JPH03255603A - Manufacture of junction ferrite - Google Patents
Manufacture of junction ferriteInfo
- Publication number
- JPH03255603A JPH03255603A JP16583189A JP16583189A JPH03255603A JP H03255603 A JPH03255603 A JP H03255603A JP 16583189 A JP16583189 A JP 16583189A JP 16583189 A JP16583189 A JP 16583189A JP H03255603 A JPH03255603 A JP H03255603A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- polycrystalline
- bonded
- interface
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 163
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000013078 crystal Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 11
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 6
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 abstract description 45
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 abstract description 38
- 238000010438 heat treatment Methods 0.000 abstract description 33
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 abstract description 25
- 239000000243 solution Substances 0.000 abstract description 19
- 239000007864 aqueous solution Substances 0.000 abstract description 17
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052792 caesium Inorganic materials 0.000 abstract description 7
- 239000012298 atmosphere Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract 1
- 238000003466 welding Methods 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 description 21
- 230000008025 crystallization Effects 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 230000000694 effects Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- -1 Cs01 ( Chemical compound 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば複合型の磁気ヘッドに用いられる単結
晶フェライトと多結晶フェライトからなる接合フェライ
トの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a bonded ferrite composed of a single-crystal ferrite and a polycrystalline ferrite, which is used, for example, in a composite magnetic head.
本発明は、単結晶フェライトと多結晶フェライトからな
る接合フェライトの製造方法において、少なくとも多結
晶フェライトの整合界面にに、 Rb。The present invention provides a method for manufacturing a bonded ferrite consisting of a single crystal ferrite and a polycrystalline ferrite, in which Rb is added at least to the matching interface of the polycrystalline ferrite.
Csから選ばれる少なくとも1種の水酸化物を介在させ
て加熱圧着することにより、熱処理時の多結晶フェライ
トの単結晶化及び粒成長を抑えて良好な接合フェライト
を製造できるようにしたものである。By heat-pressing with at least one hydroxide selected from Cs interposed, it is possible to suppress single crystallization and grain growth of polycrystalline ferrite during heat treatment, and to produce a good bonded ferrite. .
近時、磁気ヘッド例えばビデオヘッドにおいては、摺動
ノイズを低減させ、C/Nを良くするために、これまで
の単結晶フェライトヘッドから、単結晶フェライトと多
結晶フェライトとの接合フェライトによる複合型ヘッド
に切換えられつつある。又、この接合フェライトのコス
ト低減が求められている。Recently, in magnetic heads such as video heads, in order to reduce sliding noise and improve C/N, the conventional single-crystal ferrite head has been replaced by a composite type made of bonded ferrite of single-crystal ferrite and polycrystal ferrite. The head is being replaced. Furthermore, there is a need to reduce the cost of this junction ferrite.
これに対応するため、接合フェライトは、鏡面研磨した
単結晶フェライトと、同じく鏡面研磨した多結晶フェラ
イトを、水(HzO)又は硝酸(HNO3)で仮接着し
た後、ホットプレスにより即ちN2等の還元雰囲気中で
加圧しなから1220°C,2時間の条件で加熱処理し
て製造されていた。In order to cope with this, bonded ferrite is made by temporarily bonding a mirror-polished single crystal ferrite and a mirror-polished polycrystalline ferrite with water (HzO) or nitric acid (HNO3), and then hot pressing, that is, reduction with N2, etc. It was manufactured by heat treatment at 1220° C. for 2 hours without applying pressure in an atmosphere.
上述の接合フェライトの製法において、■22o″Cを
越える温度で接合すると単結晶フェライトと多結晶フェ
ライトの界面(以下単結晶−多結晶フェライト界面とい
う)から多結晶フェライトの単結晶化が始まり、単結晶
−多結晶フェライト界面がランダムに動く。また多結晶
フェライトの粒成長が起る。これらは極力、抑制する必
要がある。In the method for manufacturing bonded ferrite described above, ■ When bonding is performed at a temperature exceeding 22o''C, the polycrystalline ferrite begins to become a single crystal at the interface between the single-crystal ferrite and the polycrystalline ferrite (hereinafter referred to as the "single-crystalline-polycrystalline ferrite interface"). The crystal-polycrystalline ferrite interface moves randomly.Also, grain growth of the polycrystalline ferrite occurs.These must be suppressed as much as possible.
しかし、従来の接合フェライトの製法では、次のような
問題点があった。However, the conventional method for manufacturing bonded ferrite has the following problems.
(i)接合温度が1220°C程度であるため接合強度
が上がらない。即ち接合温度を上げれば接合強度は良く
なるが、逆に多結晶フェライトの単結晶化5粒成長が生
しるため、従来の接合温度1220″Cは接合強度と単
結晶化等との兼ね合いのぎりぎり限界の温度である。(i) Since the bonding temperature is about 1220°C, the bonding strength does not increase. In other words, increasing the bonding temperature improves the bonding strength, but conversely, growth of 5 single crystals of polycrystalline ferrite occurs, so the conventional bonding temperature of 1220"C is a compromise between bonding strength and single crystallization. The temperature is just at the limit.
