成では、空気
圧力変化が空気流量変化にきっちり対応しないため、正
確に空気流量を検出することができなかった。In conventional configurations that utilize such pressure sensors, changes in air pressure do not correspond exactly to changes in air flow rate, so it has been impossible to accurately detect air flow rate.
たとえば気温変動、大気圧変動等の変動に対応して正確
に空気流量を検出することができなかったのである。ま
た圧力センサの小型化はその構造上限界にきており、最
近の機器の小型軽量化に対応できないものとなっていた
。For example, it was not possible to accurately detect the air flow rate in response to fluctuations in temperature, atmospheric pressure, etc. Moreover, the miniaturization of pressure sensors has reached its limit due to its structure, and it has become unable to respond to the recent miniaturization and weight reduction of devices.
さらに圧力センサはゴミ付着等により、正しい圧力検出
特性を長期にわたり維持するのが困難であった。Furthermore, it has been difficult to maintain correct pressure detection characteristics over a long period of time due to dust adhesion to the pressure sensor.
最近は感熱抵抗体薄膜を電気的に加熱しながら気流中に
配置し、気体流量に応じて変化する冷却率の変化量を検
知して気体の流量を測定する方式の感熱式気体流量検出
器が用いられるようになってきている。これは一般にア
ルミナ基板の上に白金薄膜を形成した構造よりなるもの
である。Recently, thermal gas flow rate detectors have been developed that measure the gas flow rate by placing a heat-sensitive resistor thin film in the airflow while electrically heating it, and detecting the amount of change in the cooling rate that changes depending on the gas flow rate. It is starting to be used. This generally has a structure in which a thin platinum film is formed on an alumina substrate.
発明が解決しようとする課題
しかしながら熱容量の小さい気体のわずかな流量変化を
応答性良く検出するためには、アルミナ基板の熱容量も
極めて小さなものにする必要がある。Problems to be Solved by the Invention However, in order to detect a slight change in the flow rate of a gas having a small heat capacity with good responsiveness, the heat capacity of the alumina substrate must also be extremely small.
アルミナ基板の熱容量を小さくするために、アルミナ基
板の厚みを薄くしていくと、その機械的強度を保つため
にアルミナは99.5%以上の純度のものに限定される
。このような基板は高価であり、さらに99,5%以上
の高純度アルミナは金属抵抗膜の接着性が悪い。When the thickness of the alumina substrate is reduced in order to reduce its heat capacity, alumina is limited to a purity of 99.5% or higher in order to maintain its mechanical strength. Such substrates are expensive, and high purity alumina of 99.5% or more has poor adhesion to metal resistive films.
本発明は上記課題を解決するもので、高速で応答し、高
精度、長寿命で小型の感熱式気体流量検出器を提供する
ことを目的とする。The present invention solves the above problems, and aims to provide a small thermal gas flow rate detector that responds at high speed, has high accuracy, and has a long life.
課題を解決するための手段
本発明は上記目的を達成するために、熱容量の小さい薄
いガラス基板上にガラス基板よりも軟化点の低いアンダ
ーグレーズ層を形成した後、大きい抵抗温度係数を有し
アンダーグレーズ層との接着性が良好な材料よりなる感
熱抵抗体の薄膜をアンダーグレーズ層上に形成してなる
ものである。Means for Solving the Problems In order to achieve the above object, the present invention forms an underglaze layer with a softening point lower than that of the glass substrate on a thin glass substrate with a small heat capacity, and then forms an underglaze layer with a large temperature coefficient of resistance. A thin film of a heat-sensitive resistor made of a material that has good adhesion to the glaze layer is formed on the underglaze layer.
そして、流量検出用の感熱抵抗体と温度補償用の感熱抵
抗体とを同一ガラス基板上に配した場合には、両感熱抵
抗体の中間のガラス基板に孔をあけてなるものである。When a heat-sensitive resistor for flow rate detection and a heat-sensitive resistor for temperature compensation are arranged on the same glass substrate, a hole is formed in the glass substrate between the two heat-sensitive resistors.
