JPH03222415A - Discharge reactive device based on rotation magnetic field - Google Patents
Discharge reactive device based on rotation magnetic fieldInfo
- Publication number
- JPH03222415A JPH03222415A JP1845090A JP1845090A JPH03222415A JP H03222415 A JPH03222415 A JP H03222415A JP 1845090 A JP1845090 A JP 1845090A JP 1845090 A JP1845090 A JP 1845090A JP H03222415 A JPH03222415 A JP H03222415A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- potentiality
- wafer
- plasma
- rotating magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005684 electric field Effects 0.000 claims abstract description 10
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005530 etching Methods 0.000 abstract description 16
- 238000010276 construction Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 19
- 150000002500 ions Chemical class 0.000 description 9
- 238000001312 dry etching Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005596 ionic collisions Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はIC,LSIなどの半導体装置の製造、特にド
ライエツチング装置に用いて好適な回転磁界を用いた放
電反応装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a discharge reaction device using a rotating magnetic field suitable for use in the manufacture of semiconductor devices such as ICs and LSIs, and particularly in dry etching devices.
(従来の技術)
半導体集積回路の集積の増大に伴い、デバイスの微細化
が求められ、また三次元集積回路の開発が進められるな
ど、その加工に必要なドライエツチング技術に対する要
求も益々厳密になっている。(Conventional technology) As the integration of semiconductor integrated circuits increases, there is a demand for miniaturization of devices, and as the development of three-dimensional integrated circuits progresses, the requirements for the dry etching technology necessary for their processing are becoming increasingly strict. ing.
回転磁場を用いたドライエツチング方法のコンセプトは
、1981年にIBMのハイマンによって発表されて以
来、三極反応性イオンエツチング装置とともにプラズマ
密度を高める方法として多く利用されてきた。Since the concept of a dry etching method using a rotating magnetic field was announced by Hyman of IBM in 1981, it has been widely used in conjunction with triode reactive ion etching equipment as a method to increase plasma density.
電界と磁界を直交させたマグネトロン方式では、電子が
電界と磁界の相乗効果により、電界と磁界で形成される
面に対して垂直方向(EXB)に、いわゆるマグネトロ
ン運動をして旋回するので、電子が分子と衝突し、イオ
ン化効率がよくなり、エツチング速度が上がる。また磁
界により電子の移動度は著しく低下し、直流的に浮遊状
態になっている電極へ到達する電子電流が少なくなるた
め、自己バイアスは低(なり、電極へ衝突するイオンエ
ネルギーを低くでき、ウェハ表面へのダメージを減少す
ることができる。In the magnetron system, where the electric and magnetic fields are orthogonal, the synergistic effect of the electric and magnetic fields causes the electrons to rotate in the direction perpendicular to the plane formed by the electric and magnetic fields (EXB) in a so-called magnetron motion. collides with molecules, improving ionization efficiency and increasing etching rate. In addition, the mobility of electrons is significantly reduced by the magnetic field, and the electron current reaching the electrodes in a DC floating state is reduced, resulting in a low self-bias (lower ion energy colliding with the electrodes), which lowers the ion energy that impinges on the wafer. Damage to the surface can be reduced.
回転磁場を利用した装置では、2対または3対の電磁コ
イルにより発生する磁界を回転させることで、高密度の
プラズマをウェハ上で回転させ、プラズマのイオン化を
促進している。In an apparatus using a rotating magnetic field, high-density plasma is rotated on a wafer by rotating a magnetic field generated by two or three pairs of electromagnetic coils, thereby promoting ionization of the plasma.
(発明が解決しようとする課題)
しかしながら上記従来の装置では以下に述べる問題点が
ある。(Problems to be Solved by the Invention) However, the conventional device described above has the following problems.
まず第一に、ウェハは最大直径8インチなどと大口径化
が進んでおり、これら大口径のウェハ上で均一な磁場を
与えようとすると、を磁コイルは各々直径1m以上の大
型のものが必要となる。このような大型のものになると
、装置の床占有面積および作業スペースを考慮すると、
現在の半導体製造ラインには使用不可能となってしまう
。First of all, wafers are becoming larger in diameter, with a maximum diameter of 8 inches, and in order to provide a uniform magnetic field on these large wafers, the magnetic coils must be large, each with a diameter of 1 m or more. It becomes necessary. When it comes to such a large device, considering the floor area and work space of the equipment,
This makes it unusable for current semiconductor manufacturing lines.