(ii )ホットプレスによって作製されるため、生産
性が悪く、コスト高となる。(ii) Since it is produced by hot pressing, productivity is poor and costs are high.
(ij)接合温度1220°Cで多結晶フェライトの単
結晶化は約10μm程度であるが、将来的には更に制御
する必要がある。(ij) At a junction temperature of 1220°C, the single crystallization of polycrystalline ferrite is about 10 μm, but further control will be required in the future.
一方、多結晶フェライトの単結晶化及び粒成長を抑制す
る方法として、単結晶フェライトと多結晶フェライトが
互に接合する面の少くとも一方の面に鉄の酸化物等を薄
くスパッターしておく方法も考えられているが、この場
合には小孔2点はがれ(界面において一様に接合されず
、点状のはがれが生ずる)が生じること、生産性が悪く
なりコスト高になること等の問題がある。On the other hand, as a method of suppressing single crystallization and grain growth of polycrystalline ferrite, a method is to sputter a thin layer of iron oxide, etc. on at least one of the surfaces where single-crystalline ferrite and polycrystalline ferrite are bonded to each other. is also being considered, but in this case, there are problems such as two-point peeling of small holes (uneven bonding at the interface, resulting in spot-like peeling), poor productivity, and increased costs. There is.
本発明は、上述の点に鑑み、多結晶フェライトの単結晶
化及び粒成長を抑制し、より高温での接合を可能にし、
品質の良い接合フェライトを安価に得られるようにした
接合フェライトの製造方法を提供するものである。In view of the above points, the present invention suppresses single crystallization and grain growth of polycrystalline ferrite, enables bonding at higher temperatures,
The present invention provides a method for manufacturing a bonded ferrite that enables high-quality bonded ferrite to be obtained at low cost.
[課題を解決するための手段〕
本発明は、単結晶フェライト(1)と多結晶フェライト
(2)からなる接合フェライトの製造方法において、少
なくとも多結晶フェライト(2)の接合界面にに+ R
b+ Csから選ばれる少なくとも1種(即ち1種又は
複数種)の水酸化物(3)を介在させ、その存在下で加
熱圧着して接合フェライトを製造する。[Means for Solving the Problems] The present invention provides a method for manufacturing a bonded ferrite consisting of a single crystal ferrite (1) and a polycrystalline ferrite (2), in which +R is added to at least the bonded interface of the polycrystalline ferrite (2).
A bonded ferrite is produced by heat-pressing in the presence of at least one hydroxide (3) selected from b+ Cs (i.e., one or more hydroxides).
接合時の熱処理温度としては1220°C〜1330’
C1好ましくは1250°C〜1300°Cとするを可
とし、その加圧力としては0.1〜10kg/C4とす
るを可とする。The heat treatment temperature during bonding is 1220°C to 1330'
C1 is preferably 1250° C. to 1300° C., and the pressing force thereof is 0.1 to 10 kg/C4.
K、 Rb、 Csの水酸化物としては、例えば水酸化
カリウム、水酸化ルビジウム、水酸化セシウムの水溶液
またはアルコラード溶液等を用いることができる。As the hydroxides of K, Rb, and Cs, for example, an aqueous solution or an Alcolade solution of potassium hydroxide, rubidium hydroxide, or cesium hydroxide can be used.
を越えると多結晶フェライト(2)の単結晶化によって
単結晶−多結晶フェライト界面は動く。When the value exceeds , the single crystal-polycrystal ferrite interface moves due to the single crystallization of the polycrystalline ferrite (2).
上記抑制効果は従来よりも高い接合温度1220°C〜
1330″Cにおいても顕著であるため接合強度も上が
る。また、ホットプレスでなくても通常の雰囲気炉での
接合フェライトの製造が可能となり、生産性が向上し、
コスト低減が図れる。勿論本発明はホットプレスでも接
合フェライトの製造が可能である。The above suppressing effect is achieved at a bonding temperature of 1220°C, which is higher than conventional
This is noticeable even at 1330″C, so the bonding strength increases.In addition, it is possible to manufacture bonded ferrite in a normal atmosphere furnace instead of hot pressing, improving productivity.
Cost reduction can be achieved. Of course, according to the present invention, bonded ferrite can also be produced by hot pressing.
