[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0323249A - Production of fiber-reinforced cement product - Google Patents

Production of fiber-reinforced cement product

Info

Publication number
JPH0323249A
JPH0323249A JP15640189A JP15640189A JPH0323249A JP H0323249 A JPH0323249 A JP H0323249A JP 15640189 A JP15640189 A JP 15640189A JP 15640189 A JP15640189 A JP 15640189A JP H0323249 A JPH0323249 A JP H0323249A
Authority
JP
Japan
Prior art keywords
cement
fiber
weight
cement mortar
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15640189A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujii
洋 藤井
Masaharu Hayashi
林 雅治
Yoshio Takeuchi
好雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP15640189A priority Critical patent/JPH0323249A/en
Publication of JPH0323249A publication Critical patent/JPH0323249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To improve strength by placing a fiber matte produced by allowing fibers to adhere to each other by means of a binder on a molding form and impregnating the above matte with cement mortar with a specific composition. CONSTITUTION:A fiber matte produced by allowing uniformly dispersed fibers, such as alkali glass fibers, to adhere to each other by means of 3-20wt.% binder and having >=5mm thickness and <=0.1g/cm<3> bulk density is placed on a molding form. Subsequently, cement mortar produced by blending 100 pts. (by weight, the same applies to the following) cement, 50-150 pts. silica sand in which average grain size is regulated to <=200mum and 20wt.% of the grains are passed through a 105mum sieve, 10-50 pts. water, and 0.8-3 pts. water reducing agent is placed on the fiber matte while applying vibrations and impregnated into the fiber matte, followed by hardening. By this method, fiber-reinforced cement products can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、繊維強化セメント製品の製造方法に関するも
のである, [従来技術とその問題点] セメントは鉄とともに建築、土木用の基礎資材であり、
現在わが国では年間7000万トンほど使用されている
.セメントがこれほど大量に使われるようになったのは
、圧縮強度が大きいこと、耐候性に優れていること、水
と混合するだけで、容易に固化することなど優れた性質
に加えて、極めて安価なためである.しかしこのように
優れた性質を持つセメントにも引っ張り強度が低いとい
う問題があり、この問題を解決するために種々の方法が
検討されている.その一つにセメントを硝子繊維、炭素
繊維、アラミド繊維、ビニロン等の繊維で補強しようと
する試みが行われ、現在かなり実用化されている.中で
も最も実用化されているのは硝子繊維強化セメント(以
下単にGRCという)で、建築物の内外装材、柱カバー
、梁カバー、防音壁、ケーブルトラフ、下水管、プラン
ター、欄干、ユニットトイレなど建築、土木の分野で広
く使われている. GRCの戒型法には、スプレー法、プレミックス法、モ
ルタルインジェクション法などがあり、一目的、用途に
より各々使い分けられている.スプレー法は、モルタル
ポンプで圧送したセメントモルタルとロービングカッタ
ーで切断した硝子繊維をスプレーガンの異なった出口か
ら空気圧により吐出し、型枠面に到達せしめ、その後脱
泡ローラーにより押し固めるという方法で最も広く採用
されている.この方法は、熟練した技能工がスプレーガ
ンを操作し、GRCを層状に積層していくため強度が高
く、従って肉薄の複雑な形状をした付加価値の高い製品
を作る場合には最適であるが、厚肉製品あるいは比較的
単純な形をした製品、例えば板状製品を作る場合には、
手間がかかりすぎてコスト高となる.スプレー法におい
て吹き付け作業についてはロボットを導入することなど
により戒型コストを下げることは可能である.ところが
スプレー法における最大の問題は繊維とモルタルを空気
圧によって吹き付けることに起因する気泡の連行という
問題があり、GRCの品質は脱泡ローラーによる押し固
めの程度に左右されるといっても過言ではないところ、
ロボットではこの押し固めを満足して行うことが不可能
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing fiber-reinforced cement products. [Prior Art and its Problems] Cement, along with iron, is a basic material for construction and civil engineering. can be,