第二に、磁場強度分布にかかわらず、平行平板電極形マ
グネトロン装置では、前記のようにE×B方向に電子が
移動するため同方向に従ってプラズマは密になる。この
ようなプラズマ状態では、磁力方向を北とするとウェハ
上でのプラズマ電位は南北方向ではほぼ均一であっても
、東西方向では東側のプラズマ電位が西側より高くなる
。反応性のイオンエツチングのように、イオンの方向性
および強度によりエツチング形状およびエツチング速度
をコントロールする場合、イオンはプラズマ電位と自己
バイアスの和によってプラズマ暗部で加速され、被エツ
チング膜に衝突する。またイオン電流JiはJi= e
niμiEで示されるように、イオン密度とイオン移動
度の積に比例して変化する。Secondly, irrespective of the magnetic field strength distribution, in the parallel plate electrode type magnetron device, electrons move in the ExB direction as described above, so the plasma becomes denser in the same direction. In such a plasma state, even if the plasma potential on the wafer is approximately uniform in the north-south direction if the magnetic force direction is north, in the east-west direction the plasma potential on the east side is higher than on the west side. When the etching shape and etching rate are controlled by the directionality and intensity of the ions, as in reactive ion etching, the ions are accelerated in the dark part of the plasma by the sum of the plasma potential and self-bias, and collide with the film to be etched. Also, the ionic current Ji is Ji= e
As shown by niμiE, it changes in proportion to the product of ion density and ion mobility.
すなわち、磁場に対して集用辺部の方が中心部および凸
周辺部よりイオンの衝突強度および量とも大きくなり、
エツチング速度も著しく不均一になる。プラズマの濃淡
現象は主に磁場強度と反応圧力に依存する。特に次世代
デバイスに必要とされる高アスペクト比、極小パターン
サイズ依存性のエツチングを実現するには、低圧雰囲気
でのエツチングが不可欠となり、磁場による濃淡現象は
顕著なものとなる。さらにエツチング速度のみでなく、
ウェハ外周部では中心部に比ベイオン衝突強度が大きい
ため、イオン照射による損傷を受けやすく、デバイスに
よっては周辺部の歩止まりが著しく低下するという問題
点がある。In other words, with respect to the magnetic field, the ion collision strength and quantity are greater at the collecting edge than at the center and at the convex periphery.
The etching rate also becomes significantly non-uniform. The plasma concentration phenomenon mainly depends on the magnetic field strength and reaction pressure. In particular, in order to achieve the high aspect ratio and extremely small pattern size-dependent etching required for next-generation devices, etching in a low-pressure atmosphere is essential, and the density phenomenon caused by the magnetic field becomes noticeable. In addition to the etching speed,
At the outer periphery of the wafer, the central part has a high specific ion collision strength, so it is easily damaged by ion irradiation, and depending on the device, there is a problem that the yield rate at the periphery decreases significantly.
さらに従来の技術では、被エツチングウェハ周辺と中心
部のエツチングレートの差および周辺部の周期的なイオ
ンエネルギーの変化によるダメージが大きく、大口径ウ
ェハには不適合なものであった。このため磁場と圧力を
独自に変化させることが困難となり、均一性に対するプ
ロセスウィンドーが非常に狭くなる傾向があった。Furthermore, the conventional techniques are unsuitable for large-diameter wafers because of the difference in etching rate between the periphery and center of the wafer to be etched and the periodic changes in ion energy at the periphery. This makes it difficult to independently vary the magnetic field and pressure, and the process window for uniformity tends to be very narrow.
本発明は上記の問題点を解決すべくなされ、その目的と
するところは、プラズマ内での電子の運動を抑制し、プ
ラズマ電位の分布を均一にして、ドライエツチング装置
としてウェハ内のエツチング速度をより均一に、またウ
ェハ表面の耐圧を向上させることができ、またプラズマ
CVD装置として均一な皮膜の生成を行うことができる
回転磁界を用いた放電反応装置を提供するにある。The present invention was made to solve the above problems, and its purpose is to suppress the movement of electrons in plasma, make the distribution of plasma potential uniform, and increase the etching rate in a wafer as a dry etching device. It is an object of the present invention to provide a discharge reaction device using a rotating magnetic field that can more uniformly improve the breakdown voltage on the wafer surface and can generate a uniform film as a plasma CVD device.
