[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03243727A - Induction melting method for active metal - Google Patents

Induction melting method for active metal

Info

Publication number
JPH03243727A
JPH03243727A JP2039107A JP3910790A JPH03243727A JP H03243727 A JPH03243727 A JP H03243727A JP 2039107 A JP2039107 A JP 2039107A JP 3910790 A JP3910790 A JP 3910790A JP H03243727 A JPH03243727 A JP H03243727A
Authority
JP
Japan
Prior art keywords
crucible
active metal
refractory material
skull
induction melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2039107A
Other languages
Japanese (ja)
Inventor
Hideaki Mizukami
秀昭 水上
Naoki Sakata
坂田 直起
Yuji Sugitani
祐司 杉谷
Masaji Hattori
服部 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2039107A priority Critical patent/JPH03243727A/en
Publication of JPH03243727A publication Critical patent/JPH03243727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently melt an active metal while decreasing the quantity of heat extraction and lowering an electric power consumption unit by disposing a refractory material on the bottom of a separate and water cooled copper crucible, charging the blank material of the active metal therein and subjecting the material to induction melting. CONSTITUTION:The refractory material 7, such as Al2O3 plate, is disposed on the bottom member 5 of the separate and water cooled copper crucible 5 consisting of water cooled copper segments 1 having inside and outside pipes 3, 4 to allow the flow of cooling water therein. The blank material 8 to be melt consisting of active metals, such as Ti, Zv, is charged to this copper crucible. A high-frequency current is passed to a high-frequency coil 6 provided on the outer periphery of the copper crucible to cause the induction melting of the above-mentioned blank material 8. The quantity of the heat extraction from the molten metal is decreased by the above- mentioned refractory material 7 and a small amt. of skull is formed at this time. The active metal is inductively melted efficiently with the low electric power consump tion unit without being contaminated in this way. After the molted blank material is removed, the next blank material is charged on the above-mentioned skull and further the induction melting is melting is efficiently executed.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、分割され且つ水冷構造の銅ルツボ(以下、分
割水冷銅ルツボと言う〉を用い、チタン、ジルコニウム
等の高融点活性金属あるいはその合金及び清浄性を要求
されるスーパーアロイを高周波誘導溶解する方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a copper crucible with a divided water-cooled structure (hereinafter referred to as a divided water-cooled copper crucible) to process active metals with high melting points such as titanium and zirconium or their This invention relates to a method for high-frequency induction melting of alloys and superalloys that require cleanliness.

[従来の技術] 分割水冷銅ルツボを使用し、活性金属を高周波誘導溶解
する方法は古くから検討されており、数多くの技術が発
表されている。そして、種々の検討を経た後、所謂イン
ダクション・スラグ溶解法と呼ばれる技術が確立された
く米国特許3775091号公報〉。
[Prior Art] A method of high-frequency induction melting of active metals using a divided water-cooled copper crucible has been studied for a long time, and many techniques have been published. After various studies, a technology called the so-called induction slag melting method was established, as disclosed in US Pat. No. 3,775,091.

この方法は、短冊状のセグメントを組み立てたルツボを
使用し、活性金属と共にスラグ又はフラックスを装入し
て誘導溶解する方法である。
This method uses a crucible made up of strip-shaped segments, charges slag or flux together with an active metal, and performs induction melting.

第5図は溶解時の状態を示した図である0図中、20は
ルツボを構成する短冊状の水冷銅セグメントであり、間
隔をあけて配置されている。6は高周波コイル、2)は
冷却流体の流路である。また、9は溶湯、22は溶融ス
ラグ、10はスカル(凝固シェル)を示す、そして、ル
ツボの内壁は凝固スラグ23で覆われ、各セグメント2
oの間は絶縁されている。
FIG. 5 is a diagram showing the state during melting. In FIG. 0, reference numeral 20 indicates rectangular water-cooled copper segments constituting the crucible, which are arranged at intervals. 6 is a high frequency coil, and 2) is a cooling fluid flow path. Further, 9 indicates molten metal, 22 indicates molten slag, and 10 indicates a skull (solidified shell).The inner wall of the crucible is covered with solidified slag 23, and each segment 2
o is insulated.