Currently, approximately 70 million tons are used annually in Japan. The reason why cement has come to be used in such large quantities is because of its excellent properties such as high compressive strength, excellent weather resistance, and the ability to harden easily by simply mixing it with water. This is because it is cheap. However, even with such excellent properties, cement has the problem of low tensile strength, and various methods are being considered to solve this problem. One of these efforts is to try to reinforce cement with fibers such as glass fiber, carbon fiber, aramid fiber, vinylon, etc., and these efforts are now being put into practical use. Among them, glass fiber reinforced cement (hereinafter simply referred to as GRC) is the most commonly used cement, which is used as interior and exterior materials for buildings, pillar covers, beam covers, soundproof walls, cable troughs, sewage pipes, planters, handrails, unit toilets, etc. It is widely used in the fields of architecture and civil engineering. GRC's precept methods include the spray method, premix method, and mortar injection method, each of which is used depending on the purpose and application. The spray method is the most effective method, in which cement mortar pumped by a mortar pump and glass fibers cut by a roving cutter are discharged by air pressure from different outlets of a spray gun, reaching the formwork surface, and then compacted by a defoaming roller. Widely adopted. This method has high strength because a skilled worker operates a spray gun and laminates GRC in layers, so it is ideal for making products with high added value with thin walls and complex shapes. , when making thick-walled products or products with relatively simple shapes, such as plate-shaped products,
It takes too much time and costs too much. In the spray method, it is possible to reduce the cost of spraying by introducing robots for the spraying work. However, the biggest problem with the spray method is the entrainment of air bubbles caused by spraying fibers and mortar with air pressure, and it is no exaggeration to say that the quality of GRC depends on the degree of compaction by the defoaming roller. However,
It is impossible for robots to perform this compaction satisfactorily.

近年ではトラバースするスプレーガンにより、連続的に
移動するコンベアー上の型枠に吹き付けるという自動ス
プレー法も実用化されているが、この方法においても脱
泡は人手に頼っているか、あるいは脱泡不十分の状態で
硬化させているというのが実情である. プレミックス法はモルタルと短繊維をミキサーで予め混
合した後、所定の型枠に流し込む方法で、一般には流し
込んだ後振動が加えられる.この方法はスプレー法に比
べて省力化が可能で、その分成型コストは安いが、繊維
が3次元ランダムに配向しているため補強効率が低く、
また混練中に繊維が傷付けられることにより、得られる
GRCの強度はスプレー法のおよそ半分である.従って
建築物の外壁材、とりわけカーテンウ才−ルパネルのよ
うに、万一の場合大事故につながるおそれのある部位に
は適用できない.またプレミックス法における別の問題
は、繊維を数パーセント混入したプレミックスモルタル
がプレーンモルタルに比べて極端に流動性が悪いという
ことである.これはプレミックスモルタルを型枠に供給
する際に、また型枠の隅々にまでプレミックスモルタル
を行きわたらせる場合に大きな問題になる.プレミック
ス法ではこれを解決するためにどうしても水/セメント
比を大きくせざるを得ず、GRCの物性を一段と低下さ
せる原因になっている.モルタルインジェクション法は
型枠に硝子繊維コンテイニアスストランドマットを装着
し、型枠を密閉してモルタルを圧入する方法である.こ
の方法で使用するのはプレミックスモルタルではなく、
ブレーンモルタルであるため、型枠への供給は容易であ
り、またセメンl・モルタルの含浸は圧入により容易に
達戒されるなど先記のプレミックス法における問題点は
解消される.しかしながらモルタルインジェクション法
においてはGRC製品に占める型枠代の比率が高いと共
に高価な密閉式の型枠を導入しなければならず、成型コ
ストを機械化、省力化により低減できてもトータルコス