(課題を解決するための手段)
上記目的による本発明では、電極を内蔵する真空チャン
バと、真空チャンバ内ムこ所定のガスを供給するガス供
給手段と、真空チャンバー内のガスを排出する排出手段
と、真空チャンバ周囲に配設され、電界の方向と垂直な
面内で回転する回転磁場を生起させる電磁コイルを具備
する回転磁界を用いた放電反応装置において、被処理物
が載置される前記電極の周囲に複数配置され、電界の方
向から見た際の前記回転する磁場の北方向に対して東側
に位置するものよりも西側に位置するものの電位が常に
高くなるように回転磁場の回転と同期して電位が制御さ
れる制御電極を設けたことを特徴としている。(Means for Solving the Problems) The present invention according to the above object includes a vacuum chamber containing an electrode, a gas supply means for supplying a predetermined gas to the inside of the vacuum chamber, and an exhaust means for discharging the gas inside the vacuum chamber. and a discharge reaction apparatus using a rotating magnetic field, which is equipped with an electromagnetic coil that is arranged around a vacuum chamber and generates a rotating magnetic field that rotates in a plane perpendicular to the direction of the electric field. A plurality of electrodes are arranged around the rotating magnetic field, and the rotating magnetic field is rotated so that the potential of the one located on the west side is always higher than the one located on the east side with respect to the north direction of the rotating magnetic field when viewed from the direction of the electric field. It is characterized by the provision of a control electrode whose potential is synchronously controlled.
(作用)
磁場を回転させただけでは、前記したように電界の方向
から見た際の、回転磁場の北方向に対する東側のプラズ
マ電位が高くなる。(Function) If the magnetic field is simply rotated, as described above, the plasma potential on the east side relative to the north direction of the rotating magnetic field increases when viewed from the direction of the electric field.
被処理物を載置する電極の周囲に配置した制御電極はそ
の電位が高くなると周囲のプラズマ電位を高くする。し
たがって、回転する磁場の北方向に対する西側に位置す
る制御電極の電位が常に東側に位置する制御電極の電位
よりも高くなるように電位を制御することによって、プ
ラズマ電位を均一にすることができる。When the potential of the control electrode placed around the electrode on which the object to be processed is placed increases, the surrounding plasma potential increases. Therefore, by controlling the potential so that the potential of the control electrode located on the west side with respect to the north direction of the rotating magnetic field is always higher than the potential of the control electrode located on the east side, the plasma potential can be made uniform.
(実施例)
以下では本発明の好適な一実施例を添付図面に基づいて
詳細に説明する。(Embodiment) A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
第1図はトライエツチング装置10の平面′図、第2図
は正面断面図を示す。FIG. 1 shows a plan view of the tri-etching device 10, and FIG. 2 shows a front sectional view.
図において14は真空チャンバであり、CF。In the figure, 14 is a vacuum chamber, CF.
等のエツチングガスを導入するガス供給口(図示せず)
と、真空チャンバ14内を排気して所要の圧力に設定す
るガス排気口(図示せず)を有する。Gas supply port (not shown) for introducing etching gas such as
and a gas exhaust port (not shown) for evacuating the inside of the vacuum chamber 14 and setting a required pressure.
ガス供給口はバルブを介してガス供給源に、ガス排出口
はバルブを介してυト気ポンプに接続される。The gas supply port is connected to a gas supply source through a valve, and the gas discharge port is connected to a gas pump through a valve.
16は真空チャンバ14内に配設された、ウェハ(被処
理物17)載置用の非接地電極であり、これにはマツチ
ング回路18を介して高周波電源20が接続され、高周
波電力が印加される。22は真空チャンバ上壁面に配設
した接地電極であり、接地されている。Reference numeral 16 denotes a non-grounded electrode for placing a wafer (workpiece 17) disposed in the vacuum chamber 14, to which a high frequency power source 20 is connected via a matching circuit 18 to apply high frequency power. Ru. A ground electrode 22 is provided on the upper wall of the vacuum chamber and is grounded.