この方法の問題点のとしては、スラグ又はフラックスを
使用することによって溶融金属が汚染されると言う問題
がある。また、真空溶解を行う場合には、フラックスが
蒸発し、これが鋳造時に空孔を生成させる原因となる。
A problem with this method is that the use of slag or flux contaminates the molten metal. Further, when vacuum melting is performed, the flux evaporates, which causes voids to be generated during casting.

これらの問題を解決した改良技術として、特開昭63−
149337号公報に示された方法がある。この方法は
スラグやフラックスを使用せずに高周波誘導溶解するも
のであり、一般にインダクト・スカル溶解法と呼ばれて
いる。この方法においては、第4図に示す構成のルツボ
に装入物を入れ、真空下又は不活性雰囲気下で誘導加熱
する。
As an improved technology that solved these problems, JP-A-63-
There is a method disclosed in Japanese Patent No. 149337. This method involves high-frequency induction melting without using slag or flux, and is generally called the induct skull melting method. In this method, a charge is placed in a crucible configured as shown in FIG. 4, and is heated by induction under vacuum or an inert atmosphere.

第4図はインダクト スカル溶解法に用いるルツボを示
す図であり、(41図は正面の一部断面図、+b1図は
fat図のA−A断面の一部を示す図である。このルツ
ボの側壁は複数の短冊状のセグメント1が組み立てられ
て形成されている。セグメント1は間隔をあけて配置さ
れ、各セグメント1間には高温結縁材料2が詰められて
いる。セグメント1は銅製で、外管3と内管4よりなる
二重管の水冷構造になっている。そして、すべのセグメ
ント1は底部部材5に結合されている。冷却水は内管4
に導入され外管3を経由して排出される。6はルツボの
側壁を囲む位置に配置された高周波コイルである。
Figure 4 is a diagram showing a crucible used in the induct skull melting method (Figure 41 is a partial sectional view of the front, Figure +b1 is a diagram showing a part of the A-A cross section of the fat diagram. The side wall is formed by assembling a plurality of strip-shaped segments 1. The segments 1 are spaced apart and a hot bonding material 2 is filled between each segment 1. The segments 1 are made of copper; It has a double pipe water cooling structure consisting of an outer pipe 3 and an inner pipe 4.All segments 1 are connected to a bottom member 5.The cooling water is supplied to the inner pipe 4.
and is discharged via the outer tube 3. 6 is a high frequency coil placed at a position surrounding the side wall of the crucible.

このような構成によるルツボを使用すれば、スラグやフ
ラックスを装入する必要がないので、上記の問題は解決
された。
If a crucible with such a configuration is used, there is no need to charge slag or flux, so the above problem is solved.

[発明が解決しようとする課題] しかし、インダクト・スカル溶解法においては、フラッ
クスやスラグを全く使用しないので、スカル(凝固シェ
ル)と銅ルツボが直接接触し、溶融金属−水冷銅セグメ
ント1間の熱移動量(溶融金属からの抜熱)が大きくな
り、多量のスカルが生成してしまう、このため、溶湯量
が少なくなり、電力原単位が非常に大きくなる。
[Problems to be Solved by the Invention] However, in the induct skull melting method, no flux or slag is used, so the skull (solidified shell) and the copper crucible are in direct contact, and the gap between the molten metal and the water-cooled copper segment 1 is The amount of heat transfer (heat removed from the molten metal) increases and a large amount of skull is generated, resulting in a decrease in the amount of molten metal and an extremely high unit power consumption.

本発明は、上記の問題を解決し、溶融金属からの抜熟量
を小さくでき、電力原単位を低下させて効率よく活性金
属を溶解する誘導溶解法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide an induction melting method that can reduce the amount of molten metal extracted, lower the power consumption rate, and efficiently melt active metals.

[課題を解決するための手段及び作用]上記の目的を達
成するために、本発明においては、分割水冷ルツボの底
に耐火材を配置し、次いで活性金属の素材を装入し、誘
導溶解する。
[Means and effects for solving the problem] In order to achieve the above object, in the present invention, a refractory material is placed at the bottom of a split water-cooled crucible, and then an active metal material is charged and induction melted. .