単結晶フェライト(1)と多結晶フェライト(2)間の
接合界面にに、 Rh、 Csから選ばれた少な(とも
1種の水酸化物(3)が介在することにより、接合時(
即ち熱処理時)に多結晶フェライト(2)の単結晶化及
び粒成長が抑制される。多結晶フェライト(2)の単結
晶化が少ないため、単結晶−多結晶フェライト界面の動
きが少ない。即ち接合温度1330℃以下では多結晶フ
ェライト(2)の単結晶化はなく単結晶−多結晶フェラ
イト界面は全く動かない。1330°C〔実施例〕
以下、本発明による接合フェライトの製造方法の実施例
を説明する。At the bonding interface between the single crystal ferrite (1) and the polycrystalline ferrite (2), a small amount of hydroxide (3) selected from Rh and Cs is present during bonding (
That is, during heat treatment), single crystallization and grain growth of polycrystalline ferrite (2) are suppressed. Since the polycrystalline ferrite (2) has little single crystallization, there is little movement at the single crystal-polycrystalline ferrite interface. That is, at a bonding temperature of 1330° C. or lower, the polycrystalline ferrite (2) does not become a single crystal, and the single-crystalline-polycrystalline ferrite interface does not move at all. 1330°C [Example] Hereinafter, an example of the method for manufacturing a bonded ferrite according to the present invention will be described.
実施例1
第1図に示すように鏡面研磨したMn −Znフェライ
トの単結晶フェライト(1)と多結晶フェライト(2)
とを、その界面に水酸化カリウム(KOH) 56gを
1000dの水に溶解した1、0モル/lのKOH水溶
液(3)を塗布して仮接着した。仮接着後の本試料(4
)に対して、5 kg/cillの圧力を加えつつ、N
2雰囲気中で1250°C,2時間の熱処理を行い、接
合フェライトを作製した。なお、比較のため単結晶フェ
ライト(1)及び多結晶フェライト(2)の界面に水を
塗布して仮接着した比較試料を同条件で熱処理した。Example 1 As shown in Fig. 1, mirror-polished Mn-Zn ferrite single crystal ferrite (1) and polycrystalline ferrite (2)
A 1.0 mol/l KOH aqueous solution (3) prepared by dissolving 56 g of potassium hydroxide (KOH) in 1000 d of water was applied to the interface to temporarily adhere the two. This sample after temporary adhesion (4
), while applying a pressure of 5 kg/cil,
Heat treatment was performed at 1250°C for 2 hours in a 2 atmosphere to produce a bonded ferrite. For comparison, a comparative sample in which water was applied to the interface of single-crystal ferrite (1) and polycrystalline ferrite (2) to temporarily bond them was heat-treated under the same conditions.
単結晶−多結晶フェライトの界面に水酸化カリウム水溶
液を塗布した本試料の熱処理後の接合状態を第2図の写
真に示す。又、比較試料の熱処理後の接合状態を第3図
の写真に示す。The photograph in FIG. 2 shows the bonded state of this sample after heat treatment, in which an aqueous potassium hydroxide solution was applied to the interface between single crystal and polycrystalline ferrite. The photograph in FIG. 3 shows the bonded state of the comparative sample after heat treatment.
比較試料では単結晶−多結晶フェライトの界面から多結
晶フェライトの単結晶化が進んでいるのが認められる。In the comparative sample, it is observed that the polycrystalline ferrite is becoming single crystallized from the single-crystalline-polycrystalline ferrite interface.
単結晶−多結晶フェライトの界面に水酸化カリウム水溶
液(3)を塗布した本試料(4)では、界面からおきる
多結晶フェライトの単結晶化及び異常粒成長はなく、き
れいに接合している。In this sample (4), in which the potassium hydroxide aqueous solution (3) was applied to the interface between single crystal and polycrystalline ferrite, there was no single crystallization or abnormal grain growth of the polycrystalline ferrite from the interface, and the bond was clean.
接合フェライトにおける水酸化カリウム水溶液の単結晶
化防止効果及び粒成長抑制効果は顕著である。The effect of potassium hydroxide aqueous solution on bonded ferrite to prevent single crystallization and to suppress grain growth is remarkable.
実施例2
鏡面研磨したMn −Znフェライトの単結晶フェライ
ト(1)と多結晶フェライト(2)とを、その界面に水
酸化カリウム(KOH)をエタノールに溶解した1、0
モル/ l (56g/ l )のKOHアルコラード
液(3)を塗布して仮接着した(第1図参照)。仮接着
後の本試料(4)に対して、5 kg/clllの圧力
を加えつつ、N2雰囲気中で1250℃、2時間の熱処
理を行い、接合フェライトを作製した。単結晶−多結晶
フェライトの界面に水酸化カリウムアルコラード液を塗
布した本試料の熱処理後の接合状態を第4図の写真に示
す。Example 2 Mirror-polished Mn-Zn ferrite single crystal ferrite (1) and polycrystalline ferrite (2) were mixed with potassium hydroxide (KOH) dissolved in ethanol at the interface.