1.1 ’ 2.2°は真空チャンバ14を囲んで
配設された2対の電磁コイルであり、位相が90゜すれ
た電流が印加され、非接地電極16、接地電極22間の
電界と直交する方向に生起される合成磁場を回転させる
。この回転磁界の回転数は低く、2秒間に1回転程度と
する。1.1' 2.2° are two pairs of electromagnetic coils arranged surrounding the vacuum chamber 14, to which currents with a phase difference of 90° are applied, and the electric field between the non-grounded electrode 16 and the grounded electrode 22 is Rotate the resultant magnetic field generated in orthogonal directions. The rotation speed of this rotating magnetic field is low, approximately one rotation per two seconds.
このように回転磁場を作用させることで、高密度のプラ
ズマをウェハ17上で回転させることができるが、前記
したように、磁場方向を一北とすると、プラズマ電位は
西側よりも東側の方が高く、磁場を回転させたとしても
プラズマの濃淡が生じたままプラズマがウェハ17上を
回転するので、前記した問題点が生じる。By applying a rotating magnetic field in this way, high-density plasma can be rotated on the wafer 17, but as mentioned above, if the direction of the magnetic field is one north, the plasma potential is higher on the east side than on the west side. Even if the magnetic field is rotated, the plasma continues to rotate on the wafer 17 with its density remaining unchanged, resulting in the above-mentioned problem.
本実施例では、非接地電極16の周辺に4つの制御電極
A、C,B、Dを、その上面が非接地電極16に載置さ
れるウェハ17の上面と路間−になるように配置した。In this embodiment, four control electrodes A, C, B, and D are arranged around the non-grounded electrode 16 so that their upper surfaces are between the upper surface of the wafer 17 placed on the non-grounded electrode 16 and the path. did.
23.24は絶縁物である。23 and 24 are insulators.
上記4つの制御電極A、C,B、、Dにはローパスフィ
ルターを介して各々直流電源が接続され、位相が90°
すれた脈動電圧が印加される。この脈動電圧は上記磁場
の回転と同期して変位するよう設定されている。すなわ
ち磁場が2秒間に1回回転するとすれば、脈動電圧の周
波数は+AHzに設定する。例えば制御電極A、B、C
,Dに印加する脈動電圧は正弦波の脈動電圧とすること
ができる。また磁場の回転に対して電界の方向から見た
るH場の方向を北側とすれば、西側に位置する制御電極
の電位が高く、東側に位置する制御電極の電位が低くな
るよう同期してサイクルする。A DC power supply is connected to each of the four control electrodes A, C, B, D through a low-pass filter, and the phase is 90°.
A pulsating voltage is applied. This pulsating voltage is set to be displaced in synchronization with the rotation of the magnetic field. That is, if the magnetic field rotates once every 2 seconds, the frequency of the pulsating voltage is set to +AHz. For example, control electrodes A, B, C
, D can be a sine wave pulsating voltage. Furthermore, if the direction of the H field as seen from the direction of the electric field with respect to the rotation of the magnetic field is the north side, the control electrodes located on the west side have a high potential and the control electrodes located on the east side have a low potential, so that the cycle is synchronous. do.
以上のように構成されている。It is configured as described above.
続いて本装置の作用について説明する。Next, the operation of this device will be explained.
まずガス供給口から真空チャンバ14内にエンチンクカ
ス、例えばCP、ガスを導入し、真空チャンバ14内を
10−” (Torr)に保ち、非接地電極16に高周
波電力(l kW、 13.5MHz )を印加すると
、非接地電極16と接地電極22との間に放電が生じ、
プラズマが生起する。一方、2対の電磁コイル1.1°
2,2′に交流を流して合成磁場を回転させる。こ
の合成磁場は電界と直交する方向に生起するので、電子
がマグネトロン旋回運動をし、イオン化効率を高める。First, encinque gas, such as CP, is introduced into the vacuum chamber 14 from the gas supply port, the inside of the vacuum chamber 14 is maintained at 10-'' (Torr), and high-frequency power (1 kW, 13.5 MHz) is applied to the non-grounded electrode 16. When applied, a discharge occurs between the ungrounded electrode 16 and the grounded electrode 22,
Plasma is generated. On the other hand, two pairs of electromagnetic coils 1.1°
2 and 2' to rotate the composite magnetic field. Since this composite magnetic field is generated in a direction perpendicular to the electric field, the electrons undergo magnetron rotational movement, increasing ionization efficiency.
