[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03238037A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus

Info

Publication number
JPH03238037A
JPH03238037A JP3142190A JP3142190A JPH03238037A JP H03238037 A JPH03238037 A JP H03238037A JP 3142190 A JP3142190 A JP 3142190A JP 3142190 A JP3142190 A JP 3142190A JP H03238037 A JPH03238037 A JP H03238037A
Authority
JP
Japan
Prior art keywords
reaction chamber
reaction
tube
reforming catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3142190A
Other languages
Japanese (ja)
Inventor
Seiichi Otsu
大津 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3142190A priority Critical patent/JPH03238037A/en
Publication of JPH03238037A publication Critical patent/JPH03238037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:Not to form a space without reforming catalyst in a reaction chamber owing to volume expansion of the reaction chamber by thermal expansion during work time by installing a spring part, which expands and contracts following the expansion and contraction of a reaction tube in the same direction as those of the reaction tube in its longitudinal direction, in the reaction chamber. CONSTITUTION:A combustion gas is supplied to a container 1 by a burner 17. A reaction chamber 3 is filled with a reforming catalyst 5. Further, a raw material gas which is supplied to the container 1 through a raw material gas supplying inlet 9 and reformed by heat-exchange with the combustion gas while rising in a reaction chamber 3 is turned at the upper end of a reaction tube 2 and the heat preserved in the raw material gas is made to be recovered by a raw material gas rising in the reaction chamber 3 while the former raw material gas descends in an inner tube 2b. A spring part 20 which expands and contracts following the expansion and contraction of the reaction tube 2 in the same direction as those of the reaction tube 2 in its longitudinal direction is installed in the reaction chamber 3. As a result, even if the volume of the reaction chamber is expanded owing to the thermal expansion during the work time, no space without reforming catalyst is formed in the reaction chamber.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は燃料改質装置に係り、特に燃料油、ナフサ、天
然ガス等の炭化水素と水蒸気との混合流体を改質触媒の
存在下で反応させ、水素、−酸化炭素、二酸化炭素、メ
タン、水蒸気等からなる混合気体に改質させる燃料改質
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel reforming device, and in particular is used to reform a mixed fluid of hydrocarbons such as fuel oil, naphtha, and natural gas and steam. The present invention relates to a fuel reforming device that reacts in the presence of a catalyst to reform a mixed gas consisting of hydrogen, carbon oxide, carbon dioxide, methane, water vapor, etc.

(従来の技術) 第5図は従来の二重管式の燃料改質装置を示している。(Conventional technology) FIG. 5 shows a conventional double pipe type fuel reformer.

図において、王は断熱層を備える容器を示し、この容器
1内には反応管2が配置されている。この反応管2は外
管2aと内管2bを同心に配置した二重管であり、これ
ら外管2aと内管2bとの間には環状の反応室3が形成
されている。この反応室3内には改質触媒5が充填され
、この改質触媒5は上部が上部多孔板4aにて、下部が
下部多孔板4bにて覆われている。上部多孔板4aは改
質触媒5が上方に飛散しないように、下部多孔板4bは
改質触媒5が下方に落下しないよう閉じ込めるものであ
る。また、反応管2の頂部には断熱キャップ6が取付け
られ高温の燃焼ガスから該反応管2の頭部を保護してい
る。さらに、外管2aの下端と容器1の内壁とは環状の
上支持板7aで結合される一方、内管2bの下端と容器
1の内壁とは環状の下支持板7bで結合され、これら上
支持板7aと下支持板7bとの間には原料ガス室8が形
成されている。この原料ガス室8は原料ガス供給口9に
連通している。上支持板7aの上方側には燃焼ガス流通
室10が形成され、この燃焼ガス流通室10はその下部
において燃焼ガス排出口11に連通している。また下支
持板7bの下方側には生成ガス流通室12が形成され、
この生成ガス流通室12は生成ガス排出口13に連通し
ている。また、内管2bの内側には上端が閉じたプラグ
管15が同心に配置されこのプラグ管15と内管2bと
の間には環状の再生室16が形成され、この再生室16
は下部において上記生成ガス流通室12に連通している
。また、容器1の上端にはバーナ17が取付けられ、こ
のバーナ17には燃料供給口18と空気供給口19とが
形成されている。
In the figure, the shank indicates a container provided with a heat insulating layer, and a reaction tube 2 is placed inside this container 1. The reaction tube 2 is a double tube in which an outer tube 2a and an inner tube 2b are arranged concentrically, and an annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. The reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 is covered at its upper part with an upper perforated plate 4a and its lower part with a lower perforated plate 4b. The upper porous plate 4a confines the reforming catalyst 5 so that it does not scatter upward, and the lower porous plate 4b confines the reforming catalyst 5 so that it does not fall downward. Further, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 2 from high temperature combustion gas. Further, the lower end of the outer tube 2a and the inner wall of the container 1 are connected by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b. A source gas chamber 8 is formed between the support plate 7a and the lower support plate 7b. This source gas chamber 8 communicates with a source gas supply port 9 . A combustion gas distribution chamber 10 is formed above the upper support plate 7a, and the combustion gas distribution chamber 10 communicates with a combustion gas discharge port 11 at its lower portion. Further, a generated gas distribution chamber 12 is formed on the lower side of the lower support plate 7b,
This generated gas distribution chamber 12 communicates with a generated gas outlet 13 . Further, a plug pipe 15 with a closed upper end is arranged concentrically inside the inner pipe 2b, and an annular regeneration chamber 16 is formed between the plug pipe 15 and the inner pipe 2b.
communicates with the generated gas distribution chamber 12 at its lower part. Further, a burner 17 is attached to the upper end of the container 1, and a fuel supply port 18 and an air supply port 19 are formed in the burner 17.