また、上記ルツボの底に耐火材を配置し、該耐火材の上
に活性金属を装入し、該活性金属を誘導溶解して耐火材
の上にスカルを形成させ、出湯後、前記スカルが形成さ
れたルツボに活性金属の素材を再装入し、誘導溶解して
も上記方法と同様の結果が得られる。
Further, a refractory material is placed at the bottom of the crucible, an active metal is charged onto the refractory material, and the active metal is melted by induction to form a skull on the refractory material, and after tapping, the skull is The same result as the above method can be obtained by re-charging the formed crucible with the active metal material and performing induction melting.

なお、本発明における活性金属とは、チタン、ジルコニ
ウム、ハフニウム、クロム、ニオブ、タンタル、モリブ
デン、ウラン、希土類金属及びトリウム並びにこれらの
金属の合金よりなる金属群と、さらに、スーパーアロイ
などの高清浄性を要求される金属材料を含むものとする
Note that the active metals in the present invention include metal groups consisting of titanium, zirconium, hafnium, chromium, niobium, tantalum, molybdenum, uranium, rare earth metals, thorium, and alloys of these metals, as well as highly clean metals such as super alloys. Contains metal materials that require high properties.

耐火材は断熱作用があるので、耐火材は溶融金属とルツ
ボの底との間の熱移動を実質的に遮断し、溶融金属から
の抜熱は殆ど起こらなくなる。
Since the refractory material has an insulating effect, the refractory material substantially blocks heat transfer between the molten metal and the bottom of the crucible, so that very little heat is removed from the molten metal.

耐火材の材質としては、アルミナ、ジルコニア、マグネ
シア、カルシアなどの酸化物の他にホウ化ジルコニア、
窒化ボロンなとのホウ化物や窒化物、炭化珪素、炭化チ
タンなどの炭化物、グラファイト及びフッ化カルシウム
などが使用できる。
In addition to oxides such as alumina, zirconia, magnesia, and calcia, refractory materials include zirconia boride,
Borides and nitrides such as boron nitride, carbides such as silicon carbide and titanium carbide, graphite, and calcium fluoride can be used.

耐火材の形態としては、耐火材を板状にして使用するこ
とができる。また、セラミックフオーム状のもの、グラ
ファイト繊維やアルミナ繊維などを成形したものも使用
することができ、このような耐火材は断熱作用を一層発
揮する。さらに、粉状あるいは粒状の耐火材をルツボ底
部に敷きつめたものであってもよい。
As for the form of the refractory material, it can be used in the form of a plate. Further, ceramic foam materials, materials formed from graphite fibers, alumina fibers, etc. can also be used, and such refractory materials exhibit even greater heat insulating properties. Furthermore, the bottom of the crucible may be covered with powdered or granular refractory material.

そして、耐火材が板状である場合、耐火材を複数枚に分
割し重ね合わせて配置すると、全体の厚さが同じであっ
ても、耐火材と耐火材の間の接触熱抵抗が増大し、断熱
効果が上がる。
If the refractory material is plate-shaped, if the refractory material is divided into multiple sheets and placed one on top of the other, the contact thermal resistance between the refractory materials will increase even if the overall thickness is the same. , the insulation effect increases.

(実施例] (実施例1) 第1図及び第2図によって説明する。ルツボは第4図の
ルツボと同様な構成により、内径105■■、高さ15
0m11のものを使用した。第1図及び第2図において
、ルツボの構成については、第4図と同じ部分には同一
の符号を付し説明を省略する。
(Example) (Example 1) This will be explained with reference to Figures 1 and 2.The crucible has the same configuration as the crucible in Figure 4, has an inner diameter of 105mm, and a height of 15mm.
0m11 was used. In FIG. 1 and FIG. 2, regarding the structure of the crucible, the same parts as in FIG. 4 are given the same reference numerals, and the explanation will be omitted.

耐火材7としてはアルミナ板を使用した。まず、ルツボ
の底(底部部材5上)に厚さ35−のアルミナ板2枚配
置した。次いで、このアルミナ板の上に、Ti−6AJ
i’−4V合金(A16%、■4%、残りTi)で、直
径95關、長さ150■諷の溶解素材8を装入したく第
1図〉。
As the refractory material 7, an alumina plate was used. First, two alumina plates having a thickness of 35 mm were placed on the bottom of the crucible (on the bottom member 5). Next, Ti-6AJ was placed on this alumina plate.
A molten material 8 made of i'-4V alloy (A: 16%, ■: 4%, remainder: Ti), having a diameter of 95 mm and a length of 150 mm, is charged as shown in Fig. 1.