また一方前記したように4つの制御電極A、B、C,D
に脈動電流が印加される。On the other hand, as mentioned above, the four control electrodes A, B, C, D
A pulsating current is applied to the
例えば電磁コイル1.1° 2.2°のドライバー設定
値が(1,0)の場合、磁界はAを示しており、同時に
磁界の方向に対して西側の制御量pliBの電位は最も
高くなり、東側の制御電極りは最も電位が低い。また電
磁コイル1.1“ 2.2゛のドライバー設定値が(
、7071,707)のときは磁界は上記位置から時計
方向に45°回転した方向を向き、このとき制御電極A
、制御電極Bの電位が高く、制御電極C1制御電極りの
電位が低くなることが理解される。すなわち、磁界の回
転に同期して、4つの制御電極A、B、C,Dの電位は
、磁界の方向(北)に対して常に西側の制御電極の方が
東側の制御電極よりも高くなるように変位する。For example, when the driver setting value of the electromagnetic coil 1.1° 2.2° is (1,0), the magnetic field indicates A, and at the same time, the potential of the control amount pliB on the west side with respect to the direction of the magnetic field is the highest. , the control electrode on the east side has the lowest potential. Also, the driver setting value of the electromagnetic coil 1.1"2.2" is (
, 7071, 707), the magnetic field is directed in a direction rotated 45° clockwise from the above position, and at this time the control electrode A
, it is understood that the potential of the control electrode B is high and the potential of the control electrode C1 is low. In other words, in synchronization with the rotation of the magnetic field, the potential of the four control electrodes A, B, C, and D is such that the control electrode on the west side is always higher than the control electrode on the east side with respect to the direction of the magnetic field (north). Displaced as follows.
制御電極A、B、C,Dに陽電位を加えると制御電極近
傍のプラズマ電位はその電極の電位に比例して上昇し、
逆に負電位の場合ではイオン電流が増大し、プラズマ電
位は低下する。これは直流電極が電子の供給源または過
剰電子を除去する働きをするからである。すなわちプラ
ズマ内での電子のEXB方向の運動を抑制し、あるいは
制御できる。When a positive potential is applied to control electrodes A, B, C, and D, the plasma potential near the control electrode increases in proportion to the potential of that electrode.
Conversely, in the case of negative potential, the ion current increases and the plasma potential decreases. This is because the DC electrode acts as a source of electrons or as a remover of excess electrons. That is, the movement of electrons in the EXB direction within the plasma can be suppressed or controlled.
したがって、上記のように、磁界の方向(北)に対して
常に西側の制御電極の方が東側の制御電極よりも高くな
るように4つの制御電極A、B、C,Dの電位が変位す
るようサイクルさせることによって、回転磁場のみによ
る前記のプラズマ電位の東側寄りへの偏りをなくすこと
ができ、これによりプラズマ電位の分布が均一になり、
ウェハ内のエツチング速度がより均一になり、またウェ
ハ表面の耐圧が向上する。Therefore, as described above, the potentials of the four control electrodes A, B, C, and D are displaced such that the control electrode on the west side is always higher than the control electrode on the east side with respect to the direction of the magnetic field (north). By cycling in this manner, it is possible to eliminate the aforementioned bias of the plasma potential towards the east due to only the rotating magnetic field, thereby making the distribution of the plasma potential uniform,
The etching rate within the wafer becomes more uniform, and the breakdown voltage of the wafer surface is improved.
プラズマ電位の調整は4つの制御電極A、B、C,Dの
電位を調整することで容易に行える。最適な電位調整の
結果、ウェハの中心から4インチの個所で、南北間、お
よび東西間のプラズマ電位は±IOV以内となり大幅に
改善された。また同時にウェハ面内のエツチング速度の
均一性は、従来ではエツジより10mmの部位内では±
10%ものバラツキがあったものが、本実施例ではエツ
ジより5InI11の部位を除いて±3.5%となり、
許容範囲内にすることができた。The plasma potential can be easily adjusted by adjusting the potentials of the four control electrodes A, B, C, and D. As a result of optimal potential adjustment, the plasma potential between north and south and between east and west was within ±IOV at a location 4 inches from the center of the wafer, which was significantly improved. At the same time, the uniformity of the etching rate within the wafer surface has conventionally been within ±10 mm from the edge.