このように構成された従来の燃料改質装置において、改
質のための原料ガスはガス供給口9から供給される。こ
の原料ガスは原料ガス室8を経て環状の反応室3内に入
り、ここを上昇し、反応管2内の上端部で反転し、再生
室16内を降下し、そして、生成ガス流通室12を経て
、生成ガス排出口13から送出される。
In the conventional fuel reformer configured as described above, raw material gas for reforming is supplied from the gas supply port 9. This raw material gas enters the annular reaction chamber 3 through the raw material gas chamber 8, rises there, turns around at the upper end of the reaction tube 2, descends inside the regeneration chamber 16, and then descends into the produced gas distribution chamber 12. The generated gas is then sent out from the generated gas outlet 13.

ところで、反応室3には改質触媒5が充填されているの
で、原料ガスはここを上昇するうちに改質される。この
改質反応は、 C)I4十820 = CO+3H2 49,27KcaQ/ gmoff であり、これは吸熱反応である。この反応は右に促進さ
せるためには外部から熱を供給しなければならない。
By the way, since the reaction chamber 3 is filled with a reforming catalyst 5, the raw material gas is reformed while rising there. This reforming reaction is: C) I4820 = CO+3H2 49,27KcaQ/gmoff, which is an endothermic reaction. Heat must be supplied from the outside to accelerate this reaction.

この熱はバーナ17から燃焼ガス(点線で示す)として
供給される。燃料供給口18から燃料が供給され、空気
供給口19から空気が供給され、これら3− 4− はバーナ17で混合燃焼される。そして、この燃焼ガス
lキ燃焼ガス流通室10に入り、ここを降下するこの降
下の途中で反応室3内を上昇する原料ガス(実線で示す
)と熱交換したあと、燃焼ガス排出口11から排出され
る。
This heat is supplied from burner 17 as combustion gas (indicated by dotted lines). Fuel is supplied from the fuel supply port 18 and air is supplied from the air supply port 19, and these 3-4- are mixed and burned in the burner 17. Then, this combustion gas enters the combustion gas distribution chamber 10 and descends.After exchanging heat with the raw material gas (indicated by a solid line) rising in the reaction chamber 3 during the descent, the combustion gas exits from the combustion gas outlet 11. be discharged.

(発明が解決しようとする課題) ところで、上述した従来の反応管2には、遠心鋳造によ
り製造された高ニツケル高クロム鋼の耐熱合金管が用い
られ、改質触媒5にはアルミナ等からなるセラミック基
材にニッケルを付与した粒子状のものが用いられている
。この反応qlt2の材質は改質触媒5の材質に比較し
て線膨張率が大きく、熱が加えられている間、反応管2
は径方向および軸方向に伸びるのに対して、改質触媒5
は殆ど伸びない。
(Problems to be Solved by the Invention) By the way, the conventional reaction tube 2 described above uses a heat-resistant alloy tube made of high nickel high chromium steel manufactured by centrifugal casting, and the reforming catalyst 5 is made of alumina or the like. A particulate material in which nickel is added to a ceramic base material is used. The material of this reaction qlt2 has a larger coefficient of linear expansion than the material of the reforming catalyst 5, and while heat is being applied, the reaction tube 2
extends in the radial and axial directions, whereas the reforming catalyst 5
hardly grows.

したがって、加熱の間、反応管2が伸びて反応室3の体
積が広がった分だけ、改質触媒5は該反応室3の下方領
域に沈下し、反応室3内には改質触媒5の存在しない空
間が生じる。この状態で燃料改質装置を運転すると、反
応室3内を上昇する原料ガスによって改質触媒5の流動
が起こる。この改質触媒5の流動が発生すると、改質触
媒5の粒子が割れ、粉化が進むことがある。この触媒の
破片や粉が、生成ガス流に乗って生成ガス流通室12内
に入り込み、その室壁に付着したり、装置外に排出され
たあと、下流の配管、弁機器等に付着したりして、故障
や異常を引き起こすという問題が生じる。
Therefore, during heating, the reforming catalyst 5 sinks to the lower region of the reaction chamber 3 by the amount that the reaction tube 2 is extended and the volume of the reaction chamber 3 is expanded, and the reforming catalyst 5 is in the reaction chamber 3. A space that does not exist is created. When the fuel reformer is operated in this state, the reforming catalyst 5 flows due to the raw material gas rising in the reaction chamber 3. When this flow of the reforming catalyst 5 occurs, the particles of the reforming catalyst 5 may break and pulverization may progress. Fragments and powder of the catalyst may enter the produced gas distribution chamber 12 along with the produced gas flow and adhere to the chamber wall, or may adhere to downstream piping, valve equipment, etc. after being discharged outside the device. This causes problems such as failures and abnormalities.

また、このような場合、上述した改質反応の逆反応であ
るメタネーション反応を引き起こす虞れがある。
Moreover, in such a case, there is a possibility that a methanation reaction, which is a reverse reaction of the above-mentioned reforming reaction, will occur.

CO+3)+2=CH,+820 + 49 、27KcaQ/ gmoRこの反応が起き
ると、強度の発熱反応であることから温度の異常上昇を
来たすとともに、水素、酸化炭素を消費して、燃料改質
装置の改質効率を低下させるという問題が生じる。
CO+3)+2=CH,+820+49,27KcaQ/gmoR When this reaction occurs, it causes an abnormal rise in temperature as it is a strong exothermic reaction, and also consumes hydrogen and carbon oxides, causing a problem in the fuel reformer. A problem arises in that quality efficiency is reduced.

そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、運転中の熱膨張により反応室の体積が
広がっても、改質触媒の存在しない空間が該反応室内に
形成されないようにした燃料改質装置を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, so that even if the volume of the reaction chamber expands due to thermal expansion during operation, a space in which the reforming catalyst does not exist will not be formed in the reaction chamber. An object of the present invention is to provide a fuel reforming device as described above.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明は中空の容器と、こ
の容器内に燃焼ガスを供給するバーナと、容器内に鉛直
に配設されると共に外管と内管とを同心に配置して二重
管に構成されかつ頂部にキャップを備える反応管と、外
管と内管との間に形成された反応室と、この反応室内に
充填された改質触媒と、この改質触媒が上方に飛散しな
いように反応室の上部を覆う上部多孔板と、改質触媒が
下方に落下しないように反応室の下部を覆う下部多孔板
とを備え、容器内に供給され反応室内を上昇する過程で
上記燃焼ガスとの熱交換により改質される原料ガスを、
反応管内の上端部にて反転させて、内管の内部を降下す
る間にその保有する熱を、反応室内を上昇する原料ガス
へ回収させるようにした燃料改質装置において、反応室
内に反応管の長手方向の伸縮に追随して同じ方向に伸縮
するばね部材を設けたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a hollow container, a burner for supplying combustion gas into the container, and an outer pipe arranged vertically in the container. A reaction tube configured as a double tube with an inner tube arranged concentrically and equipped with a cap at the top, a reaction chamber formed between the outer tube and the inner tube, and a reformer filled in this reaction chamber. It is equipped with a catalyst, an upper perforated plate that covers the upper part of the reaction chamber to prevent the reforming catalyst from scattering upward, and a lower perforated plate that covers the lower part of the reaction chamber to prevent the reforming catalyst from falling downward. The raw material gas is reformed by heat exchange with the combustion gas as it rises inside the reaction chamber.
In a fuel reformer, the reaction tube is inverted at the upper end of the reaction tube so that the heat retained while descending inside the inner tube is recovered to the raw material gas rising inside the reaction chamber. It is characterized by providing a spring member that expands and contracts in the same direction following the expansion and contraction in the longitudinal direction.

(作用) 本発明によれば、運転中に熱膨張により反応室が広がっ
たとしても、反応室内に設置されたばね部材も熱膨張に
より、触媒層内を長手方向および半径方向に変位するた
め、変位するばね部材に接している触媒層は押し上げら
れ、最終的に改質触媒の充てん密度が変化して反応室内
に改質触媒の存在しない空間が形成されるのを防止する
ことができ、運転時に改質触媒の流動が起こりうる流量
のガスが流れても、流動空間が存在しないため、改質触
媒の流動は起こらず、改質触媒に割れが生じたり、粉化
が促進されることはない。
(Function) According to the present invention, even if the reaction chamber expands due to thermal expansion during operation, the spring member installed inside the reaction chamber also displaces within the catalyst layer in the longitudinal and radial directions due to thermal expansion. The catalyst layer in contact with the spring member is pushed up, which ultimately changes the packing density of the reforming catalyst and prevents the formation of a space in the reaction chamber where no reforming catalyst exists. Even if gas flows at a flow rate that would cause the reforming catalyst to flow, there is no flow space, so the reforming catalyst does not flow, and the reforming catalyst will not crack or its pulverization will not be promoted. .

(実施例) 以下、本発明による燃料改質装置の一実施例を第3図と
同一部分に同一符号を付して示した第1図を参照して説
明する。
(Embodiment) Hereinafter, an embodiment of a fuel reformer according to the present invention will be described with reference to FIG. 1, in which the same parts as in FIG. 3 are denoted by the same reference numerals.

第1図において、1は断熱層を備える容器を示し、この
容器1内には反応管2が配置されている7− この反応管2は外管2aと内管2bを同心に配置した二
重管であり、これら外管2aと内管2bとの間には環状
の反応室3が形成されている。この反応室3には改質触
媒5が充填され、この改質触媒5は上部が上部多孔板4
aにて、下部が下部多孔板4bにて覆われている。上部
多孔板4aは改質触媒5が上方に飛散しないように、ま
た下部多孔板4bは改質触媒5が下方に落下しないよう
に閉じ込めるものである。さらに、反応管2の頂部には
断熱キャップ6が取付けられ、高温の燃焼ガスから該反
応管2の頭部を保護している。外管2aの下端と容器1
の内壁とは環状の上支持板7aで結合される一方、内管
2bの下端と容器1の内壁とは環状の下支持板7bで結
合され、これら上支持板7aと下支持板7bとの間には
原料ガス室8が形成されている。この原料ガス室8は原
料ガス供給口9に連通している。
In FIG. 1, 1 indicates a container equipped with a heat insulating layer, and a reaction tube 2 is placed inside this container 1. This reaction tube 2 is a double-layered container with an outer tube 2a and an inner tube 2b arranged concentrically. An annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. This reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 has an upper porous plate 4 at the top.
At a, the lower part is covered with a lower perforated plate 4b. The upper porous plate 4a confines the reforming catalyst 5 to prevent it from scattering upward, and the lower porous plate 4b confines the reforming catalyst 5 from falling downward. Furthermore, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 2 from high temperature combustion gas. The lower end of the outer tube 2a and the container 1
The inner wall of the inner tube 2b is connected to the inner wall of the container 1 by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b. A raw material gas chamber 8 is formed between them. This source gas chamber 8 communicates with a source gas supply port 9 .

上支持板17aの上方側には燃焼ガス流通室10が形成
され、この燃焼ガス流通室10はその下部において燃焼
ガス排出口11に連通している。下支持板7bの下方側
には生成ガス流通室12が形成され、この生成ガス流通
室12は生成ガス排出口13に連通している。以上の構
成は従来のものと同じである。
A combustion gas distribution chamber 10 is formed above the upper support plate 17a, and the combustion gas distribution chamber 10 communicates with a combustion gas discharge port 11 at its lower portion. A generated gas distribution chamber 12 is formed on the lower side of the lower support plate 7b, and this generated gas distribution chamber 12 communicates with a generated gas discharge port 13. The above configuration is the same as the conventional one.

本実施例においては上記構成と共に反応管2の内部にお
いて反応室3内に線膨張係数の大きな金属製のコイルば
ね20を設置しである。
In this embodiment, in addition to the above structure, a metal coil spring 20 having a large coefficient of linear expansion is installed inside the reaction tube 2 and inside the reaction chamber 3.

このコイルばね20は第工図に示すように内管2b又は
外管2aに固定された下部多孔板4bと内管2b又は外
管2aに固定された上部多孔板4aの間で挟まれ圧縮さ
れた状態にある。
As shown in the construction drawing, this coil spring 20 is compressed by being sandwiched between a lower perforated plate 4b fixed to the inner tube 2b or outer tube 2a and an upper perforated plate 4a fixed to the inner tube 2b or outer tube 2a. is in a state of

次に、上記構成によるところの動作を説明する。Next, the operation based on the above configuration will be explained.

燃料改質装置の運転時には反応管2の内部の反応室3は
原料ガスが外管2a側から加熱され、反応管2は長手方
向に熱膨張するので、下部多孔板4bと上部多孔板4a
の距離は増加するがコイルばね20は圧縮された状態に
あるので、下部多孔板4bと上部多孔板4aを両端が接
したまま同じ方向に伸びる。
During operation of the fuel reformer, the raw material gas in the reaction chamber 3 inside the reaction tube 2 is heated from the outer tube 2a side, and the reaction tube 2 thermally expands in the longitudinal direction.
Although the distance increases, since the coil spring 20 is in a compressed state, the lower perforated plate 4b and the upper perforated plate 4a extend in the same direction with both ends touching.

コイルばね20が変位する状態を第1a図に示すが、コ
イル20が長手方向に全体でL1変位すると、その中間
部分は各L2,L3だけ変位することがわかる。
The state in which the coil spring 20 is displaced is shown in FIG. 1a, and it can be seen that when the coil 20 as a whole is displaced L1 in the longitudinal direction, the intermediate portion thereof is displaced by L2 and L3 respectively.

したがって、コイルばね20が変位する際に反応室3内
に充填され、コイル20に接する改質触媒5は上方に押
し上げられ、コイルばね20周辺の触媒充填密度が原料
ガスの流体力の影響との相乗効果により少し低下し、触
媒層全体の体積を増加させることができる。
Therefore, when the coil spring 20 is displaced, the reforming catalyst 5 filled in the reaction chamber 3 and in contact with the coil 20 is pushed upward, and the catalyst packing density around the coil spring 20 is changed due to the influence of the fluid force of the raw material gas. Due to the synergistic effect, it can be reduced slightly and increase the volume of the entire catalyst layer.

したがって、熱膨張により、反応室3の体積が増加する
とき、コイルばね20の作用により触媒層全体の体積も
増加するので、改質触媒5の反応室3内における沈み込
みを最少に抑え、反応室3内に改質触媒5の存在しない
空間が発生するのを防止できる。
Therefore, when the volume of the reaction chamber 3 increases due to thermal expansion, the volume of the entire catalyst layer also increases due to the action of the coil spring 20, so that the sinking of the reforming catalyst 5 in the reaction chamber 3 is minimized, and the reaction It is possible to prevent the creation of a space in the chamber 3 where the reforming catalyst 5 does not exist.

また、コイルばね20は熱膨張により上部多孔板48等
に当っても自ら縮むことで、これら部材に大きな力を及
ぼすことはない。
In addition, even if the coil spring 20 hits the upper porous plate 48 or the like due to thermal expansion, it will contract by itself and will not exert a large force on these members.

他の実施例として、第2図ではコイルばね21の上端と
下端とを反応管2の外管2aに固定したものが使用され
る。これは長手方向の変動を外管2aの熱膨張に依存せ
しめるために用いられる。この場合、長手方向の作動は
より確実となり、触媒層内の伝熱性能も向上できる。
As another embodiment, in FIG. 2, a coil spring 21 whose upper and lower ends are fixed to the outer tube 2a of the reaction tube 2 is used. This is used to make the variation in the longitudinal direction dependent on the thermal expansion of the outer tube 2a. In this case, the operation in the longitudinal direction becomes more reliable and the heat transfer performance within the catalyst layer can also be improved.

第3図はコイルばねを円形断面から短形断面に代えたも
ので、コイルばね22の変位の影響が触媒層により確実
に伝わるようにしたものである。
In FIG. 3, the coil spring has a rectangular cross section instead of a circular cross section, so that the influence of the displacement of the coil spring 22 is transmitted more reliably to the catalyst layer.

第4図は第1図のコイルばね20に等ピッチで第4a図
に示される多孔板23を取り付けてやはりコイルばね2
2の長手方向の変位の影響を助長しようとするものであ
る。
FIG. 4 shows the coil spring 20 shown in FIG. 1 by attaching perforated plates 23 shown in FIG. 4a at equal pitches.
This is intended to enhance the effect of displacement in the longitudinal direction of 2.

かくして、再生室16内に流入する原料ガス中に、改質
触媒5の破片や粉が混入する可能性がなくなり、改質触
媒5の破片や粉が下流に流れ出て、これらが生成ガス流
通室12の室壁に付着し、あるいは装置外の下流の配管
、弁、機器類等に付着してしまう等の不都合をなくすこ
とができる。
In this way, there is no possibility that fragments and powder of the reforming catalyst 5 will be mixed into the raw material gas flowing into the regeneration chamber 16, and the fragments and powder of the reforming catalyst 5 will flow downstream and be transferred to the produced gas distribution chamber. It is possible to eliminate inconveniences such as adhesion to the walls of the 12 chambers or to downstream piping, valves, equipment, etc. outside the apparatus.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明は運転中に熱膨
張により反応室の体積が広がったとしても、それに見合
うだけばね部材が伸びて触媒層全体の体積を増加させる
ように構成されているので、反応室内で改質触媒の流動
を生じるような改質触媒の充填されない空間ができるこ
とはない。
As is clear from the above description, the present invention is configured such that even if the volume of the reaction chamber expands due to thermal expansion during operation, the spring member stretches accordingly to increase the volume of the entire catalyst layer. Therefore, a space not filled with the reforming catalyst, which would cause the reforming catalyst to flow, is not created in the reaction chamber.

1− 12− したがって、本発明によれば改質触媒に割れが発生し、
粉化が進む等の不都合を引き起こすことがなく、燃料改
質装置を長期にわたって安定した性能に保つことができ
るという効果を奏する。
1-12- Therefore, according to the present invention, cracks occur in the reforming catalyst,
This has the effect that the fuel reformer can maintain stable performance over a long period of time without causing inconveniences such as progress of powdering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料改質装置の一実施例を示す断
面図、第1a図は本発明における動作を説明するための
説明図、第2図ないし第4図は本発明の他の実施例を示
す断面図、第4a図は第4図の多孔板を拡大して示す斜
視図、第5図は従来の燃料改質装置を示す断面図である
。 l・・・容器       2・・・反応管2a・・・
外管       2b・・・内管3・・・反応室  
    4a・・・上部多孔板4b・・・下部多孔板 
   5・・・改質触媒6・・・断熱ギャップ   2
0,21,22・・・コイルばね23・・・多孔板
FIG. 1 is a sectional view showing one embodiment of a fuel reformer according to the present invention, FIG. 1a is an explanatory diagram for explaining the operation of the present invention, and FIGS. 2 to 4 are other embodiments of the present invention. FIG. 4a is an enlarged perspective view of the perforated plate of FIG. 4, and FIG. 5 is a cross-sectional view of a conventional fuel reformer. l... Container 2... Reaction tube 2a...
Outer tube 2b...Inner tube 3...Reaction chamber
4a... Upper perforated plate 4b... Lower perforated plate
5... Reforming catalyst 6... Adiabatic gap 2
0, 21, 22...Coil spring 23...Perforated plate

Claims (1)

【特許請求の範囲】[Claims] (1)中空の容器と、この容器内に燃焼ガスを供給する
バーナと、上記容器内に鉛直に配設されると共に外管と
内管とを同心に配置して二重管に構成されかつ頂部にキ
ャップを備える反応管と、上記外管と上記内管との間に
形成された反応室と、この反応室内に充填された改質触
媒と、この改質触媒が上方に飛散しないように該反応室
の上部を覆う上部多孔板と、上記改質触媒が下方に落下
しないように該反応室の下部を覆う下部多孔板とを備え
、上記容器内に供給され上記反応室内を上昇する過程で
上記燃焼ガスとの熱交換により改質される原料ガスを、
上記反応管内の上端部にて反転させて、上記内管の内部
を降下する間にその保有する熱を、上記反応室内を上昇
する原料ガスへ回収させるようにした燃料改質装置にお
いて、上記反応室内に上記反応管の長手方向の伸縮に追
随して同じ方向に伸縮するばね部材を設けたことを特徴
とする燃料改質装置。
(1) A hollow container, a burner for supplying combustion gas into the container, arranged vertically in the container, and configured into a double pipe with an outer tube and an inner tube arranged concentrically; A reaction tube provided with a cap at the top, a reaction chamber formed between the outer tube and the inner tube, a reforming catalyst filled in the reaction chamber, and a method to prevent the reforming catalyst from scattering upward. A process in which the reforming catalyst is supplied into the container and ascends within the reaction chamber, comprising an upper perforated plate that covers the upper part of the reaction chamber and a lower perforated plate that covers the lower part of the reaction chamber to prevent the reforming catalyst from falling downward. The raw material gas that is reformed by heat exchange with the above combustion gas is
In the fuel reformer, the reaction tube is inverted at the upper end of the inner tube so that the heat retained while descending inside the inner tube is recovered to the raw material gas rising in the reaction chamber. A fuel reforming device characterized in that a spring member is provided in the chamber that expands and contracts in the same direction as the reaction tube expands and contracts in the longitudinal direction.
JP3142190A 1990-02-14 1990-02-14 Fuel reforming apparatus Pending JPH03238037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3142190A JPH03238037A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142190A JPH03238037A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Publications (1)

Publication Number Publication Date
JPH03238037A true JPH03238037A (en) 1991-10-23

Family

ID=12330793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142190A Pending JPH03238037A (en) 1990-02-14 1990-02-14 Fuel reforming apparatus

Country Status (1)

Country Link
JP (1) JPH03238037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372462A (en) * 2001-02-21 2002-08-28 Univ Newcastle Reactor for conducting endothermic reactions
JP2009007204A (en) * 2007-06-28 2009-01-15 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
RU2636507C1 (en) * 2016-11-24 2017-11-23 Олег Петрович Андреев Shell-tube catalytic reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372462A (en) * 2001-02-21 2002-08-28 Univ Newcastle Reactor for conducting endothermic reactions
JP2009007204A (en) * 2007-06-28 2009-01-15 Nippon Oil Corp Hydrogen production apparatus and fuel cell system
RU2636507C1 (en) * 2016-11-24 2017-11-23 Олег Петрович Андреев Shell-tube catalytic reactor

Similar Documents

Publication Publication Date Title
AU655395B2 (en) Lined reformer tubes for high pressure reformer reactors
US4315893A (en) Reformer employing finned heat pipes
CA2038289C (en) Endothermic reaction apparatus
JP3262354B2 (en) Reformer for non-adiabatic catalytic reaction
JP2006514909A (en) Fuel conversion reactor
JPH03238037A (en) Fuel reforming apparatus
JP3437684B2 (en) Fuel reformer for fuel cell power plant and operation method thereof
JP2001342002A (en) Fuel reformer
US4325916A (en) Reformer furnace seal
JPH03238036A (en) Fuel reforming apparatus
JP3322933B2 (en) Fuel reformer
JP4069621B2 (en) Reformer
JP3839846B2 (en) Vertical catalytic reactor
JPH08301602A (en) Fuel reformer
JP2567055B2 (en) Fuel reformer
JPH03106434A (en) Fuel reforming apparatus
US6667014B1 (en) Catalytic reactor and catalyst configuration designed to reduce catalyst slumping and crushing
JPS6183602A (en) Reforming apparatus
JP2738988B2 (en) Fuel reformer
JP4574243B2 (en) Catalyst packing structure
JPS61232203A (en) Generation of hydrogen containing gas
JPH05305229A (en) Reformer
JPS6071035A (en) Reforming device
JPH0639794Y2 (en) Fuel cell reformer
JPH0431243Y2 (en)