A KOH alcoholade solution (3) of mol/l (56 g/l) was applied for temporary adhesion (see Figure 1). This sample (4) after temporary bonding was subjected to heat treatment at 1250° C. for 2 hours in a N2 atmosphere while applying a pressure of 5 kg/clll to produce a bonded ferrite. The photograph in FIG. 4 shows the bonded state of this sample after heat treatment, in which the potassium hydroxide Alcolade solution was applied to the interface between single crystal and polycrystalline ferrite.
単結晶−多結晶フェライトの界面に水酸化カリウムアル
コラード液(3)を塗布した本試料(4)では、多結晶
フェライトの単結晶化及び異常粒成長はなく、きれいに
接合している。接合フェライトにおける水酸化カリウム
アルコラード液の単結晶化防止効果及び粒成長抑制効果
は顕著である。In this sample (4) in which the potassium hydroxide Alcolade solution (3) was applied to the interface between single crystal and polycrystalline ferrite, there was no single crystallization or abnormal grain growth of the polycrystalline ferrite, and the bond was clean. The effect of potassium hydroxide alcolade solution on bonded ferrite in preventing single crystallization and suppressing grain growth is remarkable.
実施例3
鏡面研磨したMn −Znフェライトの単結晶フェライ
ト(1)と多結晶フェライト(2)とを、その界面に水
酸化セシウム(CsOH)を水に溶解した1、0モル/
I!。Example 3 Mirror-polished Mn-Zn ferrite single-crystal ferrite (1) and polycrystalline ferrite (2) were mixed with cesium hydroxide (CsOH) dissolved in water at the interface.
I! .
のCsOH水溶液(3)を塗布し仮接着した(第1図参
照)。A CsOH aqueous solution (3) was applied to temporarily adhere (see Fig. 1).
仮接着後の試料に対して1 kg / cm!の圧力を
加えつつ、N2雰囲気中で1300″C,2時間の熱処
理を行い、接合フェライトを作製した。比較のため単結
晶フェライト−多結晶フェライトの界面に水を塗布して
仮接着した比較試料を同条件で熱処理した。単結晶−多
結晶フェライトの界面に水酸化セシウム水溶液を塗布し
た本試料(4)の熱処理後の接合状態を第5図の写真に
示す。又、比較試料の熱処理後の接合状態を第6図の写
真に示す。1 kg/cm for the sample after temporary adhesion! A bonded ferrite was produced by heat treatment at 1300"C for 2 hours in a N2 atmosphere while applying a pressure of The bonding state after heat treatment of this sample (4), in which a cesium hydroxide aqueous solution was applied to the interface between single crystal and polycrystalline ferrite, is shown in the photograph in Figure 5. Also, the bonding state after heat treatment of the comparative sample The bonded state is shown in the photograph in Fig. 6.
単結晶−多結晶フェライトの界面を水で仮接着した比較
試料は多結晶フェライトの単結晶化と粒成長が進んでい
るのが見られる。In the comparative sample in which the interface between single crystal and polycrystalline ferrite was temporarily bonded with water, it can be seen that the single crystallization and grain growth of the polycrystalline ferrite progresses.
単結晶−多結晶フェライトの界面に水酸化セシウム水溶
液を塗布した本試料(4)では、多結晶フェライトの単
結晶化及び異常粒成長が抑制されており、きれいに接合
している。接合フェライトにおける水酸化セシウム水溶
液の単結晶防止効果及び粒成長抑制効果は顕著である。In this sample (4) in which a cesium hydroxide aqueous solution was applied to the interface between single crystal and polycrystalline ferrite, single crystallization and abnormal grain growth of the polycrystalline ferrite were suppressed, and the bonding was clean. The effect of preventing single crystals and suppressing grain growth of a cesium hydroxide aqueous solution in bonded ferrite is remarkable.
実施例4
鏡面研磨したMn−Znフェライトの単結晶フェライト
(1)と多結晶フェライト(2)とを、その界面に水酸
化セシウム(CsOH)をエタノールに溶解した0、5
モル/lのCsOHアルコラード液(3)を塗布し仮接
着した(第1図参照)。仮接着後の試料に対して1kg
/C111(7)圧力を加えツツ、NZ雰囲気中で13
00°C,2時間の熱処理を行い、接合フェライトを作
製した。Example 4 Mirror-polished Mn-Zn ferrite single crystal ferrite (1) and polycrystalline ferrite (2) were mixed with cesium hydroxide (CsOH) dissolved in ethanol at the interface.
CsOH alcoholade solution (3) of mol/l was applied to temporarily adhere (see Fig. 1). 1kg for the sample after temporary adhesion
/C111(7) Apply pressure, 13 in NZ atmosphere
Heat treatment was performed at 00°C for 2 hours to produce a bonded ferrite.
比較のため単結晶フェライト−多結晶フェライトの界面
に水を塗布して仮接着した比較試料を同条件で熱処理し
た。単結晶−多結晶フェライトの界面に水酸化セシウム
アルコラード液を塗布した本試料(4)の熱処理後の接
合状態を第7図の写真に示す。又、比較試料の熱処理後
の接合状態を第8図の写真に示す。For comparison, a comparative sample in which water was applied to the interface of single-crystal ferrite and polycrystalline ferrite to temporarily bond the interface was heat-treated under the same conditions. The photograph in FIG. 7 shows the bonded state after heat treatment of this sample (4) in which a cesium hydroxide-alcolade solution was applied to the interface between single crystal and polycrystalline ferrite. The photograph of FIG. 8 shows the bonded state of the comparative sample after heat treatment.
単結晶−多結晶フェライトの界面を水で仮接着した比較
試料は多結晶フェライトの単結晶化と粒成長が進んでい
るのが見られる。In the comparative sample in which the interface between single crystal and polycrystalline ferrite was temporarily bonded with water, it can be seen that the single crystallization and grain growth of the polycrystalline ferrite progresses.
単結晶−多結晶フェライトの界面に水酸化セシウムアル
コラード液を塗布した本試料(4)では、多結晶フェラ
イトの単結晶化及び異常粒成長が抑制されており、きれ
いに接合している。接合フェライトにおける水酸化セシ
ウムアルコラード液の単結晶防止効果及び粒成長抑制効
果は顕著である。In this sample (4) in which the cesium hydroxide Alcolade solution was applied to the interface between single crystal and polycrystalline ferrite, single crystallization and abnormal grain growth of the polycrystalline ferrite were suppressed, and the bonding was clean. The effect of preventing single crystals and suppressing grain growth of cesium hydroxide Alcolade liquid in bonded ferrite is remarkable.
実施例5
鏡面研磨したMn−Znフェライトの単結晶フェライト
(1)と多結晶フェライト(2)とを、その界面に水酸
化ルビジウム(RbOH)を水に溶解した1、0モル/
lのRbOH水溶液(3)を塗布し仮接着した(第1図
参照)。仮接着後の試料に対して1 kg/dの圧力を
加えつつ、N2雰囲気中で1300″C,2時間の熱処
理を行い、接合フェライトを作製した。比較のため単結
晶フェライト−多結晶フェライトの界面に水を塗布して
仮接着した比較試料を同条件で熱処理した。単結晶−多
結晶フェライトの界面に水酸化ルビジウム水溶液を塗布
した本試料(4)の熱処理後の接合状態を第9図の写真
に示す。又、比較試料の熱処理後の接合状態を第10図
の写真に示す。Example 5 Mirror-polished Mn-Zn ferrite single-crystal ferrite (1) and polycrystalline ferrite (2) were mixed with rubidium hydroxide (RbOH) dissolved in water at the interface.
1 of RbOH aqueous solution (3) was applied for temporary adhesion (see Figure 1). While applying a pressure of 1 kg/d to the sample after temporary bonding, a heat treatment was performed at 1300''C for 2 hours in a N2 atmosphere to produce a bonded ferrite. A comparative sample temporarily bonded by applying water to the interface was heat-treated under the same conditions. Figure 9 shows the bonding state after heat treatment of this sample (4), in which a rubidium hydroxide aqueous solution was applied to the interface of single crystal-polycrystal ferrite. The bonded state of the comparative sample after heat treatment is shown in the photograph of FIG.
単結晶−多結晶フェライトの界面を水で仮接着した比較
試料は多結晶フェライトの単結晶化と粒成長が進んでい
るのが見られる。In the comparative sample in which the interface between single crystal and polycrystalline ferrite was temporarily bonded with water, it can be seen that the single crystallization and grain growth of the polycrystalline ferrite progresses.
単結晶−多結晶フェライトの界面に水酸化ルビジウム水
溶液を塗布した本試料(4)では、多結晶フェライトの
単結晶化及び異常粒成長が抑制されており、きれいに接
合している。接合フェライトにおける水酸化ルビジウム
水溶液の単結晶防止効果及び粒成長抑制効果は顕著であ
る。In this sample (4) in which a rubidium hydroxide aqueous solution was applied to the interface between single crystal and polycrystalline ferrite, single crystallization and abnormal grain growth of the polycrystalline ferrite were suppressed, and the bonding was clean. The effect of preventing a single crystal and suppressing grain growth of a rubidium hydroxide aqueous solution in bonded ferrite is remarkable.