そして、8kllz 、 100kwの出力で誘導溶解
したところ、6分で3.2kgの溶湯9が得られ、底部
の耐火打7上には1.4kgのスカル10ができた(第
2図)、この際の電力原単位は3.1kwh/kgであ
った。
Then, when induction melting was carried out with an output of 8 kllz and 100 kw, 3.2 kg of molten metal 9 was obtained in 6 minutes, and a 1.4 kg skull 10 was formed on the refractory 7 at the bottom (Fig. 2). The electricity consumption rate was 3.1 kwh/kg.

(実施例2) ルツボの底に3.5關のマグネシアの板3枚を配置し、
他の条件は実施例1と同じにし、Ti6AJ−4V合金
を溶解した。6分で4kgの溶湯が得られ、0.6kg
のスカル10が残った。
(Example 2) Three 3.5-inch magnesia plates were placed at the bottom of the crucible,
Other conditions were the same as in Example 1, and the Ti6AJ-4V alloy was melted. 4kg of molten metal is obtained in 6 minutes, 0.6kg
10 skulls remained.

この時の電力原単位は2.5kwh/kgであった。The electricity consumption rate at this time was 2.5 kwh/kg.

(実施例3) 実施例1と同様の溶解を行い、得られfS溶湯を出湯し
た後のルツボ(耐火材の上にスカルが形成されたルツボ
〉に直径95闘、長さ104關のTi−6AJ−4V合
金を装入し、8 kHz、100kvの出力で溶解した
。6分で3.2kgの溶湯が得られ、1.4kgののス
カル10ができた。この時の電力原単位は3 、1kw
h /kgであり、実施例1の場合と同じであった。
(Example 3) Melting was carried out in the same manner as in Example 1, and after the obtained fS molten metal was tapped, a Ti-shaped metal with a diameter of 95 mm and a length of 104 mm was placed in a crucible (a crucible in which a skull was formed on a refractory material). 6AJ-4V alloy was charged and melted at an output of 8 kHz and 100 kV. 3.2 kg of molten metal was obtained in 6 minutes, and 1.4 kg of Skull 10 was made. The electricity consumption rate at this time was 3 , 1kw
h/kg, which was the same as in Example 1.

(実施例4) 本実施例では、ルツボの底に第3図に示す形状の耐火材
7を配置した。耐火材7は、ルツボの側壁(セグメント
1)1111の周辺部に環状の突起]1が設けられてお
り、内側に凹部が形成されている。このような環状の突
起11を設けたのは、ルツボの底部に形成するスカル1
0からセグメント1側壁への熱移動を防ぎ、熱効率を高
めるためである。使用した耐火材7はアルミナで造られ
、寸法は、平面部の厚さは7關、突起11の高さ(平板
部上面からの高さ〉が15關、突起11の厚さが7m−
であった。
(Example 4) In this example, a refractory material 7 having the shape shown in FIG. 3 was placed at the bottom of the crucible. The refractory material 7 is provided with an annular protrusion 1 on the periphery of the side wall (segment 1) 1111 of the crucible, and has a recess formed inside. The purpose of providing such an annular projection 11 is to form a skull 1 at the bottom of the crucible.
This is to prevent heat transfer from 0 to the side wall of segment 1 and increase thermal efficiency. The refractory material 7 used is made of alumina, and its dimensions are as follows: the thickness of the flat part is 7 m, the height of the protrusion 11 (height from the top of the flat part) is 15 m, and the thickness of the protrusion 11 is 7 m.
Met.

そして、他の条件は実施例1と同じにし、Ti6AJ−
4V合金を誘導溶解したところ、6分で3.8kgの溶
湯が得られ、底部のアルミナ板7上には0.8kgのス
カル10ができた。この際の電力原単位は2.6kvh
 /kgであり、実施例1の場合よりも良好の結果が得
られた。
Other conditions were the same as in Example 1, and Ti6AJ-
When the 4V alloy was induction melted, 3.8 kg of molten metal was obtained in 6 minutes, and a 0.8 kg skull 10 was formed on the alumina plate 7 at the bottom. The electricity consumption rate at this time is 2.6kvh
/kg, and better results than in Example 1 were obtained.