トとしては従来のスプレー法、プレミックス法と何ら変
わらないという結果を招く。またこのように密閉式型枠
を用いた場合、セメントモルタルの打設、含漫の状況が
観察あるいは確認できないため、オープン型枠では、事
前に防ぎ得るような欠陥が密閉式型枠では脱型後に現れ
るという事態も発生する. そこで、本発明者等は上述したGRC製品の各製造方法
の欠陥を解消した新たな製造方法を特開昭64−118
05号として提案した.この特開の製造方法は繊維を均
一に分散せしめ、バインダーで相互に接着せしめて成る
少なくとも厚さが51、嵩密度が0. Ig/cm以下
の繊維マットを型枠面に載置する工程、セメントモルタ
ルを打設する工程、振動を加えることにより繊維マット
にセメントモルタルを含浸せしめる工程、セメントモル
タルを硬化せしめる工程を含むことを特徴とする繊維強
セメント製品の製造方法である. 該特開の製造方法によれば繊維マットの嵩密度を0.I
g/cs以下に選択し、繊維間に一定の空隙をもたすこ
とによって繊維マット中におけるセメントモルタルの不
均一分布の解消を図っている.しかしながら上記嵩密度
の繊維マットでは、比較的小さな粒径の珪砂は容易に繊
維間を通過するが、粒径の大きな珪砂あるいは粒径が小
さくても凝集している珪砂は目詰まりをおこして繊維マ
ット中を浸透し難くなり、珪砂が繊維マットの上層部に
堆積しやすくなると共に内部にはセメントモルタルが含
浸されない部分、所謂巣が発生する.そこで、振動工程
を長くしたり、あるいは振動幅を大きくしたりすること
によって珪砂の繊維マット下層部への移動を図っても所
詮上層部と下層部とでセメントモルタルの分布に偏りが
生じる結果となり、硬化後のGRC製品の上層部と下層
部とで強度が異なり、設計どおりの製品が得られ難いと
いう問題がある.またこのように振動工程を長くしたり
、振動幅を大きくしたりすればタイルを型枠面と繊維マ
ットの間に配置してタイル貼りのパネルを製造する場合
にタイル同志が接触して破損が生ずる. 繊維マットへのセメントモルタルの含漫性を大きく左右
するのは珪砂の粒径てあるが、単に小さな粒径の珪砂を
選択して用いるだけでは良好な含浸性は得られない.す
なわち小さな粒径の珪砂を用いる場合、珪砂全体の表面
積が大きくなり、流動性が損なわれてしまうためである
.流動性を高めるためにはセメントモルタルの水の量を
多くすればよいが、水の量が増加するとGRC製品の乾
燥収縮が大きくなって反りが発生しやすく、また高強度
の製品が得られなくなる. [発明の目的1 本発明は先記した従来の問題点を解決するためなされた
ものでセメントモルタルの繊維マットへの含浸が速やか
に行われ、しかもGRC製品とした場合そりの発生がな
く、且つ高強度のGR.C¥A品の製造方法を提供する
ことを目的とするものである. [問題を解決するための手段] 本発明GRC製品の製造方法は、小さな粒径の珪砂を用
いると共にセメントの凝集を抑制し、減水剤を多量に用
いることによって上記の目的を達成しようとするもので
、すなわち均一に分散するットを型枠面に設置する工程
、セメントモルタルを打設し振動を加えることにより繊
維マットにセメントモルタルを含浸させる工程、セメン
トモルタルを硬化させる工程を含み、該セメントモルタ
ルの原料組戒は、セメント100重量部に対して珪砂5
0〜150重量部、水3a〜50重量部、減水剤0.8
〜3重IjL部から構成され、さらに該珪砂は平均粒径
が200μ鵬以下で、且つ105μmの篩を通過する粒
子が全体の20重量%以上を占めることを特徴とする. [作用] 本発明に使用する繊維マットは繊維が面内方向?一に分
散し、相互にバインダーで接着させて横成したものであ
る.繊維を接着させるためのバインダーの種類は特に限
定されないが、粉末状、液状のポリエステル樹脂、エボ
キシ樹脂、酢酸ビニル樹脂、アクリル樹脂、エチレンi
3:酸ビニル樹脂、フェノール樹脂等が使用可能であり
5繊維に対し、3〜20重量%の量が最適付着量である
.繊維はどのような種類の繊維でも使用できるが、安価
で作業性が良好であって、しかも耐アルカリ性の潰れた
ZrO■含有の耐アルカリガラス繊維を用いるのがより
大きくなると、セメントモルタルをマットに速やかに含
浸させることが不可能となる.マットの厚さは5■園以
上であることが望ましく、5〜25同の肉厚が最適であ
る.しかし、マットの肉厚はGRC製品として必要な肉
厚から決定されるものであり、ここで5III1以上と
したのは5m一未満であると曲げ応力が働いた場合たわ
みが太き〈、これが原因で亀裂が生ずると建材として問
題があるからである. 次にセメントモルタルの原料組成及び珪砂粒度分布の限
定理由を説明する.なおここでいう重量部はセメント1
00重量部に対する値である.珪砂は骨材として添加さ
れるものであり、50重量部未満であると、硬化後、G
RCの収縮量が大きく、製品の反りや、クラックが発生
し易い.150重量部以上では繊維の補強効率が悪くな
るのでGRCの強度が低くなる.また珪砂の平均粒径が
200μmより大きく且つ105μmの篩を通過する粒
子が20重量部以下であるとセメントモルタルが繊維マ
ットに十分含浸せず、GRC中に未含浸部分の巣が発生
する. 水が30重量部以上の時はセメントモルタルが繊維マッ
ト中に含浸せず、50重量部以上では硬化後のGRCの
収縮量が大きくなり、反り、クラックが発生するので強
度が弱くなる. 減水剤は、セメントの凝集を抑制すると作用を有するも
のであり、これを0.8重量部以上混合することによっ
て小さな粒径の珪砂を選択し′て用いた場合でも水を多
量用いることなく、セメントモルタルの繊維マットへの
含浸性を良くすることができる。しかしながら3重量部
以上用いるとセメントモルタルに成分分離がおこり、ま
たブリージングし易くなる. 本発明における振動方法としては、上部から加振する方
法、下部から加振する方法、横方向から加振する方法等
公知の振動方法はすべて可能であるが、好ましくはテー
ブル振動機により垂直振動を加えること、更に好ましく
はテーブル振動機により水平方向の方向性例えばテーブ
ル振動機の中央部から外端部に向かうような方向性を有
する垂直振動を加えるのが好適である.水平方向の方向
性を有する垂直振動が好ましい理由は、予め型枠に載置
した繊維マットの上にセメントモルタルを打設し、振動
を加えて成形する場合、一旦繊維マットの中に入ったセ
メントモルタルは、通常の振動によっては横方向に拡が
り難く、テーブル振動機の垂直振動に水平方向の方向性
を付与した方がセメントモルタルを横方向に動かしやす
いからである. 本発明において、セメントとはボルトランドセメント、
アルミナセメント、高炉セメント、速硬性セメント、低
アルカリ性セメント等公知のセメントを包含する.また
セメントモルタルを硬化せしめる工程は、室内養生、水
中養生、スチーム養生公知の硬化方法を包含する. [実施例] 以下、実施例に基づいて本発明を説明するが、本発明は
これらに限定されるものではない.GRC板は次のよう
はして作製した.分witJi方式のテーブル振動機の
上にスチール製の型枠を載せ、その型枠内に長さIOc
日の耐アルカリ性ガラス繊維をポリエステル樹脂で相互
に接着させてなる第  1  表 以  下  余  白 木花王社製 『マイテイ150J  (商品名)次に上
記第l表の珪砂を用いた第2表のセメントモルタルを用
意し、マットに過不足なく充填する量のセメントモルタ
ルを投入した後、3600rpmの振動を1分間加えて
GRC板を作った.翌日脱型漫セメントモルタルの含浸
の程度を観察し、また材令28日後におけるGRC板の
曲げ強度を測定した.それらの観察及び測定の結果を第
2表下欄に示す. 第2表に示す結果から本発明の実施例1〜5(,t[発
明の効果] 以上説明した本発明の繊維強化セメントの製造方法によ
れば繊維マットへのモルタルセメントの含漫が良好とな
り、反りの発生がない高強度のGRC板を製造できる.
In recent years, automatic spraying methods have been put into practical use, in which a traversing spray gun is used to spray onto formwork on a continuously moving conveyor, but even with this method, defoaming either relies on manual labor or is insufficient. The reality is that it is hardened in this state. The premix method is a method in which mortar and short fibers are mixed in advance with a mixer and then poured into a designated mold, and vibration is generally applied after pouring. This method can save labor compared to the spray method, and the molding cost is accordingly low, but the reinforcing efficiency is low because the fibers are randomly oriented in three dimensions.
Furthermore, due to the damage to the fibers during kneading, the strength of the GRC obtained is approximately half that of the spray method. Therefore, it cannot be applied to parts such as exterior wall materials of buildings, especially curtain wall panels, which could lead to a major accident in the unlikely event of an accident. Another problem with the premix method is that premix mortar containing several percent fiber has extremely poor fluidity compared to plain mortar. This becomes a big problem when supplying premix mortar to the formwork and when distributing the premix mortar to every corner of the formwork. In order to solve this problem, the premix method has no choice but to increase the water/cement ratio, which further deteriorates the physical properties of GRC. The mortar injection method is a method in which a glass fiber continuous strand mat is attached to a formwork, the formwork is sealed, and mortar is press-fitted. This method uses not premixed mortar;
Since it is a brain mortar, it is easy to feed into the formwork, and impregnation with cement and mortar can be easily achieved by press-fitting, which solves the problems with the premix method mentioned above. However, in the mortar injection method, the proportion of formwork required for GRC products is high, and expensive closed formwork must be introduced.Even if the molding cost can be reduced through mechanization and labor saving, the total cost is still lower than that of the conventional method. The result is no different from the spray method or premix method. Furthermore, when closed formwork is used, it is not possible to observe or check the state of cement mortar placement and inclusion, so defects that could be prevented in advance with open formwork may occur when the formwork is removed. There are also cases where it appears later. Therefore, the present inventors proposed a new manufacturing method that eliminates the defects of the above-mentioned manufacturing methods for GRC products.
I proposed it as issue 05. The manufacturing method disclosed in this patent involves uniformly dispersing fibers and adhering them to each other with a binder, with a thickness of at least 51 mm and a bulk density of 0.5 mm. The method includes the steps of placing a fiber mat of Ig/cm or less on the formwork surface, placing cement mortar, impregnating the fiber mat with cement mortar by applying vibration, and hardening the cement mortar. This is a manufacturing method for fiber-reinforced cement products. According to the manufacturing method of the patent, the bulk density of the fiber mat is 0. I
g/cs or less, and by providing a certain amount of voids between the fibers, we aim to eliminate uneven distribution of cement mortar in the fiber mat. However, in a fiber mat with the above-mentioned bulk density, silica sand with a relatively small particle size easily passes between the fibers, but silica sand with a large particle size or silica sand with a small particle size but agglomerated can clog the fibers. It becomes difficult for cement mortar to permeate through the mat, and silica sand tends to accumulate on the upper layer of the fiber mat, and so-called cavities occur inside the mat, where the cement mortar is not impregnated. Therefore, even if we try to move the silica sand to the lower layer of the fiber mat by lengthening the vibration process or increasing the vibration width, the result is that the distribution of cement mortar will be uneven between the upper layer and the lower layer. However, there is a problem in that the strength of the upper and lower layers of the GRC product after curing differs, making it difficult to obtain a product as designed. In addition, if the vibration process is made longer or the vibration amplitude is increased in this way, when tiles are placed between the formwork surface and the fiber mat to produce tiled panels, the tiles may come into contact with each other and be damaged. arise. The particle size of the silica sand has a large effect on the impregnability of the cement mortar into the fiber mat, but good impregnation cannot be obtained simply by selecting and using silica sand with a small particle size. In other words, when using silica sand with a small particle size, the surface area of the entire silica sand becomes large, which impairs fluidity. In order to increase fluidity, it is possible to increase the amount of water in the cement mortar, but if the amount of water increases, the drying shrinkage of the GRC product will increase, making it easier to warp and making it impossible to obtain a high-strength product. .. [Objective of the Invention 1] The present invention was made to solve the above-mentioned conventional problems, and impregnation of cement mortar into the fiber mat is carried out quickly, and when it is made into a GRC product, no warpage occurs. High strength GR. The purpose is to provide a manufacturing method for C¥A products. [Means for Solving the Problems] The method for manufacturing GRC products of the present invention attempts to achieve the above objectives by using silica sand with a small particle size, suppressing cement agglomeration, and using a large amount of water reducing agent. In other words, the process includes a step of installing a uniformly distributed mat on the mold surface, a step of impregnating the fiber mat with cement mortar by pouring cement mortar and applying vibration, and a step of hardening the cement mortar. The raw material composition for mortar is 5 parts of silica sand to 100 parts by weight of cement.
0 to 150 parts by weight, 3a to 50 parts by weight of water, water reducing agent 0.8
The silica sand is characterized by having an average particle size of 200 μm or less, and particles that pass through a 105 μm sieve account for 20% by weight or more of the total. [Function] Are the fibers in the fiber mat used in the present invention in the in-plane direction? It is made by dispersing them in one layer and adhering them to each other with a binder. The type of binder for adhering the fibers is not particularly limited, but includes powdered and liquid polyester resins, epoxy resins, vinyl acetate resins, acrylic resins, and ethylene i.
3: Acid vinyl resin, phenol resin, etc. can be used, and the optimum amount to be applied is 3 to 20% by weight based on the 5 fibers. Any type of fiber can be used, but alkali-resistant glass fiber containing crushed ZrO, which is inexpensive, easy to work with, and alkali-resistant, can be used to make cement mortar into a mat. Immediate impregnation becomes impossible. It is desirable that the thickness of the mat be 5 mm or more, and a thickness of 5 to 25 mm is optimal. However, the wall thickness of the mat is determined from the wall thickness required for a GRC product, and the reason for setting it above 5III1 here is that if it is less than 5m1, it will deflect more when bending stress is applied. This is because if cracks form in the material, it poses a problem as a building material. Next, we will explain the raw material composition of cement mortar and the reasons for limiting the silica sand particle size distribution. Note that parts by weight here refer to cement 1
The value is for 00 parts by weight. Silica sand is added as aggregate, and if it is less than 50 parts by weight, G
The amount of RC shrinkage is large, making it easy for products to warp and crack. If it exceeds 150 parts by weight, the reinforcing efficiency of the fibers will deteriorate, resulting in a decrease in the strength of the GRC. Furthermore, if the average particle size of the silica sand is larger than 200 μm and the number of particles passing through a 105 μm sieve is less than 20 parts by weight, the cement mortar will not be sufficiently impregnated into the fiber mat, and voids of unimpregnated portions will occur in the GRC. If the water content is 30 parts by weight or more, the cement mortar will not be impregnated into the fiber mat, and if the water content is 50 parts by weight or more, the amount of shrinkage of the GRC after curing will increase, causing warping and cracking, resulting in a weakened strength. A water reducing agent has the effect of suppressing cement agglomeration, and by mixing 0.8 parts by weight or more of this water reducing agent, even if silica sand with a small particle size is selected and used, it can be used without using a large amount of water. It is possible to improve the impregnation of cement mortar into fiber mats. However, if more than 3 parts by weight is used, component separation will occur in the cement mortar and it will be prone to breathing. As the vibration method in the present invention, all known vibration methods such as vibration from the top, vibration from the bottom, and lateral vibration are possible, but vertical vibration is preferably performed using a table vibrator. In addition, it is more preferable to use a table vibrator to apply vertical vibration having a horizontal direction, for example, a direction from the center of the table vibrator toward the outer end. The reason why vertical vibration with horizontal directionality is preferable is that when cement mortar is poured onto a fiber mat that has been placed on a formwork in advance and is formed by applying vibration, the cement that has entered the fiber mat once This is because mortar is difficult to spread laterally due to normal vibrations, and it is easier to move cement mortar laterally by adding horizontal directionality to the vertical vibrations of the table vibrator. In the present invention, cement refers to Boltland cement,
Includes known cements such as alumina cement, blast furnace cement, quick hardening cement, and low alkaline cement. Further, the process of curing cement mortar includes known curing methods such as indoor curing, underwater curing, and steam curing. [Examples] The present invention will be described below based on Examples, but the present invention is not limited thereto. The GRC board was prepared as follows. A steel formwork is placed on top of the MinwitJi table vibrator, and a length IOc is placed inside the formwork.
Made by adhering alkali-resistant glass fibers to each other with a polyester resin Table 1 and following Tables below Shiraki Mighty 150J (product name) manufactured by Kao Corporation Next, cement mortar shown in Table 2 using the silica sand shown in Table 1 above. A GRC board was prepared by adding cement mortar in an amount sufficient to fill the mat, and then applying vibration at 3600 rpm for 1 minute. The next day, the degree of impregnation of the demolded cement mortar was observed, and the bending strength of the GRC board after 28 days of age was measured. The results of those observations and measurements are shown in the lower column of Table 2. From the results shown in Table 2, Examples 1 to 5 of the present invention (, t [Effects of the Invention] According to the method for producing fiber reinforced cement of the present invention described above, the mortar cement is well incorporated into the fiber mat. , it is possible to produce high-strength GRC plates without warping.

Claims (1)

【特許請求の範囲】[Claims] (1)均一に分散する繊維をバインダーで相互に接着さ
せてなる、少なくとも厚さが5mm、嵩密度が0.1g
/cm以下の繊維マットを型枠面上に設置する工程、セ
メントモルタルを打設し、振動を加えることにより繊維
マットにセメントモルタルを含浸させる工程、セメント
モルタルを硬化させる工程を含み、該セメントモルタル
の原料組成は、セメント100重量部に対して珪砂50
〜150重量部、水30〜50重量部、減水剤0.8〜
3重量部から構成され、さらに該珪砂は平均粒径が20
0μm以下で、且つ105μmの篩を通過する粒子が全
体の20重量%以上を占めることを特徴とする繊維強化
セメント製品の製造方法。
(1) Made of uniformly dispersed fibers bonded together with a binder, with a thickness of at least 5 mm and a bulk density of 0.1 g.
/cm or less on the formwork surface, placing cement mortar and applying vibration to impregnate the fiber mat with cement mortar, and hardening the cement mortar. The raw material composition is 100 parts by weight of cement and 50 parts by weight of silica sand.
~150 parts by weight, 30-50 parts by weight of water, 0.8~ of water reducing agent
3 parts by weight, and the silica sand has an average particle size of 20
A method for producing a fiber-reinforced cement product, characterized in that particles having a size of 0 μm or less and passing through a 105 μm sieve account for 20% by weight or more of the total.
JP15640189A 1989-06-19 1989-06-19 Production of fiber-reinforced cement product Pending JPH0323249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15640189A JPH0323249A (en) 1989-06-19 1989-06-19 Production of fiber-reinforced cement product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15640189A JPH0323249A (en) 1989-06-19 1989-06-19 Production of fiber-reinforced cement product

Publications (1)

Publication Number Publication Date
JPH0323249A true JPH0323249A (en) 1991-01-31

Family

ID=15626933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15640189A Pending JPH0323249A (en) 1989-06-19 1989-06-19 Production of fiber-reinforced cement product

Country Status (1)

Country Link
JP (1) JPH0323249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691455A1 (en) * 1992-05-25 1993-11-26 Pavailler Jacques Thin baking sheets for bakery oven - of cement reinforced with cut glass fibres
EP0683714A1 (en) * 1992-11-17 1995-11-29 Ribbon Technology Corporation Method for manufacturing a reinforced cementitious structural member
KR20020003452A (en) * 2000-07-04 2002-01-12 강신용 Artificial marble stone for construction and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691455A1 (en) * 1992-05-25 1993-11-26 Pavailler Jacques Thin baking sheets for bakery oven - of cement reinforced with cut glass fibres
EP0683714A1 (en) * 1992-11-17 1995-11-29 Ribbon Technology Corporation Method for manufacturing a reinforced cementitious structural member
EP0683714A4 (en) * 1992-11-17 1997-06-04 Ribbon Technology Corp Method for manufacturing a reinforced cementitious structural member.
KR20020003452A (en) * 2000-07-04 2002-01-12 강신용 Artificial marble stone for construction and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Majumdar et al. Glass fibre reinforced cement
KR100635464B1 (en) Fiber reinforced mortar and repair-reinforcement method using thereof
KR101720467B1 (en) Manufacturing method of structure with reinforce fiber composite using 3d printer
CN107285693A (en) A kind of preparation method of the cast-in-place concrete non-dismantling formwork with self-reparing capability
EP0029430B1 (en) Moulding of construction products
DE202018105725U1 (en) Composite panel with lightweight concrete
JPH0323249A (en) Production of fiber-reinforced cement product
JP3641326B2 (en) Grout composition
JP5974346B1 (en) Inorganic material construction method
CN110577385A (en) GRC frame plate and preparation method thereof
EP0144965A2 (en) Stucco mortar
FI110494B (en) A method of making facade material
WO1998006677A1 (en) Process and device for producing coated aggregates for construction concrete and thus improving the fresh and/or set concrete properties
EP0321748B1 (en) Method for production of bearing slabs for sectional false floors, ceilings, roofs or the like
JPS58155913A (en) Manufacture of composite board for building
KR20060107203A (en) Method of reinforcement structure for concrete
JPH1177628A (en) Precast concrete plate, manufacture thereof, and execution method using the same
KR102710662B1 (en) High-strength mortar panel for reducing floor impact sound in apartment houses and its manufacturing method
JP7142868B1 (en) Inorganic material construction method
JP2005138360A (en) Leveling device, filling device and concrete structure manufacturing method
KR100838490B1 (en) Light-weight panel with high strength for access floor and preparation thereof
KR102322227B1 (en) High-strength mortar panel for reducing floor impact sound in apartment houses and its manufacturing method
JP7142869B1 (en) Inorganic material construction method
JP2001311234A (en) High flow fire resistive coating material and fire resistive coating method making use thereof
KR100376910B1 (en) Method for producing high-intensity concrete