作用
本発明は上記した構成により、ガラス基板の熱容量が小
さいため熱応答性を高めることができる。またガラス基
板上のアンダーグレーズ層はガラス基板よりも軟化点が
低いため、ガラス基板の軟化点以下で熱処理することに
よりアンダーグレーズ層のみが軟化し、ガラス基板と感
熱抵抗体を強固に接着することができる。Function The present invention can improve thermal responsiveness because the heat capacity of the glass substrate is small due to the above-described configuration. In addition, the underglaze layer on the glass substrate has a lower softening point than the glass substrate, so by heat-treating it below the softening point of the glass substrate, only the underglaze layer will soften, making it possible to firmly bond the glass substrate and the heat-sensitive resistor. I can do it.
さらに流量検出用の感熱抵抗体と温度補償用の感熱抵抗
体とは中間部のガラス基板に孔を設けることにより、両
者間の熱絶縁を良好に保ち、両者間の熱的相互干渉作用
による悪影響を防止することができる。Furthermore, by providing a hole in the glass substrate in the middle of the heat-sensitive resistor for flow rate detection and the heat-sensitive resistor for temperature compensation, good thermal insulation can be maintained between the two, and the adverse effects of mutual thermal interference between the two can be maintained. can be prevented.
実施例
以下、本発明の一実施例について第1図〜第3図を参照
しながら説明する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.
第1図および第2図に示すように、厚さ0.2++sの
ガラス基板1(コーニング社製の無アルカリガラス70
59)上に軟化点590℃のはう珪酸アンダーグレーズ
ガラスを印刷し、640℃で焼成してアンダーグレーズ
層2を形成させた後、白金導電ペーストを所定のパター
ンに印刷し、580℃で焼成し、膜厚0.4μmの白金
薄膜を形成し、所定の抵抗値が得られるようにレーザー
トリミングを施して流量検出用の感熱抵抗体3とする。As shown in FIGS. 1 and 2, a glass substrate 1 (alkali-free glass 70 manufactured by Corning Co., Ltd.
59) After printing silicic acid underglaze glass with a softening point of 590°C on top and baking it at 640°C to form underglaze layer 2, platinum conductive paste is printed in a predetermined pattern and baking at 580°C. Then, a platinum thin film with a thickness of 0.4 μm is formed, and laser trimming is performed to obtain a predetermined resistance value to obtain a heat-sensitive resistor 3 for flow rate detection.
さらに銀を主成分とした導電性ペーストを印刷し、55
0℃で焼成して取出し電極4とする。その後ホウ硅酸鉛
系のオーバーコートガラス層5を保護層として施す。こ
のようにして形成した流量検出用の感熱抵抗体3は0℃
での抵抗値20Ω、抵抗温度係数3500ppm/にで
ある。一般に白金薄膜はガラス基板l上に接着しないが
、本発明によるアンダーグレーズ層2の軟化、固化によ
り強固にガラス基板1に接着させることができるのであ
る。Furthermore, a conductive paste containing silver as the main component was printed, and 55
It is fired at 0° C. to form the extraction electrode 4. Thereafter, a lead borosilicate-based overcoat glass layer 5 is applied as a protective layer. The heat-sensitive resistor 3 for flow rate detection thus formed is at 0°C.
It has a resistance value of 20Ω and a resistance temperature coefficient of 3500 ppm/. Generally, a platinum thin film does not adhere to the glass substrate 1, but by softening and solidifying the underglaze layer 2 according to the present invention, it can be firmly adhered to the glass substrate 1.
6は温度補償用の感熱抵抗体であり、流量検出用の感熱
抵抗体3と同様の製造方法で形成され、抵抗温度係数3
500ppm/に、0℃での抵抗値は1000Ωである
。本実施例ではさらにガラス基板1に熱絶縁のための孔
7を設ける。この孔7により流量検出用の感熱抵抗体3
と温度補償用の感熱抵抗体6との間が熱的に絶縁され、
両者の熱的相互干渉による流量検出精度低下が大幅に低
減する。この孔の径は大きければ大きいほど熱絶縁効果
が大であるが、基板の機械的強度も考慮して本実施例で
は3×6閣の長孔をあけた。6 is a heat-sensitive resistor for temperature compensation, which is formed by the same manufacturing method as the heat-sensitive resistor 3 for flow rate detection, and has a temperature coefficient of resistance of 3.
At 500 ppm/, the resistance value at 0°C is 1000Ω. In this embodiment, the glass substrate 1 is further provided with holes 7 for thermal insulation. Through this hole 7, a heat-sensitive resistor 3 for detecting the flow rate is inserted.
and the heat-sensitive resistor 6 for temperature compensation are thermally insulated,
Decrease in flow rate detection accuracy due to mutual thermal interference between the two is significantly reduced. The larger the hole diameter, the greater the thermal insulation effect, but in consideration of the mechanical strength of the substrate, 3×6 long holes were made in this example.
流量検出用の感熱抵抗体3および温度補償用の感熱抵抗
体6には取出し電極4を通じてリード線を接続し、これ
らは第3図に示すように抵抗8および抵抗9とともにブ
リッジ回路を構成して直流電源に接続する。Lead wires are connected to the heat-sensitive resistor 3 for flow rate detection and the heat-sensitive resistor 6 for temperature compensation through the extraction electrode 4, and these constitute a bridge circuit with a resistor 8 and a resistor 9 as shown in FIG. Connect to DC power supply.
このブリッジ回路の出力端は、差動増幅回路を構成する
オペアンプ10の反転入力端子、非反転入力端子にそれ
ぞれ抵抗11.12を介して接続される。The output end of this bridge circuit is connected to an inverting input terminal and a non-inverting input terminal of an operational amplifier 10 constituting a differential amplifier circuit via resistors 11 and 12, respectively.
上記構成において動作を説明すると、流量検出用の感熱
抵抗体3は直流電源により通電され発熱するが、被測定
気体流中に配置されているから、気体の流量に対応して
放熱量が変化し、それにともない温度が変化して抵抗値
が変化する。この気体流量に対応した抵抗値変化は第3
図に示すブリッジ回路によって温度補償がなされ、オペ
アンプの出力として取出される。To explain the operation in the above configuration, the heat-sensitive resistor 3 for flow rate detection is energized by a DC power supply and generates heat, but since it is placed in the gas flow to be measured, the amount of heat released changes in accordance with the flow rate of the gas. , the temperature changes and the resistance value changes accordingly. The resistance value change corresponding to this gas flow rate is the third
Temperature compensation is performed by the bridge circuit shown in the figure, and the output is taken out as the output of the operational amplifier.
流量検出用の感熱抵抗体3や温度補償用の感熱抵抗体6
は軟化点の低いアンダーグレーズ層2を介してガラス基
板1に強固に接着されている。流量検出用の感熱抵抗体
3と温度補償用の感熱抵抗体6とは同一ガラス基板1上
にある場合も、別個のガラス基板上にある場合もともに
被測定気体流中にあって、しかも前者の場合には熱絶縁
のため孔7がガラス基板1上に設けられており、両路熱
抵抗体間の熱的相互干渉作用は極めて小さくなっている
から、的確な温度補償がなされ、気体流量検出器の測定
精度は高い。Heat sensitive resistor 3 for flow rate detection and heat sensitive resistor 6 for temperature compensation
is firmly adhered to the glass substrate 1 via an underglaze layer 2 having a low softening point. The heat-sensitive resistor 3 for flow rate detection and the heat-sensitive resistor 6 for temperature compensation are both in the gas flow to be measured, whether they are on the same glass substrate 1 or on separate glass substrates, and the former In the case of , holes 7 are provided on the glass substrate 1 for thermal insulation, and the mutual thermal interference between the thermal resistors on both paths is extremely small, so accurate temperature compensation is achieved and the gas flow rate is The measurement accuracy of the detector is high.
なお、本実施例では流量検出用の感熱抵抗体3および温
度補償用の感熱抵抗体6の材質として白金を用いた場合
を説明したが、白金以外にも感熱抵抗体として金、銀、
パラジウム、タングステン、銅、 =ッケル、アルミニ
ウム、モリブデン。In this embodiment, platinum was used as the material for the heat-sensitive resistor 3 for flow rate detection and the heat-sensitive resistor 6 for temperature compensation, but in addition to platinum, gold, silver,
Palladium, tungsten, copper, aluminum, molybdenum.
クロム、酸化ルテニウム、酸化ロジウム等の単体あるい
はそれらを主成分とする合金組成を用いることもできる
。これらはいずれも抵抗温度係数が大なる物質であって
本実施例のアンダーグレーズ層2とは良好な接着性を示
した。Single substances such as chromium, ruthenium oxide, and rhodium oxide, or alloy compositions containing these as main components can also be used. All of these substances had a large temperature coefficient of resistance and exhibited good adhesion to the underglaze layer 2 of this example.
さらにガラス基板材料、アンダーグレーズ層材料、電極
材料、オーバーコートガラス層材料も本実施例以外の市
販の材料を用いることができる。Furthermore, commercially available materials other than those used in this example can be used for the glass substrate material, underglaze layer material, electrode material, and overcoat glass layer material.
また本実施例では、0.2na++のガラス基板を用イ
タが、検出感度を向上させるため、より薄くしても構わ
ない。機械強度を必要とする場合には、応答性を落とさ
ない範囲でより厚くすることも可能である。Further, in this embodiment, a glass substrate of 0.2 Na++ is used, but in order to improve detection sensitivity, it may be made thinner. If mechanical strength is required, it is also possible to increase the thickness without reducing responsiveness.
発明の効果
以上の実施例から明らかなように本発明によれば、流量
検出用の感熱抵抗体と温度補償用の感熱抵抗体との間に
熱的相互干渉作用が著しく低減されており、各感熱抵抗
体はガラスのような安価な基板材料にアンダーグレーズ
層によって強固に接着されているから、実用的な使用温
度、圧力範囲内において高精度、高速、高信頼性、長寿
命の感熱式気体流量検出器を提供することができる。Effects of the Invention As is clear from the above embodiments, according to the present invention, thermal mutual interference between the heat-sensitive resistor for flow rate detection and the heat-sensitive resistor for temperature compensation is significantly reduced, and each The heat-sensitive resistor is firmly bonded to an inexpensive substrate material such as glass with an underglaze layer, making it a heat-sensitive gas with high precision, high speed, high reliability, and long life within the practical operating temperature and pressure range. A flow sensor can be provided.
第1図は本発明の一実施例における感熱式気体流量検出
器の要部の平面図、第2図は第1図のA−A’線断面図
、第3図は同じく感熱式気体流量検出器の流量穐出回路
図である。
1・・・・・・ガラス基板、2・・・・・・アンダーグ
レーズ層、3・・・・・・流量検出用の感熱抵抗体、6
・・・・・・温度補償用の感熱抵抗体、7・・・・・・
孔。Fig. 1 is a plan view of the main parts of a thermal gas flow rate detector according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the line A-A' in Fig. 1, and Fig. 3 is a thermal gas flow rate detector as well. FIG. 3 is a flow rate circuit diagram of the device. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Underglaze layer, 3... Heat sensitive resistor for flow rate detection, 6
...Heat-sensitive resistor for temperature compensation, 7...
Hole.
Claims (3)
置し、気体の流量に応じて変化する冷却率の変化量を検
知して気体の流量を測定する方式の感熱式気体流量検出
器において、ガラス基板上に形成されたガラス基板より
も軟化点の低いアンダーグレーズ層上に流量検出用の感
熱抵抗体と温度補償用の感熱抵抗体とを形成した感熱式
気体流量検出器。(1) Thermal gas flow rate detection method that measures the gas flow rate by placing an electrically heated heat-sensitive resistor thin film in the gas and detecting the amount of change in the cooling rate that changes depending on the gas flow rate. A heat-sensitive gas flow rate detector in which a heat-sensitive resistor for flow rate detection and a heat-sensitive resistor for temperature compensation are formed on an underglaze layer formed on a glass substrate and having a softening point lower than that of the glass substrate.
体とを同一のガラス基板上に形成し、前記両感熱抵抗体
の中間のガラス基板上に孔を形成した請求項1記載の感
熱式気体流量検出器。(2) A heat-sensitive resistor for flow rate detection and a heat-sensitive resistor for temperature compensation are formed on the same glass substrate, and a hole is formed on the glass substrate between the two heat-sensitive resistors. Thermal gas flow detector.
グステン、銅、ニッケル、アルミニウム、モリブデン、
クロム、酸化ルテニウム、酸化ロジウムなどの単体また
はそれらを主成分とする合金組成からなる請求項1また
は2記載の感熱式気体流量検出器。(3) The heat-sensitive resistor is platinum, gold, silver, palladium, tungsten, copper, nickel, aluminum, molybdenum,
3. The thermal gas flow rate detector according to claim 1, which is made of a single substance such as chromium, ruthenium oxide, or rhodium oxide or an alloy composition containing these as main components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2055316A JPH03255918A (en) | 1990-03-07 | 1990-03-07 | Thermally sensitive type gas flow rate detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2055316A JPH03255918A (en) | 1990-03-07 | 1990-03-07 | Thermally sensitive type gas flow rate detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03255918A true JPH03255918A (en) | 1991-11-14 |
Family
ID=12995151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2055316A Pending JPH03255918A (en) | 1990-03-07 | 1990-03-07 | Thermally sensitive type gas flow rate detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03255918A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131112A (en) * | 1998-10-28 | 2000-05-12 | Mitsubishi Electric Corp | Heat-sensitive flow sensor |
JP2006130034A (en) * | 2004-11-05 | 2006-05-25 | Matsushita Electric Ind Co Ltd | Centrifugal dust collector and vacuum cleaner using the same |
JP2013506126A (en) * | 2009-09-29 | 2013-02-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Sensing UV dose in fluid streams |
-
1990
- 1990-03-07 JP JP2055316A patent/JPH03255918A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000131112A (en) * | 1998-10-28 | 2000-05-12 | Mitsubishi Electric Corp | Heat-sensitive flow sensor |
US6675644B2 (en) | 1998-10-28 | 2004-01-13 | Mitsubishi Denki Kabushiki Kaisha | Thermo-sensitive flow rate sensor |
JP2006130034A (en) * | 2004-11-05 | 2006-05-25 | Matsushita Electric Ind Co Ltd | Centrifugal dust collector and vacuum cleaner using the same |
JP2013506126A (en) * | 2009-09-29 | 2013-02-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Sensing UV dose in fluid streams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0376721B1 (en) | Moisture-sensitive device | |
EP0395721B1 (en) | Control and detection circuitry for mass airflow sensors | |
KR940002635B1 (en) | Humidity sensor | |
JPH01109250A (en) | Gas sensor | |
EP0353996B1 (en) | A flow sensor | |
WO1989003021A1 (en) | Heat-sensitive fuel quantity detector | |
JPH03255918A (en) | Thermally sensitive type gas flow rate detecting device | |
JP3210530B2 (en) | Thermistor flow rate sensor | |
JP3386250B2 (en) | Thermal dependency detector | |
JPH08184575A (en) | Humidity sensor | |
JP3358684B2 (en) | Thermal dependency detector | |
JPH01209322A (en) | Fuel liquid level detecting device | |
JPH0618465A (en) | Complex sensor | |
RU215318U1 (en) | Thermal gas flow sensor of calorimetric type | |
JPH0220681Y2 (en) | ||
JPS58105047A (en) | Monolithic type temperature-humidity sensor | |
JPH01199124A (en) | Apparatus for detecting liquid level of fuel | |
JP3118667B2 (en) | Absolute humidity sensor | |
CN111707844B (en) | Wind speed sensor and preparation method thereof | |
JPH0277622A (en) | Heat-sensitive type fuel residual amount detector | |
JP3282048B2 (en) | Heat removal atmosphere detection device and atmosphere sensor for heat removal atmosphere detection device | |
JP2003106884A (en) | Airflow sensor | |
JPS58102144A (en) | Gas sensor | |
JP2001281033A (en) | Flow-rate sensor for liquid | |
JPS6348082Y2 (en) |