(比較例〉 ルツボの底にアルミナ板7を配置せず、他の条件は実施
例と同じにし、Ti−6All−4V合金を誘導溶解し
た。溶湯9は6分で2.1kgLか得られず、底部に生
成したスカル10は2.4kgに増加した。この際の電
力原単位は4.8kwh/kgであった。
(Comparative example) Ti-6All-4V alloy was induction melted without placing the alumina plate 7 at the bottom of the crucible and the other conditions were the same as in the example.2.1 kgL of molten metal 9 was obtained in 6 minutes. , the skull 10 generated at the bottom increased to 2.4 kg.The electric power consumption at this time was 4.8 kwh/kg.

上記各実施例と比較例の結果を比較すると、実施例の電
力原単位は比較例に対し50〜60%であり、大幅に低
減された。
Comparing the results of each of the above Examples and Comparative Examples, the electric power consumption of the Examples was 50 to 60% of that of the Comparative Example, which was significantly reduced.

そして、2回目以降の溶解に際しては、同一組成の金属
を溶解する場合、底部のスカル10を除去することなく
、ルツボを繰り返し使用する。この際にも上記実施例の
場合と同様に良好の結果が得られる。
Then, in the second and subsequent melting, when metals of the same composition are to be melted, the crucible is used repeatedly without removing the skull 10 at the bottom. In this case as well, good results can be obtained as in the case of the above embodiment.

なお、ルツボ底部の断熱をよくし過ぎると、スカル10
が形成されなくなり(全部溶けてしまい)、溶湯(溶融
活性金属)と耐火材の反応が起こって溶湯が汚染される
。従って、本発明においては、スカル10が必ず形成さ
れるように、溶解出力を調節、又は耐火材の構成を変え
て断熱条件を調整する必要があることは言うまでもない
In addition, if the insulation at the bottom of the crucible is too good, the skull
is no longer formed (it all melts), and a reaction between the molten metal (molten active metal) and the refractory material occurs, resulting in contamination of the molten metal. Therefore, in the present invention, it goes without saying that it is necessary to adjust the melting output or change the composition of the refractory material to adjust the insulation conditions so that the skull 10 is definitely formed.

[発明の効果コ 本発明は、ルツボの底に耐火材を配置するか、あるいは
ルツボの底に耐火材を配置しこの耐火材の上にスカルを
形成させ、出湯後に溶解素材を再装入して活性金属を誘
導溶解する方法であるので、ルツボの底に耐火材の断熱
層ができ、溶融金属とルツボの底との間の熱移動は実質
的に遮断される。
[Effects of the Invention] The present invention is characterized in that a refractory material is placed at the bottom of a crucible, or a refractory material is placed at the bottom of a crucible, a skull is formed on the refractory material, and melted material is re-charged after tapping. Since this method involves induction melting of active metals, a heat insulating layer of refractory material is formed at the bottom of the crucible, and heat transfer between the molten metal and the bottom of the crucible is substantially blocked.

従って、溶融金属からの抜熱は殆ど起こらなくなり、熱
効率が大幅に向上する。この結果、電力原単位は従来技
術に対し大幅(50%程度まで)に低減できる。
Therefore, almost no heat is removed from the molten metal, and thermal efficiency is greatly improved. As a result, the power consumption rate can be significantly reduced (up to about 50%) compared to the conventional technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例の説明図、第3図
は本発明の他の実施例の説明図、第4図はインダクト・
スカル溶解法に用いるルツボを示す図、第5図はインダ
クション スラグ溶解法における溶解時の状態を示した
図である。 1.20・・・水冷銅セグメント、2・・高温絶縁材料
、3・・外管、4・・・内管、5・・・底部部材、6 
・高周波コイル、7・・・耐火材、8・溶解素材、9・
溶湯、10・・スカル。
1 and 2 are explanatory diagrams of one embodiment of the present invention, FIG. 3 is an explanatory diagram of another embodiment of the present invention, and FIG. 4 is an explanatory diagram of an inductor.
A diagram showing a crucible used in the skull melting method, and FIG. 5 is a diagram showing a state during melting in the induction slag melting method. 1.20...Water-cooled copper segment, 2...High temperature insulating material, 3...Outer tube, 4...Inner tube, 5...Bottom member, 6
・High frequency coil, 7... Fireproof material, 8. Melting material, 9.
Molten metal, 10...Skull.

Claims (2)

【特許請求の範囲】[Claims] (1)分割水冷銅ルツボを用いた活性金属の誘導溶解法
において、 前記ルツボの底に耐火材を配置し、次いで前記活性金属
の素材を装入し、誘導溶解することを特徴とする活性金
属の誘導溶解法。
(1) An active metal induction melting method using a divided water-cooled copper crucible, characterized in that a refractory material is placed at the bottom of the crucible, and then the active metal material is charged and induction melted. induction lysis method.
(2)分割水冷銅ルツボを用いた活性金属の誘導溶解法
において、 前記ルツボの底に耐火材を配置し、該耐火材の上に前記
活性金属を装入し、該活性金属を誘導溶解して前記耐火
材の上にスカルを形成させ、出湯後、前記スカルが形成
されたルツボに前記活性金属の素材を再装入し、誘導溶
解することを特徴とする活性金属の誘導溶解法。
(2) In the induction melting method of active metal using a divided water-cooled copper crucible, a refractory material is placed at the bottom of the crucible, the active metal is charged on top of the refractory material, and the active metal is induction melted. A method for induction melting of an active metal, comprising: forming a skull on the refractory material, and after tapping the hot water, reinjecting the active metal material into the crucible in which the skull has been formed, and performing induction melting.
JP2039107A 1990-02-20 1990-02-20 Induction melting method for active metal Pending JPH03243727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039107A JPH03243727A (en) 1990-02-20 1990-02-20 Induction melting method for active metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039107A JPH03243727A (en) 1990-02-20 1990-02-20 Induction melting method for active metal

Publications (1)

Publication Number Publication Date
JPH03243727A true JPH03243727A (en) 1991-10-30

Family

ID=12543852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039107A Pending JPH03243727A (en) 1990-02-20 1990-02-20 Induction melting method for active metal

Country Status (1)

Country Link
JP (1) JPH03243727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085525A (en) * 2007-10-01 2009-04-23 Shinko Electric Co Ltd Cold-crucible melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085525A (en) * 2007-10-01 2009-04-23 Shinko Electric Co Ltd Cold-crucible melting furnace

Similar Documents

Publication Publication Date Title
US3775091A (en) Induction melting of metals in cold, self-lined crucibles
AU608785B2 (en) Method for induction melting reactive metals and alloys
US5781581A (en) Induction heating and melting apparatus with superconductive coil and removable crucible
CN103212675B (en) Steel ingot feeder head induction heating and electromagnetic stirring device
KR20090054921A (en) Centrifugal Casting of Highly Reactive Titanium Metal
CN101829770A (en) System for centrifugally casting high-activity titanium
TW201243261A (en) Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
JPS6310554B2 (en)
JP3571212B2 (en) Metal and alloy melting method and melting casting method
JPS60159584A (en) Direct current arc furnace
JPH03243727A (en) Induction melting method for active metal
JP4263366B2 (en) Method and apparatus for melting rare earth magnet scrap
JP3972390B2 (en) High frequency induction melting crucible furnace
CN212645345U (en) A kind of crucible for induction melting titanium and titanium alloy
JP2541341B2 (en) Precision casting method and precision casting apparatus for Ti and Ti alloy
JP5000149B2 (en) Cold Crucible Induction Dissolver
Edgerley et al. Electric metal melting—A review
JPS635354B2 (en)
US3107268A (en) Melting furnace
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
JPH03243728A (en) Induction melting method for active metal
JPH04362144A (en) Induction melting method
JPS5989980A (en) Furnace cover of arc furnace for steel manufacture with induction current preventive mechanism
CN217844710U (en) Novel crucible with electromagnetic penetration and magnetic suspension capabilities
US2912731A (en) Method for casting group iv metals