Although there was a variation of 10%, in this example, the variation was ±3.5% except for the 5InI11 part from the edge.
I was able to get it within the acceptable range.
上記実施例では4つの制御電極A、B、C,Dを配置し
たが、例えば電極数を8極に増やすと、プラズマ電位の
制御が一層容易に行え、均一化を図ることができる。In the above embodiment, four control electrodes A, B, C, and D are arranged, but if the number of electrodes is increased to eight, for example, the plasma potential can be controlled more easily and uniformity can be achieved.
また上記実施例では高周波電源を用いたが直流電源でも
よく、直流電源の方が装置の構成を簡易なものにするこ
とができる。Furthermore, although a high frequency power source is used in the above embodiment, a direct current power source may also be used, and a direct current power source can simplify the configuration of the device.
さらに上記実施例ではドライエツチング装置を例として
説明したが、プラズマCVD装置としても利用できるこ
とはもちろんである。Furthermore, although the above embodiment has been explained using a dry etching apparatus as an example, it goes without saying that it can also be used as a plasma CVD apparatus.
以上、本発明につき好適な実施例を挙げて種々説明した
が、本発明はこの実施例に限定されるものではなく、発
明の精神を逸脱しない範囲内で多くの改変を施し得るの
はもちろんのことである。The present invention has been variously explained above with reference to preferred embodiments, but the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. That's true.
(発明の効果)
以上のように本発明によれば、プラズマ内での電子の運
動を制御でき、プラズマ電位の分布を均一にできるから
、ドライエツチング装置として用いて、被処理物のエツ
チング速度をより均一に、また被処理物表面の耐圧を向
上させることができ、さらにプラズマCVD装置として
用いて被処理物表面に均一な厚さの皮膜を形成すること
ができる。(Effects of the Invention) As described above, according to the present invention, since the movement of electrons in plasma can be controlled and the distribution of plasma potential can be made uniform, it can be used as a dry etching apparatus to increase the etching rate of the object to be processed. It is possible to more uniformly improve the withstand pressure on the surface of the object to be processed, and furthermore, it is possible to form a film of uniform thickness on the surface of the object to be processed by using it as a plasma CVD apparatus.
第1図はドライエツチング装置の平面説明図、第2図は
その正面断面図を示す。
10・・・ドライエツチング装置、
14・・・真空チャンバ、 16・・・非接地電極、
17・・・ウェハ、 20・・・高周波電源、 2
2・・・接地電極、1.1 ’ 2.2 ’・・・電
磁コイル、 A、B、C,D・・・制御電極。
図
面FIG. 1 is an explanatory plan view of the dry etching apparatus, and FIG. 2 is a front sectional view thereof. 10... Dry etching device, 14... Vacuum chamber, 16... Ungrounded electrode,
17... Wafer, 20... High frequency power supply, 2
2... Ground electrode, 1.1 ' 2.2 '... Electromagnetic coil, A, B, C, D... Control electrode. drawing
Claims (1)
所定のガスを供給するガス供給手段と、真空チャンバ内
のガスを排出する排出手段と、真空チャンバ周囲に配設
され、電界の方向と垂直な面内で回転する回転磁場を生
起させる電磁コイルを具備する回転磁界を用いた放電反
応装置において、 被処理物が載置される前記電極の周囲に複 数配置され、電界の方向から見た際の前記回転する磁場
の北方向に対して東側に位置するものよりも西側に位置
するものの電位が常に高くなるように回転磁場の回転と
同期して電位が制御される制御電極を設けたことを特徴
とする回転磁界を用いた放電反応装置。[Claims] 1. A vacuum chamber containing an electrode, a gas supply means for supplying a predetermined gas into the vacuum chamber, an exhaust means for discharging the gas within the vacuum chamber, and a vacuum chamber disposed around the vacuum chamber. , a discharge reaction device using a rotating magnetic field, which is equipped with an electromagnetic coil that generates a rotating magnetic field that rotates in a plane perpendicular to the direction of the electric field, in which a plurality of electrodes are arranged around the electrode on which the object to be treated is placed, and the electric field Control in which the electric potential is controlled in synchronization with the rotation of the rotating magnetic field so that the electric potential of the object located on the west side of the rotating magnetic field is always higher than that of the object located on the east side with respect to the north direction of the rotating magnetic field when viewed from the direction of A discharge reaction device using a rotating magnetic field, characterized by being provided with electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018450A JPH0727894B2 (en) | 1990-01-29 | 1990-01-29 | Discharge reactor using rotating magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018450A JPH0727894B2 (en) | 1990-01-29 | 1990-01-29 | Discharge reactor using rotating magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03222415A true JPH03222415A (en) | 1991-10-01 |
