JPH0323630B2 - - Google Patents
Info
- Publication number
- JPH0323630B2 JPH0323630B2 JP58028569A JP2856983A JPH0323630B2 JP H0323630 B2 JPH0323630 B2 JP H0323630B2 JP 58028569 A JP58028569 A JP 58028569A JP 2856983 A JP2856983 A JP 2856983A JP H0323630 B2 JPH0323630 B2 JP H0323630B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- resistance
- silicon
- difficult
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 238000005266 casting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910001120 nichrome Inorganic materials 0.000 claims description 5
- 238000005477 sputtering target Methods 0.000 claims description 5
- 238000010583 slow cooling Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- 229910000896 Manganin Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Description
【発明の詳細な説明】
本発明はシリコン、特に高濃度にシリコンを含
んだニクロム系スパツタリング用ターゲツトに関
するものである。特に電子部品として使用される
抵抗薄膜作製用スパツタリングターゲツトに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to silicon, particularly nichrome-based sputtering targets containing a high concentration of silicon. In particular, the present invention relates to sputtering targets for producing resistive thin films used as electronic components.
現在もつとも精度の高い標準抵抗器はそのほと
んどがマンガニン(86Cu−12Mn−2Ni)、カルマ
(73Ni−20Cr−7Al+Fe)、ニクロタール(75Ni
−17Cr−8Mn+Si)といつた精密抵抗線を用い
た巻線抵抗である。金属被膜抵抗器はこの巻線抵
抗に次ぐ精密抵抗器であり小型で高抵抗が得やす
いという利点がある。一般に抵抗器に使用される
薄膜用材料には次のような条件が要求される。 Most of the current highly accurate standard resistors are manganin (86Cu-12Mn-2Ni), Karma (73Ni-20Cr-7Al+Fe), and nicrotal (75Ni).
This is a wire-wound resistor using precision resistance wire such as -17Cr-8Mn+Si). Metal film resistors are precision resistors second only to wire-wound resistors, and have the advantage of being small and easily achieving high resistance. Generally, the following conditions are required for thin film materials used in resistors.
比抵抗値が適当が大きさであること
温度係数が小さいこと
雰囲気ガスに対して安定であること
着膜が容易で組成の制御が正確にできること
などである。Ni−Cr合金は比抵抗が高く、その
酸化皮膜はち密で耐熱性にすぐれているが温度係
数が100〜150ppm/℃と正に大きいため抵抗薄
膜として使用する場合には通常Al、Si等を添加
し温度係数の調整を行つて使用されている。 It must have an appropriate specific resistance value, it must have a small temperature coefficient, it must be stable against atmospheric gases, it can be easily deposited, and its composition can be precisely controlled. Ni-Cr alloy has a high specific resistance, and its oxide film is dense and has excellent heat resistance, but its temperature coefficient is as large as 100 to 150 ppm/℃, so when used as a resistive thin film, Al, Si, etc. are usually used. It is used after adding it and adjusting the temperature coefficient.
金属皮膜の作製方法としては従来真空蒸着法が
一般に用いられていたが真空蒸着法では蒸気圧の
異なる金属の合金を使用すると蒸着材料と形成膜
との間に大きな組成ずれが生じることがあり高精
度の膜を形成するためには高度な膜の管理を要求
され、効率よく生産を行うことは困難である。近
年マグネトロン・スパツタの技術の進歩により高
精度の膜の形成を容易に行うことができるように
なり真空蒸着法に替つてスパツタリング法が多く
用いられるようになつてきている。これに用いら
れる抵抗薄膜用ターゲツトとしてはおおよそ
Ni/Cr比50/50の組成にSiを1〜7%添加した
合金のターゲツトが使用されているがこれらのも
のでは初抵抗500Ω程度までの中抵抗の抵抗器は
高精度のものが作製可能であるが初抵抗500Ω以
上の高抵抗のものを高精度で作ることはむずかし
くそのためにはターゲツト自体の比抵抗の高いも
のを使用する必要がある。 Conventionally, vacuum evaporation has been commonly used as a method for producing metal films, but when using a vacuum evaporation method, a large compositional discrepancy occurs between the evaporation material and the formed film when an alloy of metals with different vapor pressures is used. In order to form a film with high precision, advanced film management is required, making it difficult to perform production efficiently. In recent years, advances in magnetron sputtering technology have made it easier to form highly accurate films, and sputtering has come to be used more frequently in place of vacuum evaporation. The target for the resistive thin film used for this purpose is approximately
Alloy targets with a Ni/Cr ratio of 50/50 and 1 to 7% Si added are used, and with these targets, high precision resistors with medium resistance up to an initial resistance of about 500 Ω can be manufactured. However, it is difficult to manufacture a high-resistance target with an initial resistance of 500 Ω or more with high precision, and to do so, it is necessary to use a target with a high specific resistance.
一般にスパツタリングターゲツトとして必要と
される条件は
板状に容易に加工可能であること
理論密度に近いち密なものでガスの吸蔵がない
こと
組成は均一で、合金として組成の制御が容易で
あること
電力投入時にソリ、クラツク等の発生を起こさ
ないもの
などを備えていることが必要である。 In general, the conditions required for a sputtering target are that it can be easily processed into a plate shape, that it is dense with close to theoretical density and does not absorb gas, that it has a uniform composition, and that it is easy to control the composition as an alloy. It is necessary to have something that will not cause warping, cracking, etc. when power is turned on.
現在高抵抗用の材料としてはCrSi、Cr−SiOと
いつた材料が考えられるが、これらの材料では高
精度の抵抗薄膜を作ることは困難でありかつ安定
性にも問題がある。またこれらの材料はターゲツ
トとして加工することがむずかしく特に高Si含量
のものを溶解法によつて加工することは製作時の
割れなどの問題が生じきわめて困難であり、この
様な場合通常焼結法によつてターゲツトに加工さ
れる。しかし焼結品ではスパツタ時のガス発生あ
るいは電力投入時のクラツクの発生といつた問題
があり実用化にいたつていないのが現状である。
一方Ni−Cr合金にSiを添加していくと添加量が
増えるにつれて比抵抗が大きくなることが知られ
ており高Si含量のニクロムターゲツトは高抵抗用
として可能性がある。しかしこれらの材料を溶解
法で作ることは前述のようにきわめてむずかしい
とされており、実際は前述のとおり、たかだか
Si7%程度のものしか存在しない。本発明者等は
ニクロムターゲツトについて種々検討した結果高
Si含量で内部欠陥が無く高密度を有しかつ取扱い
においても割れ等の発生がなく抵抗薄膜用として
好適なターゲツトを見出し本発明を完成した。 Currently, materials such as CrSi and Cr-SiO are considered as materials for high resistance, but it is difficult to make highly accurate resistive thin films with these materials, and there are problems with stability. In addition, these materials are difficult to process as targets, and it is extremely difficult to process those with a high Si content by the melting method because problems such as cracks occur during production, and in such cases, the sintering method is usually used. Processed into a target by However, sintered products have problems such as gas generation during sputtering and cracking when power is turned on, so that they have not been put into practical use at present.
On the other hand, it is known that when Si is added to a Ni-Cr alloy, the specific resistance increases as the amount added increases, and a nichrome target with a high Si content has potential as a high-resistance target. However, as mentioned above, it is said to be extremely difficult to make these materials by melting, and in reality, as mentioned above, it is difficult to make them at most.
Only about 7% Si exists. As a result of various studies on nichrome targets, the present inventors found that
The present invention has been completed by finding a target suitable for use as a resistive thin film, which has a Si content, has no internal defects, has high density, and does not crack during handling.
すなわち本発明はNi70〜10%、Cr70〜10%、
Si15〜30%を含む、高シリコンニクロム系スパツ
タリング用ターゲツトに関するものである。そし
て、このターゲツトは、溶解鋳造する際に凝固開
始温度から常温までの温度区間を極めて徐々に冷
却することにより得られることを見出した。次に
本発明を詳細に説明する。 That is, the present invention has Ni70-10%, Cr70-10%,
This invention relates to a high silicon nichrome sputtering target containing 15-30% Si. It has also been found that this target can be obtained by extremely gradual cooling in the temperature range from the solidification start temperature to room temperature during melting and casting. Next, the present invention will be explained in detail.
ターゲツト製造用合金原料の溶解はプラズマア
ーク、誘導炉、アーク炉といつた通常の溶解方法
によつて行われる。溶解原料としてのNi、Cr、
Siは電解又は他の製練法で得たいずれのものでも
良いがNi、Crは純度の面で電解により得られた
ものが好ましい。溶解の雰囲気は真空中かあるい
は不活性ガス雰囲気中に行い金属の酸化を防止す
る。Siは15%より少ないと高抵抗のものが得られ
ずまた30%より上では高密度で内部欠陥のないも
のは得にくい。またNi、Crの組成についても70
〜10%外の組成範囲では鋳造欠陥の発生が避けら
れず製品の割れ等の発生のないものを得ることは
むずかしい。鋳造用鋳型はあらかじめ加熱してお
くと好ましい。 The alloy raw materials for target production are melted by conventional melting methods such as plasma arc, induction furnace, and electric arc furnace. Ni, Cr, as melting raw materials
Si may be obtained by electrolysis or other smelting methods, but Ni and Cr are preferably obtained by electrolysis in terms of purity. The melting atmosphere is carried out in a vacuum or an inert gas atmosphere to prevent oxidation of the metal. If Si is less than 15%, it is difficult to obtain a high resistance material, and if it is more than 30%, it is difficult to obtain a material with high density and no internal defects. Also, the composition of Ni and Cr is 70
In a composition range outside of ~10%, casting defects are unavoidable and it is difficult to obtain a product without cracking. It is preferable to heat the casting mold in advance.
合金は溶融状態から凝固され、室温まで徐冷す
るが、本発明のターゲツトを得るにはこの徐冷工
程を極めて緩慢に行うことが特徴である。 The alloy is solidified from a molten state and slowly cooled to room temperature, but in order to obtain the target of the present invention, this slow cooling step is characteristically carried out very slowly.
即ち、1℃/分以下の速度で徐冷する。徐冷速
度がこの速度より大では、製品の割れなどが起り
好ましくない。 That is, it is slowly cooled at a rate of 1° C./min or less. If the slow cooling rate is higher than this rate, cracking of the product may occur, which is undesirable.
次に実施例で本発明を詳述する。 Next, the present invention will be explained in detail with reference to Examples.
実施例 1
ニツケル54%、クロム26%、シリコン20%の組
成で高周波溶解した合金について900℃に加熱し
たセラミツクモールドに鋳造を行い鋳造後1℃/
minの平均冷却速度で冷却を行つた。溶解インゴ
ツトは研削加工によりターゲツトに加工し5イン
チ×15インチ×1/4インチとしたがクラツク、巣
の発生は認められなかつた。またこのターゲツト
に2m/mの銅板をロー付しハイレートスパツタ
によりアルゴンガス圧6×10-3torr出力2.5KWで
10分間着膜した結果でも割れの発生はなく初抵抗
600Ω抵抗温度係数±50ppm/℃以内の高精度の
抵抗薄膜を得ることが出来た。Example 1 A high-frequency melted alloy with a composition of 54% nickel, 26% chromium, and 20% silicon was cast in a ceramic mold heated to 900°C, and the temperature was 1°C/1°C after casting.
Cooling was performed at an average cooling rate of min. The molten ingot was ground into a target of 5 inches x 15 inches x 1/4 inch, but no cracks or cavities were observed. In addition, a 2m/m copper plate was brazed to this target and a high rate sputter was applied to the target with an argon gas pressure of 6×10 -3 torr and an output of 2.5KW.
Even after 10 minutes of film deposition, no cracking occurred and initial resistance was achieved.
We were able to obtain a highly accurate resistor thin film with a 600Ω resistance temperature coefficient within ±50ppm/°C.
実施例 2
ニツケル40%、クロム40%、シリコン20%の組
成で実施例1と同様の方法でターゲツトを作製し
た。このターゲツトについても製作時の割れ、鋳
造欠陥は認められず初抵抗1KΩ抵抗温度係数±
70ppm/℃以内の抵抗薄膜を得ることができた。Example 2 A target was prepared in the same manner as in Example 1 with a composition of 40% nickel, 40% chromium, and 20% silicon. No cracks or casting defects were observed during manufacturing for this target, and the initial resistance was 1KΩ with a temperature coefficient of resistance ±
It was possible to obtain a resistive thin film within 70 ppm/°C.
実施例 3
ニツケル40%、クロム30%、シリコン30%の組
成で実施例1と同様の方法でターゲツトを作製し
た。このターゲツトについても、製作時の割れ、
鋳造欠陥は認められず、初抵抗1KΩ、抵抗温度
係数±85ppm/℃以内の抵抗薄膜を得ることが
できた。Example 3 A target was prepared in the same manner as in Example 1 with a composition of 40% nickel, 30% chromium, and 30% silicon. Regarding this target, cracks during production,
No casting defects were observed, and a resistive thin film with an initial resistance of 1 KΩ and a temperature coefficient of resistance of ±85 ppm/°C was obtained.
Claims (1)
ン15〜30%からなる合金を溶解鋳造した後、1
℃/分以下の速度で徐冷することを特徴とするニ
ツケル70〜10%、クロム70〜10%、シリコン15〜
30%を含んでなる高シリコンニクロム系スパツタ
リング用ターゲツトの製造方法。1 After melting and casting an alloy consisting of 70-10% nickel, 70-10% chromium, and 15-30% silicon, 1
Nickel 70~10%, chromium 70~10%, silicon 15~10%, characterized by slow cooling at a rate of ℃/min or less
A method for producing a high silicon nichrome sputtering target comprising 30% silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58028569A JPS59157282A (en) | 1983-02-24 | 1983-02-24 | Target of high silicon nichrome for sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58028569A JPS59157282A (en) | 1983-02-24 | 1983-02-24 | Target of high silicon nichrome for sputtering |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59157282A JPS59157282A (en) | 1984-09-06 |
JPH0323630B2 true JPH0323630B2 (en) | 1991-03-29 |
Family
ID=12252251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58028569A Granted JPS59157282A (en) | 1983-02-24 | 1983-02-24 | Target of high silicon nichrome for sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59157282A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5709938A (en) * | 1991-11-29 | 1998-01-20 | Ppg Industries, Inc. | Cathode targets of silicon and transition metal |
US6793781B2 (en) | 1991-11-29 | 2004-09-21 | Ppg Industries Ohio, Inc. | Cathode targets of silicon and transition metal |
JP3458871B2 (en) * | 1995-03-31 | 2003-10-20 | 日立金属株式会社 | Chromium target and method for producing the same |
CN114015921A (en) * | 2021-11-04 | 2022-02-08 | 温州市铜仁新材料研究院 | High-resistance magnetron sputtering target material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822379A (en) * | 1981-07-30 | 1983-02-09 | Tama Denki Kogyo Kk | Target for sputtering |
-
1983
- 1983-02-24 JP JP58028569A patent/JPS59157282A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822379A (en) * | 1981-07-30 | 1983-02-09 | Tama Denki Kogyo Kk | Target for sputtering |
Also Published As
Publication number | Publication date |
---|---|
JPS59157282A (en) | 1984-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0245900B1 (en) | Layered film resistor with high resistance and high stability | |
JP2000073163A (en) | Copper-gallium alloy sputtering target and its production | |
Van Den Broek et al. | Metal film precision resistors: resistive metal films and a new resistor concept | |
JPS61139637A (en) | Target for sputter and its manufacture | |
JPH0323630B2 (en) | ||
JPH0146570B2 (en) | ||
JPS634321B2 (en) | ||
CN110453105B (en) | Palladium-molybdenum precision resistance alloy and preparation method thereof | |
JP6583019B2 (en) | Cu-Ga alloy sputtering target and method for producing Cu-Ga alloy sputtering target | |
JP2006313785A (en) | Thin film resistor and its manufacturing method | |
JP2021075749A (en) | Sputtering target | |
WO2017111700A1 (en) | Sputtering target of ruthenium-containing alloy and production method thereof | |
WO2022210428A1 (en) | Cr-si film | |
JP2004002938A (en) | Target material for sputtering or ion plating and method of producing the same | |
JP3852446B2 (en) | Resistance thin film material and method of manufacturing resistance thin film using the same | |
IL270699B2 (en) | Method of producing a ntcr sensor | |
JP2001240473A (en) | Paste resistant molybdenum disilicide type material | |
JP7087741B2 (en) | A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film. | |
JP2019183251A (en) | Cu-Ni alloy sputtering target | |
JP2021075748A (en) | Sputtering target | |
JP4042714B2 (en) | Metal resistor material, sputtering target and resistive thin film | |
JP2002194536A (en) | Sputtering target with low oxygen content | |
JPH05222526A (en) | Sputtering target for transparent conductive film consisting of ito and production thereof | |
JP2005294612A5 (en) | ||
JPH0518899B2 (en) |