実施例6
鏡面研磨したMn −Znフェライトの単結晶フェライ
ト(1)と多結晶フェライト(2)とを、その界面に水
酸化ルビジウム(RbOH)をエタノールに溶解した0
、5モル/lのRbOHアルコラード液(3)を塗布し
仮接着した(第1図参照)。仮接着後の試料に対して1
kg/c11mの圧力を加えつつ、N2雰囲気中で13
00°C22時間の熱処理を行い、接合フェライトを作
製した。比較のため単結晶フェライト−多結晶フェライ
トの界面に水を塗布して仮接着した比較試料を同条件で
熱処理した。単結晶−多結晶フェライトの界面に水酸化
ルビジウムアルコラード液を塗布した本試料(4)の熱
処理後の接合状態を第11図の写真に示す。又、比較試
料の熱処理後の接合状態を第12図の写真に示す。Example 6 Mirror-polished Mn-Zn ferrite single-crystal ferrite (1) and polycrystalline ferrite (2) were mixed with rubidium hydroxide (RbOH) dissolved in ethanol at the interface.
, 5 mol/l of RbOH alcoholade solution (3) was applied for temporary adhesion (see Figure 1). 1 for the sample after temporary adhesion
13 kg/cm in a N2 atmosphere while applying a pressure of 11 m
Heat treatment was performed at 00°C for 22 hours to produce a bonded ferrite. For comparison, a comparative sample in which water was applied to the interface of single-crystal ferrite and polycrystalline ferrite to temporarily bond the interface was heat-treated under the same conditions. The photograph in FIG. 11 shows the bonded state after heat treatment of this sample (4), in which the rubidium hydroxide Alcolade solution was applied to the interface between single crystal and polycrystalline ferrite. The photograph of FIG. 12 shows the bonded state of the comparative sample after heat treatment.
単結晶−多結晶フェライトの界面を水で仮接着した比較
試料は多結晶フェライトの単結晶化と粒成長が進んでい
るのが見られる。In the comparative sample in which the interface between single crystal and polycrystalline ferrite was temporarily bonded with water, it can be seen that the single crystallization and grain growth of the polycrystalline ferrite progresses.
単結晶−多結晶フェライトの界面に水酸化ルビジウムア
ルコラード液を塗布した本試料(4)では、多結晶フェ
ライトの単結晶化及び異常粒成長が抑制されており、き
れいに接合している。接合フェライトにおける水酸化ル
ビジウムアルコラード液の単結晶防止効果及び粒成長抑
制効果は顕著である。In this sample (4) in which the rubidium hydroxide Alcolade solution was applied to the interface between single crystal and polycrystalline ferrite, single crystallization and abnormal grain growth of the polycrystalline ferrite were suppressed, and the bonding was clean. The effect of rubidium hydroxide Alcolade liquid on bonded ferrite to prevent single crystals and suppress grain growth is remarkable.
尚、本発明では接合フェライトの作製に際して、図示せ
さるも複数の単結晶フェライト(1)と多結晶フェライ
ト(2)をその界面にKOH,Cs01(、RbOH等
の溶液(3)を介在させてこの積層試料を加熱圧着して
多層接合フェライトを一括して作製することも可能であ
る。In the present invention, when producing a bonded ferrite, a plurality of single crystal ferrites (1) and polycrystalline ferrites (2) are interposed at the interface with a solution (3) of KOH, Cs01 (, RbOH, etc.) as shown in the figure. It is also possible to fabricate multilayer bonded ferrite all at once by heat-pressing this laminated sample.
KOHCsOH,RbOH等の溶液を単結晶フェライト
(1)と多結晶フェライト(2)の界面に介在させる方
法としては、例えば、通常の塗布方法、上記溶液に両フ
ェライトQ)、 (2)を浸漬させて両フェライト(1
)及び(2)間の界面に溶液をしみ込ませる方法等が考
えられる。Methods for interposing solutions such as KOHCsOH and RbOH at the interface between single-crystal ferrite (1) and polycrystalline ferrite (2) include, for example, the usual coating method, and immersing both ferrites Q) and (2) in the above solution. Both ferrites (1
) and (2) may be impregnated with a solution at the interface.
上述のKOH,CsOH,RbOH等の溶液を用いる技
術は接合フェライトの制作に限らず、所謂多結晶フェラ
イトの粒成長の制御にも適用できる。The above-mentioned technique using solutions such as KOH, CsOH, and RbOH is applicable not only to the production of bonded ferrite, but also to the control of grain growth of so-called polycrystalline ferrite.
上述した本発明による接合フェライトの製法によれば、
次のような効果を有する。According to the method for manufacturing a bonded ferrite according to the present invention described above,
It has the following effects.
単結晶フェライトと多結晶フェライト間の接合界面にに
、 Rb、 Csから選ばれる少なくとも1種の水酸化
物を介在することにより、接合時(加熱処理時)に多結
晶フェライトの単結晶化及び粒成長が抑制され、単結晶
−多結晶フェライトの接合面はきれいで小孔等の発生も
なく、点はがれの発生も少ない。特に多結晶フェライト
の単結晶化が少ないため、単結晶−多結晶フェライト界
面の動きが少なく、従って、その後の接合フェライトに
よる複合型の磁気ヘッドの作製が有利となる。By interposing at least one type of hydroxide selected from Rb and Cs at the bonding interface between single-crystal ferrite and polycrystalline ferrite, the polycrystalline ferrite becomes single crystallized and grained during bonding (heat treatment). Growth is suppressed, and the bonding surface between single crystal and polycrystalline ferrite is clean with no occurrence of small holes or the like, and there is little occurrence of spot peeling. In particular, since polycrystalline ferrite is less likely to become a single crystal, there is less movement of the single-crystalline-polycrystalline ferrite interface, and therefore it is advantageous to fabricate a composite magnetic head using bonded ferrite.
ホットプレス等の特殊な炉を使用することなく、通常の
雰囲気炉での接合フェライトの製造が可能なために接合
フェライトの生産性が高くなりコスト低減ができる。Since it is possible to manufacture bonded ferrite in a normal atmosphere furnace without using a special furnace such as a hot press, productivity of bonded ferrite can be increased and costs can be reduced.
単結晶−多結晶フェライトの界面となる少なくとも一方
に鉄の酸化物等をスパッター等により薄い威服を行う必
要がなく、この点でも生産性が高く、且つコスト低減が
可能になる。There is no need to apply a thin layer of iron oxide or the like to at least one of the interfaces between the single crystal and polycrystalline ferrite by sputtering or the like, and in this respect as well, productivity is high and costs can be reduced.
多結晶フェライトの粒成長及び単結晶化が抑制されるの
で、接合温度を従来温度より高く即ち1220’C−1
330”Cまで上げられる。従って作業温度範囲が広く
なり、歩留りの向上、生産性の向上が図られ、且つ接合
強度も向上する。Since grain growth and single crystallization of polycrystalline ferrite are suppressed, the bonding temperature is set higher than the conventional temperature, that is, 1220'C-1.
The temperature can be raised up to 330''C. Therefore, the working temperature range is widened, the yield and productivity are improved, and the bonding strength is also improved.
第1図は本発明に係るフェライト試料の斜視図、第2図
は実施例1 (KOH水溶液を塗布した)の熱処理後の
接合フェライトの接合状態(結晶の構造)を示す写真、
第3図はその比較例(H2Oを塗布した)の熱処理後の
接合フェライトの接合状態(結晶の構造)を示す写真、
第4図は実施例2 (KOHアルコラード液を塗布した
)の熱処理後の接合フェライトの接合状態(結晶の構造
)を示す写真、第5図は実施例3 (CsOH水溶液を
塗布した)の熱処理後の接合フェライトの接合状態(結
晶の構造)を示す写真、第6図はその比較例(H2Oを
塗布した)の熱処理後の接合フェライトの接合状態(結
晶の構造)を示す写真、第7図は実施例4 (CsOH
のアルコラード液を塗布した)の熱処理後の接合フェラ
イトの接合状態(結晶の構造)を示す写真、第8図はそ
の比較例(H2Oを塗布した)の熱処理後の接合フェラ
イトの接合状態(結晶の構造)を示す写真、第9図は実
施例5 (RbOH水溶液を塗布した)の熱処理後の接
合フェライトの接合状態(結晶の構造)を示す写真、第
10図はその比較例(H2Oを塗布した)の熱処理後の
接合フェライトの接合状態(結晶の構造)を示す写真、
第11図は実施例6(RbOHのアルコラード液を塗布
した)の熱処理後の接合フェライトの接合状態(結晶の
構造)を示す写真、第12図はその比較例(H2Oを塗
布した)の熱処理後の接合フェライトの接合状態(結晶
の構造)を示す写真である。
(1)は単結晶フェライト、(2)は多結晶フェライト
、(3)はKOH(又はCsOH,又はRb01()の
水溶液(又はアルコラード液)、(4)は本試料である
。
4本客へ崖斗
2り結晶フェライトFIG. 1 is a perspective view of a ferrite sample according to the present invention, and FIG. 2 is a photograph showing the bonded state (crystal structure) of the bonded ferrite after heat treatment of Example 1 (coated with KOH aqueous solution).
Figure 3 is a photograph showing the bonding state (crystal structure) of the bonded ferrite after heat treatment of the comparative example (H2O coated);
Figure 4 is a photograph showing the bonding state (crystal structure) of the bonded ferrite after heat treatment in Example 2 (coated with KOH Alcolade solution), and Figure 5 is a photograph showing the bonded state (crystal structure) of Example 3 (coated with CsOH aqueous solution) after heat treatment. Figure 6 is a photograph showing the bonding state (crystal structure) of the bonded ferrite after heat treatment of the comparative example (H2O coated), and Figure 7 is a photograph showing the bonding state (crystal structure) of the bonded ferrite. Example 4 (CsOH
Figure 8 shows the bonding state (crystal structure) of the bonded ferrite after heat treatment of the comparative example (coated with H2O). Figure 9 is a photograph showing the bonding state (crystal structure) of the bonded ferrite after heat treatment of Example 5 (coated with RbOH aqueous solution), and Figure 10 is a photograph showing its comparative example (coated with H2O). ) Photographs showing the bonding state (crystal structure) of bonded ferrite after heat treatment,
Figure 11 is a photograph showing the bonding state (crystal structure) of the bonded ferrite after heat treatment in Example 6 (RbOH Alcolade solution was applied), and Figure 12 is a photograph showing the heat treatment of the comparative example (H2O was applied). This is a photograph showing the bonding state (crystal structure) of bonded ferrite. (1) is single-crystal ferrite, (2) is polycrystalline ferrite, (3) is an aqueous solution (or alcoholado liquid) of KOH (or CsOH, or Rb01 ()), and (4) is this sample. 4 To the customer Gaito 2 crystal ferrite
Claims (1)
ライトの製造方法において、 少なくとも前記多結晶フェライトの接合界面にK,Rb
,Csから選ばれる少なくとも1種の水酸化物を介在さ
せ、その存在下で加熱圧着することを特徴とする接合フ
ェライトの製造方法。[Claims] In a method for manufacturing a bonded ferrite consisting of a single crystal ferrite and a polycrystalline ferrite, K and Rb are added at least to the bonding interface of the polycrystalline ferrite.
, Cs, and heat-press bonding in the presence of at least one hydroxide selected from Cs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16583189A JP2770432B2 (en) | 1989-06-28 | 1989-06-28 | Manufacturing method of bonded ferrite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16583189A JP2770432B2 (en) | 1989-06-28 | 1989-06-28 | Manufacturing method of bonded ferrite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03255603A true JPH03255603A (en) | 1991-11-14 |
JP2770432B2 JP2770432B2 (en) | 1998-07-02 |
Family
ID=15819834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16583189A Expired - Fee Related JP2770432B2 (en) | 1989-06-28 | 1989-06-28 | Manufacturing method of bonded ferrite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2770432B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284085B1 (en) * | 1997-04-03 | 2001-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Ultra precision and reliable bonding method |
US20150022057A1 (en) * | 2013-07-16 | 2015-01-22 | Samsung Electro-Mechanics Co., Ltd. | Piezoelectric device, method for manufacturing the same, and driven assembly with the same |
-
1989
- 1989-06-28 JP JP16583189A patent/JP2770432B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284085B1 (en) * | 1997-04-03 | 2001-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Ultra precision and reliable bonding method |
US20150022057A1 (en) * | 2013-07-16 | 2015-01-22 | Samsung Electro-Mechanics Co., Ltd. | Piezoelectric device, method for manufacturing the same, and driven assembly with the same |
US9257630B2 (en) * | 2013-07-16 | 2016-02-09 | Samsung Electro-Mechanics Co., Ltd. | Multilayer piezoelectric device with polycrystalline and single crystal members and intermediate member provided between the polycrystalline member and the single crystal member |
Also Published As
Publication number | Publication date |
---|---|
JP2770432B2 (en) | 1998-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4947542A (en) | Method of making a crystallized glass-bonded amorphous metal magnetic film-non-magnetic substrate magnetic head | |
JPH03255603A (en) | Manufacture of junction ferrite | |
JPH02107578A (en) | Production of joint ferrite | |
JPH02107577A (en) | Production of joint ferrite | |
US5208971A (en) | Process of manufacturing a magnetic head | |
JP2874787B2 (en) | Manufacturing method of alloy magnetic thin film laminate | |
JPH0351771Y2 (en) | ||
JPH01109504A (en) | Magnetic head | |
JPS6161212A (en) | Production of magnetic head core | |
JP2017518186A5 (en) | ||
JPS63115311A (en) | Amorphous alloy magnetic thin film element and manufacture thereof | |
JPS63303056A (en) | Method for fixing vapor deposition substrate for amorphous film | |
JPH07133165A (en) | Production of joined ferrite | |
JPS62145513A (en) | Magnetic head | |
JPS63230578A (en) | Method of joining cu base member to ceramic substrate | |
JPH03156903A (en) | Manufacture of joined ferrite | |
JPS61123006A (en) | Magnetic head | |
JPS6224845B2 (en) | ||
JPH07244814A (en) | Manufacture of compound substrate lamination type magnetic head | |
JPH0244509A (en) | Magnetic head and its manufacture | |
JP2003228805A (en) | Method for manufacturing magnetic head | |
JPH0792900B2 (en) | Magnetic head manufacturing method | |
JPH033926B2 (en) | ||
JPS5990218A (en) | Thin-film magnetic head | |
JPH064822A (en) | Magnetic head and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |