[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03221819A - Method for calculating sound field characteristic - Google Patents

Method for calculating sound field characteristic

Info

Publication number
JPH03221819A
JPH03221819A JP1712790A JP1712790A JPH03221819A JP H03221819 A JPH03221819 A JP H03221819A JP 1712790 A JP1712790 A JP 1712790A JP 1712790 A JP1712790 A JP 1712790A JP H03221819 A JPH03221819 A JP H03221819A
Authority
JP
Japan
Prior art keywords
sound
sound field
time
function
listener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1712790A
Other languages
Japanese (ja)
Inventor
Hiroyuki Miyata
裕之 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1712790A priority Critical patent/JPH03221819A/en
Publication of JPH03221819A publication Critical patent/JPH03221819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To highly accurately evaluate various kinds (types) of sound fields by multiplying the square h<2>(t) of an impulse response from a sound source position up to a listener's position by a function W(t) for time weight and calculating the intensity modulated transmission function mW(F) of the sound field based upon a specific equation. CONSTITUTION:In order to make great account of the transient characteristics of a time area including a direct sound and an initial reflected sound obtained immediately after the arrival of the direct sound, the square h<2>(t) of an impulse response from the sound source position up to the listener's position is multiplied by the function for time weight, i.e. a function (time window)W(t) to be attenuated with the lapse of time, and the intensity modulated transmission function mW(F) indicated by the equation is found out by using the multiplied value.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、例えば音場の明瞭性を評価するために用い
られる音場特性を算出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for calculating sound field characteristics used, for example, to evaluate the clarity of a sound field.

「従来の技術」 従来、音場の明瞭性を評価する方法としてさまざまな手
法が提案され、使用されている。これらの手法は適用(
測定、予測、等)するにあたって、それぞれ長所・短所
を持っている。これらの手法には共通点として評価精度
が劣るという欠点があった。以下に、従来使用されてい
る3つの代表的な手法について説明する。
"Prior Art" Conventionally, various methods have been proposed and used to evaluate the clarity of a sound field. These techniques are applied (
(measurement, prediction, etc.), each has its own strengths and weaknesses. These methods have a common drawback of poor evaluation accuracy. Three typical methods conventionally used will be described below.

(a)Kleinの手法0ゝ 残響音場での音声明瞭性の損失量を表わす(アーティキ
ュレーション ロスArticulation Los
s:AL)(%)を残響時間(T)、室の体積(V)、
音源(発声者)・受聴者間距離(D)および音源として
用いたスピーカの指向係数(Q)で予測する方法で、以
下の式により表わされる。
(a) Klein's method represents the amount of speech intelligibility loss in a 0゜reverberant sound field (Articulation Loss)
s:AL) (%), reverberation time (T), room volume (V),
This is a prediction method using the distance between the sound source (speaker) and the listener (D) and the directivity coefficient (Q) of the speaker used as the sound source, and is expressed by the following equation.

V この手法の特徴は、残響音場の全体的・平均的な物理量
のみを用いて容易に当該音場の音声明瞭性を推定できる
ことである。しかし、この手法により残響音場のおおよ
その音声明瞭性は予測可能ではあるがその精度は劣る。
V The feature of this method is that the speech intelligibility of the reverberant sound field can be easily estimated using only the overall and average physical quantities of the reverberant sound field. However, although this method allows the approximate speech intelligibility of the reverberant sound field to be predicted, its accuracy is poor.

(b ) Lochner  &  Burger法3
2)に代表されるS/Nによる手法 残響音場における音源(発声者)位置から受聴者位置に
至る音響伝達関数を用いる手法の中の1つである。この
手法は、音源(発声者)から受聴者への直接音と直接音
到来後のある時間内(通常50〜Loomsの値)の初
期反射音成分のエネルギーを信号成分(S)とし、それ
以降の残響エネルギー成分を雑音(N@et )と考え
、このS/N、rf値から音声明瞭度を測定する手法で
ある。以下に前記する時間を95m5とした場合のこの
S/N、ff値の一例を示す。
(b) Lochner & Burger method 3
The S/N method represented by 2) is one of the methods that uses an acoustic transfer function from the sound source (speaker) position to the listener position in the reverberant sound field. In this method, the energy of the direct sound from the sound source (speaker) to the listener and the early reflected sound component within a certain time (usually a value of 50 to looms) after the arrival of the direct sound is taken as the signal component (S). This method considers the reverberant energy component of the noise (N@et) as noise (N@et), and measures speech intelligibility from this S/N and rf value. An example of this S/N and ff value when the above-mentioned time is 95 m5 is shown below.

ここで、 (1)は音源(発声者)から受聴者 までのインパルスレスポンス、a (t)は人の聴覚特
性に対応した重み関数(Weighting func
tion)を表わす。この手法は(a)の手法に比べる
と測定および計算に手間がかかるが精度は良い。しかし
精度はまだ十分とは言えない。
Here, (1) is the impulse response from the sound source (speaker) to the listener, and a (t) is the weighting function corresponding to the human hearing characteristics.
tion). Although this method requires more time and effort in measurement and calculation than the method (a), it has good accuracy. However, the accuracy is still not sufficient.

(C)強度変調伝達関数(Modulation Tr
ansferFunction  : M T F )
を用いる手法+31 +41 fs)光学系の品質を評
価する手段として用いられている光学的伝達関数(Op
tical Transfer Function、Q
’l’F)+61の考え方を音声明瞭性に関する音場の
評価に適用したもので、MTF、つまりm(F)を下記
(1)式で求め、 i−複素数を示す、 F:周波数、 このm (F)の値からS/N、ffを計算し、さらに
最終的な値5peech Transmission 
Index (S TI)またはRASTI (Rap
id−3TI) ” を導出し、この値により音場の音
声明瞭性を評価する方法である。
(C) Intensity modulation transfer function (Modulation Tr
answerFunction: MTF)
method using +31 +41 fs) Optical transfer function (Op
tical Transfer Function, Q
'l'F)+61 is applied to the evaluation of the sound field regarding speech intelligibility, and the MTF, that is, m(F), is calculated using the following formula (1), where i - indicates a complex number, F: frequency, and this Calculate S/N and ff from the value of m (F), and further calculate the final value 5peech Transmission
Index (S TI) or RASTI (Rap
id-3TI)'' and evaluates the speech intelligibility of the sound field using this value.

この手法は(a)、(b)の手法と比べ少し計算は複雑
となるが比較的精度は良く、この原理を用いた測定器(
RASTI測定器)(7〉 がよく使用されている。
Although this method is a little more complicated to calculate than methods (a) and (b), it is relatively accurate, and measuring instruments using this principle (
RASTI measuring instrument) (7) is often used.

「発明が解決しようとする課題」 m (F)値は時間区間O−■の間でのh”(t)(エ
コーグラム:インパルスレスポンスの2乗値)の周波数
Fのフーリエ成分を表わし、エコーグラムの全時間領域
に対して等しい重み付けがなされている。このことはm
 (F)値が音場の時間平均的な量を表わしていること
を示している。一方、聴覚的な観点から残響音場での音
声明瞭性を考えた場合、直接音および初期反射音領域の
音場の過渡特性が重要となり、時間的に直接音から離れ
た部分の残響成分は明瞭性にはあまり影響しないと考え
られる。このためエコーグラムの形が相当界なる残響音
場に対してこの手法を適用した場合、音声明瞭性の評価
に食い違いが生ずることが予想される。この事柄につい
てはこの発明の「実施例」の項で実験結果により示す。
“Problem to be solved by the invention” The m (F) value represents the Fourier component of the frequency F of h” (t) (echogram: square value of impulse response) during the time interval O-■, and the echo Equal weighting is given to the entire time domain of the gram, which means that m
(F) indicates that the value represents the time-average amount of the sound field. On the other hand, when considering speech intelligibility in a reverberant sound field from an auditory perspective, the transient characteristics of the sound field in the direct sound and early reflection sound regions are important, and the reverberation components in the part temporally distant from the direct sound are It is thought that clarity will not be affected much. For this reason, when this method is applied to a reverberant sound field where the shape of the echogram is substantially different, it is expected that discrepancies will occur in the evaluation of speech intelligibility. This matter will be explained by experimental results in the "Examples" section of this invention.

この発明は、上記(C)の手法において直接音および直
接音到達直後の初期反射音を含む時間領域の音場の過渡
特性が重視されていない欠点があるため、直接音到来後
の残響成分に対して時間的な重み付けを行なうことによ
り直接音および直接音到達直後の初期反射音を含む時間
NMiの過渡特性を重視しようとしたもので以下に詳細
に説明する。
This invention has the drawback that the method (C) above does not emphasize the transient characteristics of the sound field in the time domain, including the direct sound and the early reflected sound immediately after the arrival of the direct sound. This is intended to emphasize the transient characteristics of the time NMi including the direct sound and the early reflected sound immediately after the arrival of the direct sound by temporally weighting the sound, and will be described in detail below.

「課題を解決するための手段」 この発明では、直接音および直接音到達直後の初期反射
音を含む時間領域の過渡特性を重視するため、音源位置
から受聴者位置までのインパルスの2乗h2(t)に対
して、時間的な重み付けを行なう関数、つまり時間と共
に減衰する関数(時間窓)W(t)を掛け、これを用い
以下の式(2)に示す強度変調伝達関数m、(F)を求
める。
"Means for Solving the Problem" In this invention, in order to emphasize transient characteristics in the time domain including direct sound and early reflection sound immediately after the direct sound arrives, the square h2 of the impulse from the sound source position to the listener position ( t) is multiplied by a function that performs temporal weighting, that is, a function that decays over time (time window) W(t), and using this, the intensity modulation transfer function m, (F ).

なお、このm、(F)の値から最終的に計算されるST
IまたはRASTIの導出過程は従来法と同じである。
Note that ST finally calculated from the values of m and (F)
The process of deriving I or RASTI is the same as the conventional method.

以下に、この発明による手法の有効性を実施例により説
明する。
The effectiveness of the method according to the present invention will be explained below using examples.

残響室を用いた実音場とコンピュータにより作成した合
成音場による明瞭性実験の結果を示す。
We present the results of intelligibility experiments using a real sound field using a reverberation chamber and a synthetic sound field created by a computer.

「実施例1」 残響時間が2.5秒(500Hz)程度の残響室、およ
び第1図で示されるようにエコーグラムh2(1,)が
指数(Exponential)型、矩形(Recta
ngula)型、三角(Triangular)型、逆
三角(Inverse Trigonal)型となるよ
うなインパルスレスポンスh(t)を持つ合成音場での
音声明瞭試験の結果を各パラメータについて第2図に示
す。なおインパルスレスポンスh(t)は7下”TET
X(LOのM系列)により求めた。実音場については測
定によりインパルスレスポンスを求めた。同図(a)は
横軸が従来法により求めたRASTI、縦軸は音声明瞭
性の損失量を表わすArticulation Los
s (A L)(%)である。同図(b)は横軸が時間
窓W (t)としてexp(−1/τ)、τ−200ξ
す秒を用いたこの発明による手法でもとめたml、I(
F)により計算されたRASTI (Windoiye
d  RASTI)であり、(縦軸は図(a)と同じで
ある。この第2図(a)から、エコーグラムの型が異な
ると同じRASTI値でもArticulation 
Lossの値が異なることがわかる。すなわち音場の音
声明瞭性が異なることがわかる。また、実際の音場であ
る残響室のデータとも異なっていることがわかる。一方
、第2図(b)かられかるように、この発明によるWi
ndowedRASTIでデータを整理すると各種の型
の合成音場の結果や実音場である残響室のデータがほぼ
同一線上に乗ることがわかる。すなわち、エコーグラム
の型の如何にかかわらず同じRASTIを持つ音場は音
声明瞭性が同一となることを示している。
"Example 1" A reverberation room with a reverberation time of about 2.5 seconds (500 Hz) and an echogram h2(1,) of an exponential type and a rectangular shape as shown in FIG.
FIG. 2 shows the results of a speech intelligibility test for each parameter in a synthetic sound field with impulse responses h(t) of ngular type, triangular type, and inverse trigonal type. The impulse response h(t) is below 7”TET
It was determined by X (LO M series). Regarding the actual sound field, the impulse response was determined by measurement. In the same figure (a), the horizontal axis is RASTI obtained by the conventional method, and the vertical axis is Articulation Loss, which represents the amount of speech intelligibility loss.
s (A L) (%). In the same figure (b), the horizontal axis is the time window W (t), exp (-1/τ), τ-200ξ
ml, I(
RASTI (Windoiye
d RASTI), and (the vertical axis is the same as in Figure (a). From Figure 2 (a), it can be seen that for different types of echograms, even with the same RASTI value, the Articulation
It can be seen that the values of Loss are different. In other words, it can be seen that the sound intelligibility of the sound field is different. It can also be seen that the data is different from the data of the reverberation room, which is the actual sound field. On the other hand, as can be seen from FIG. 2(b), the Wi
When the data is organized using ndowedRASTI, it can be seen that the results of various types of synthetic sound fields and the data of the reverberation room, which is the actual sound field, are almost on the same line. In other words, it is shown that sound fields having the same RASTI have the same speech intelligibility regardless of the type of echogram.

「実施例2」 実施例1の場合と同様に、残響時間が2.5秒(500
Hz)程度の実音場での結果と残響成分として指数型の
エコーグラムを持ち、それに直接音を付加した型の合成
音場(第工図参照:直接音十残響指数型)の音声明瞭性
の結果を第3図(a)。
“Example 2” As in Example 1, the reverberation time was 2.5 seconds (500
Hz) and the speech intelligibility of a synthetic sound field with an exponential type echogram as a reverberation component and a direct sound added to it (refer to the construction drawing: direct sound ten reverberation index type). The results are shown in Figure 3(a).

(b)に示す。参考のため実施例1で示したような直接
音を含まない指数型のを或音場の結果も示す。
Shown in (b). For reference, the results of an exponential type sound field that does not include direct sound as shown in Example 1 are also shown.

但し実施例1の指数型のデータそのものではなく、実験
パラメータ(残響時間)をかえ、再度実験したものであ
る。結果は実施例1と同しであり、実験データの再現性
をうらずけていると考えられる。
However, rather than using the exponential data of Example 1, the experiment was repeated with different experimental parameters (reverberation time). The results were the same as in Example 1, and it is thought that the reproducibility of the experimental data was compromised.

第3図(a)は従来法によるRASTI、第3図(b)
はこの発明によるWindowed RA S T I
により整理したものである。実施例1での結果と同様に
この発明によるWindowed RA S T Iで
整理すると実音場の結果と合成音場の結果とが同一線上
に乗ることがわかる。また、第3図(a)において直接
音を含む指数型の合成音場(Direct +Expo
nential型)と、直接音を持たない指数型の合成
音場(Exponential型)との結果を比べると
、直接音を含む指数型の合成音場の場合の方が実音場の
結果に近いことがわかる。このことは従来の技術の項で
、従来のMTF (STI、またはRASTI)による
評価では、エコーグラムの形が大きく異なる音場の評価
をする場合、その音声明瞭性の評価に食い違いが生ずる
ことを述べたが、これをうらずけたものと解釈できる。
Figure 3(a) is RASTI by conventional method, Figure 3(b)
is the Windowed RAS T I according to this invention.
This has been organized by Similar to the results in Example 1, when arranged using the Windowed RAS T I according to the present invention, it can be seen that the results of the actual sound field and the results of the synthetic sound field are on the same line. In addition, in Fig. 3(a), an exponential synthetic sound field (Direct + Expo
Comparing the results of a synthetic sound field (exponential type) and an exponential synthetic sound field that does not have a direct sound (exponential type), it is found that the result of an exponential synthetic sound field that includes a direct sound is closer to the result of the real sound field. Recognize. This is a matter of the prior art, and in the conventional evaluation using MTF (STI or RASTI), when evaluating a sound field with greatly different echogram shapes, discrepancies occur in the evaluation of speech intelligibility. As stated above, this can be interpreted as a lie.

すなわち、実音場に近い型を持つ直接音を含む指数型の
合成音場(Direct + Exponential
型)の方が実音場の結果に近い。
In other words, an exponential synthetic sound field (Direct + Exponential
type) is closer to the actual sound field result.

以上、実施例1.2によりこの発明の手法、m、(F)
(すなわち、Windowed RA S T I )
により、従来のMTF、m (F)(すなわちRAST
I)よりも精度よく音場における音声明瞭性を評価でき
ることがわかった。
As described above, according to Example 1.2, the method of this invention, m, (F)
(i.e., Windowed RASTI)
By, the conventional MTF, m (F) (i.e. RAST
It was found that the speech intelligibility in the sound field can be evaluated more accurately than I).

これらの実施例1.2では時間窓W(t)としてexp
(−t/r)、r=200msを用いたが、音源の種類
(本実験では単音節の明瞭度の測定であったが、たとえ
ば単語や会話了解度、等)により、τの値を変えたり、
または他の関数に置き換えることも可能である。また、
本実施例では評価値としてRA S T I (Rap
id−3TI)に着目したが、従来のSr1法に対して
もこの発明のm w (F )を用いることは可能であ
り、適用することにより得られたWindowed S
 T Iは精度良い音場の音声明瞭性の評価値であるこ
とは明らかである。更にこの発明のm’、(F)は明瞭
性の評価のみならず、例えば音場の広がりの評価などに
も利用できる。また重み関数W(t)は周波数に応じて
変更してもよい。
In these Example 1.2, the time window W(t) is exp
(-t/r), r = 200ms, but the value of τ was changed depending on the type of sound source (in this experiment, the intelligibility of single syllables was measured, but for example, the intelligibility of words and conversation). Or,
Or it can be replaced with other functions. Also,
In this example, RA S T I (Rap
id-3TI), but it is also possible to use the m w (F) of this invention for the conventional Sr1 method, and the Windowed S
It is clear that T I is an accurate evaluation value of speech intelligibility in a sound field. Furthermore, m' and (F) of the present invention can be used not only for evaluating clarity, but also for evaluating the spread of a sound field, for example. Furthermore, the weighting function W(t) may be changed depending on the frequency.

「発明の効果」 以上説明したように、この発明による音場特性の算出法
によれば、例えば明瞭性を評価するために用いて、いろ
いろな種類(型)の音場に対しても精度よく評価できる
。この手法を用いることにより、現存する各種のホール
、劇場、体育館、講演会場、集会場、映画館、等の音場
(電気音響設備も含めた)の音声明瞭性が精度よく評価
できる1 とともに、設計段階におけるこれら建築物に対してコン
ピュータを用いたシミニレ−ジョン(音線法、等のアル
ゴリズムにより音源位置と受聴者位置間のエコーグラム
またはインパルスレスポンスを算出)と本手法を併用す
ることにより音場の音声明瞭性が算出可能であり、建築
および電気音響設備の音響設計に用いることができる。
"Effects of the Invention" As explained above, according to the method of calculating sound field characteristics according to the present invention, it can be used, for example, to evaluate intelligibility, and can be used accurately for various types (types) of sound fields. It can be evaluated. By using this method, the speech intelligibility of various existing halls, theaters, gymnasiums, lecture halls, assembly halls, movie theaters, etc. (including electroacoustic equipment) can be evaluated accurately1. By using this method in conjunction with computer-based simulation (calculating the echogram or impulse response between the sound source position and the listener position using algorithms such as the sound ray method) for these buildings at the design stage, the sound Speech intelligibility in a field can be calculated and can be used in acoustic design of architecture and electroacoustic equipment.

また非常・緊急用の放送設備の音響設計にも使用可能で
ある。
It can also be used for acoustic design of emergency broadcast equipment.

〔参考文献〕[References]

(1)  W、 K1ein+  ”Articula
tion Loss of Con5゜nants a
s a Ba5is for tM Design a
nd Judgmentof 5ound Reinf
orcement Systems  + J、^ud
io Eng、 Soc、、 vol、 19. pp
、 920−922(1971Dec)(2) J、 
P、 A、 Lochner a、nd J、 F、 
Burger、  “TheInfluence of
 Reflections on Auditorlu
m八cousticsへ    J、  5ound 
 Vibration、  vol、  L  pp。
(1) W, K1ein+ “Articula
tion Loss of Con5゜nants a
s a Ba5is for tM Design a
nd Judgment of 5ound Reinf
arrangement systems + J, ^ud
io Eng, Soc,, vol, 19. pp
, 920-922 (1971 Dec) (2) J.
P, A, Lochner a, nd J, F,
Burger, “The Influence of
Reflections on Auditor
To m8coustics J, 5ound
Vibration, vol, Lpp.

426−454 (1964) (3) T、 Houtgast、 J、 M、 5t
eeneken and R,Pr。
426-454 (1964) (3) T, Houtgast, J, M, 5t
eenken and R, Pr.

mp、 ”Pedicting 5peech int
elligibility in r。
mp, ”Pedicting 5peech int
elligibility in r.

oms from the modulation t
ransfer function、I。
oms from the modulation
transfer function, I.

2 Genera’l room acoustics  
+  Acust+ca vol、 46(1980) (4)   T、  Houtgast  and  
J、’  M、  5teeneken+  “八Re
vieIIIof  the MTF Concept
 in Room Acousticsand Its
 Use for Estimating 5peec
h Intelligib−ility in Aud
itoria、    J、  Acoust、  S
oc、  ^n、。
2 Genera'l room acoustics
+ Acust+ca vol, 46 (1980) (4) T, Houtgast and
J,' M, 5teenken+ “8 Re
vieIIIof the MTF Concept
in Room Acoustics and Its
Use for Estimating 5peec
h Intelligib-ility in Aud
itoria, J., Acoust, S.
oc, ^n,.

vol、  77  (1985Mar、)(5) M
、  R,5chroeder、  ”Modulat
ion Trai+5ferFunctions:De
finition  and  Measuremen
t  ”Abstract in  IEEE、  A
SSP 26.P2S5  (1978)(6) K、
  Rosenh’auer and K、  J、 
 Ro’5enbruch。
vol, 77 (1985 Mar,) (5) M
, R,5 chroeder, “Modulat
ion Trai+5ferFunctions:De
finition and measurement
t”Abstract in IEEE, A
SSP 26. P2S5 (1978) (6) K.
Rosenh'auer and K.J.
Ro'5enbruch.

“The measurement of the 0
ptical  transferfunctions
 of  1enses+   Rep、Prog、P
hys、+vol。
“The measurement of the 0
ptical transfer functions
of 1enses+ Rep, Prog, P
hys, +vol.

30、  ppl−25(1967) (7) J、  M、 5teeneken and 
T、 Houtgast、’ ”Ra5ti:a  t
ool  for evaluating audit
oria、   Bruel  &Kjaer Tec
hnical Revlvol、  3  (1985
30, ppl-25 (1967) (7) J, M, 5teenken and
T, Houtgast,' ”Ra5ti:a t
ool for evaluating audit
oria, Bruel & Kjaer Tec
hnical Revlvol, 3 (1985
)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1.2の音声明瞭度試験の実験条件(実
音場としての残響室での実験、およびコンピュータによ
る合成音場の実験)を示す図、第2図は実音場の結果、
および合成音場のうちエコーグラムh2(t)が指数型
、矩形型、三角型、逆三角型となるようなインパルスレ
スポンスh(t)を持つ音場の音声明瞭度試験の結果を
示し、(a)は従来法によるRASTIで結果を表わし
た図、(b)はこの発明によるWindoied  R
A S T 1(すなわちmw)で表現した図、第3図
は実音場の結果、および合成音場のうちエコーグラムh
2(t)が残響成分として指数型のエコーグラムを持ち
それに直接音を付加した型の合成音場と指数型の残響成
分だけをもつ場合の音声明瞭度試験の結果を示し、(a
)は従来法の結果を示し、(b)はこの発明を用いた結
果を示す図である。
Figure 1 is a diagram showing the experimental conditions for the speech intelligibility test in Example 1.2 (an experiment in a reverberation room as a real sound field, and an experiment in a computer-generated sound field), and Figure 2 shows the results of the real sound field;
and the results of speech intelligibility tests for sound fields with impulse responses h(t) such that the echogram h2(t) is exponential, rectangular, triangular, or inverted triangular among synthetic sound fields. (a) is a diagram showing the results of RASTI according to the conventional method, (b) is a diagram showing the results of RASTI according to the present invention.
Figure 3 shows the result of the real sound field and the echogram h of the synthetic sound field.
2(t) shows the results of a speech intelligibility test when it has an exponential type echogram as a reverberation component and a synthetic sound field in which direct sound is added to it, and only has an exponential type reverberation component, and (a
) shows the results of the conventional method, and (b) shows the results using the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)残響音場における音源位置から受聴者位置に至る
音響伝達関数を用いて当該音場の特性を算出する方法で
あって、 上記音源位置から上記受聴者位置までのインパルスレス
ポンスの2乗h^2(t)に対して、時間的な重み付け
を行なう関数W(t)を掛け、これから当該音場の強度
変調伝達関数m_w(F)を、▲数式、化学式、表等が
あります▼ Fは周波数、iは複素数を示す、 で導出することを特徴とする音場特性算出方法。
(1) A method of calculating the characteristics of a reverberant sound field using an acoustic transfer function from the sound source position to the listener position, the square h of the impulse response from the sound source position to the listener position. ^2(t) is multiplied by the temporal weighting function W(t), and from this the intensity modulation transfer function m_w(F) of the sound field is calculated as follows: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ F is A sound field characteristic calculation method characterized in that frequency and i represent a complex number.
JP1712790A 1990-01-26 1990-01-26 Method for calculating sound field characteristic Pending JPH03221819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1712790A JPH03221819A (en) 1990-01-26 1990-01-26 Method for calculating sound field characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1712790A JPH03221819A (en) 1990-01-26 1990-01-26 Method for calculating sound field characteristic

Publications (1)

Publication Number Publication Date
JPH03221819A true JPH03221819A (en) 1991-09-30

Family

ID=11935371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1712790A Pending JPH03221819A (en) 1990-01-26 1990-01-26 Method for calculating sound field characteristic

Country Status (1)

Country Link
JP (1) JPH03221819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211021A (en) * 2008-03-04 2009-09-17 Japan Advanced Institute Of Science & Technology Hokuriku Reverberation time estimating device and reverberation time estimating method
JP2016045214A (en) * 2014-08-19 2016-04-04 鹿島建設株式会社 Evaluation value calculating method, and spatial characteristics designing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211021A (en) * 2008-03-04 2009-09-17 Japan Advanced Institute Of Science & Technology Hokuriku Reverberation time estimating device and reverberation time estimating method
JP2016045214A (en) * 2014-08-19 2016-04-04 鹿島建設株式会社 Evaluation value calculating method, and spatial characteristics designing method

Similar Documents

Publication Publication Date Title
Jot et al. Analysis and synthesis of room reverberation based on a statistical time-frequency model
Schroeder Digital simulation of sound transmission in reverberant spaces
Zahorik Assessing auditory distance perception using virtual acoustics
KR101500254B1 (en) Apparatus, method and computer readable medium for determining a measure for a perceived level of reverberation, and audio processor, method of processing an audio signal and computer readable medium for generating a mix signal from a direct signal component
Toole Loudspeaker measurements and their relationship to listener preferences: Part 1
Jelfs et al. Revision and validation of a binaural model for speech intelligibility in noise
Lehnert et al. Principles of binaural room simulation
Richter et al. Evaluation of a fast HRTF measurement system
Georgiou et al. Auralization of a car pass-by using impulse responses computed with a wave-based method
Wendt et al. On the localization of auditory objects created by directional sound sources in a virtual room
Prodeus et al. Objective assessment of speech intelligibility in small and medium-sized classrooms
JPH03221819A (en) Method for calculating sound field characteristic
Tommasini et al. A computational model to implement binaural synthesis in a hard real-time auditory virtual environment
Wang et al. Blind estimation of speech transmission index and room acoustic parameters by using extended model of room impulse response derived from speech signals
Nakajima et al. Effects of a single reflection with varied horizontal angle and time delay on speech intelligibility
Jacob et al. Accurate prediction of speech intelligibility without the use of in-room measurements
Begault et al. Early reflection thresholds for anechoic and reverberant stimuli within a 3-D sound display
Scharrer et al. Blind reverberation time estimation
Luizard et al. Auralization of coupled spaces based on a diffusion equation model
JP3795472B2 (en) Sound system characteristic measuring apparatus and characteristic compensating apparatus
Jamieson et al. Electroacoustic evaluation of assistive hearing devices
Yonemura et al. Subjective evaluation on vibratory feeling to noises containing a low-frequency tonal component
Vorländer Room acoustics–fundamentals and computer simulation
Kendrick Blind estimation of room acoustic parameters from speech and music signals
Oldham et al. Computer applications in building and environmental acoustics