JPH0727894B2 JPH0727894B2 (en) | 1995-03-29 |
Family
ID=11971964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018450A Expired - Fee Related JPH0727894B2 (en) | 1990-01-29 | 1990-01-29 | Discharge reactor using rotating magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727894B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423915A (en) * | 1992-04-16 | 1995-06-13 | Mitsubishi Jukogyo Kagushiki Kaisha | Plasma CVD apparatus including rotating magnetic field generation means |
KR100294529B1 (en) * | 1993-03-06 | 2001-10-24 | 히가시 데쓰로 | Plasma Treatment Equipment |
JP2002246370A (en) * | 2001-02-15 | 2002-08-30 | Tokyo Electron Ltd | Focus ring and plasma processor |
JP2007320352A (en) * | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | On-vehicle device control system |
-
1990
- 1990-01-29 JP JP2018450A patent/JPH0727894B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5423915A (en) * | 1992-04-16 | 1995-06-13 | Mitsubishi Jukogyo Kagushiki Kaisha | Plasma CVD apparatus including rotating magnetic field generation means |
KR100294529B1 (en) * | 1993-03-06 | 2001-10-24 | 히가시 데쓰로 | Plasma Treatment Equipment |
JP2002246370A (en) * | 2001-02-15 | 2002-08-30 | Tokyo Electron Ltd | Focus ring and plasma processor |
JP2007320352A (en) * | 2006-05-30 | 2007-12-13 | Toyota Motor Corp | On-vehicle device control system |
Also Published As
Publication number | Publication date |
---|---|
JPH0727894B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219479B2 (en) | Uniformity control method and system in ballistic electron beam enhanced plasma processing system | |
JPH07288195A (en) | Plasma treatment apparatus | |
KR970005035B1 (en) | Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field | |
JPH08107101A (en) | Plasma processing device and plasma processing method | |
US20040037971A1 (en) | Plasma processing apparatus and processing method | |
JP2004104095A (en) | Magnetron plasma etching apparatus | |
US11361935B2 (en) | Apparatus and system including high angle extraction optics | |
US5436424A (en) | Plasma generating method and apparatus for generating rotating electrons in the plasma | |
JP4283360B2 (en) | Plasma processing equipment | |
JPH03222415A (en) | Discharge reactive device based on rotation magnetic field | |
KR100391063B1 (en) | Device and Method for Generating Capacitively Coupled Plasma Enhanced Inductively Coupled Plasma | |
JPH0774115A (en) | Plasma treatment system | |
JP3113344B2 (en) | Dual frequency excitation plasma device using rotating magnetic field | |
JP2851765B2 (en) | Plasma generation method and apparatus | |
JP2000164578A (en) | Plasma processing device and method | |
JP3037848B2 (en) | Plasma generating apparatus and plasma generating method | |
JPH03162583A (en) | Vacuum process device | |
JP3368806B2 (en) | Plasma processing method and apparatus | |
JPH09186141A (en) | Plasma processing system | |
JP2004111334A (en) | Plasma treating apparatus and plasma treatment method | |
JPH08203869A (en) | Method and system for plasma processing | |
JP3686563B2 (en) | Semiconductor device manufacturing method and plasma processing apparatus | |
JPH04317324A (en) | Method and apparatus for producing plasma | |
JPH0645097A (en) | Method for generating plasma and device therefor | |
JPS63102321A (en) | Semiconductor manufacture equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |