[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03228837A - Production of optical glass parts - Google Patents

Production of optical glass parts

Info

Publication number
JPH03228837A
JPH03228837A JP1934090A JP1934090A JPH03228837A JP H03228837 A JPH03228837 A JP H03228837A JP 1934090 A JP1934090 A JP 1934090A JP 1934090 A JP1934090 A JP 1934090A JP H03228837 A JPH03228837 A JP H03228837A
Authority
JP
Japan
Prior art keywords
glass
optical component
members
mold
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1934090A
Other languages
Japanese (ja)
Other versions
JP2579016B2 (en
Inventor
Fumiyoshi Sato
佐藤 文良
Mizukazu Yogo
瑞和 余語
Hiroe Tanaka
田中 弘江
Takeshi Nomura
剛 野村
Hiroyuki Kubo
裕之 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019340A priority Critical patent/JP2579016B2/en
Priority to US07/645,633 priority patent/US5275637A/en
Publication of JPH03228837A publication Critical patent/JPH03228837A/en
Application granted granted Critical
Publication of JP2579016B2 publication Critical patent/JP2579016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To efficiently produce optical parts having satisfactory surface accuracy by continuously pressing glass held between a pair of die members for molding without closing the peripheries of the members until the glass attains to a temp. below the strain point and forming a body with a protruding by part. CONSTITUTION:Right and left die members are set at a prescribed interval, a pair of shears 6 is kept open and molten glass 4 is dropped from a nozzle 2 into the space between the members. At the time when the lower end of the dropped molten glass 4 reaches a position under the space between the members, the members are moved forward and a body 30 with a lug part 32 is formed with the members and a grooving ring. During this time, pressing is continued until the glass attains to a temp. below the strain point and then the shears 6 are closed to shear the molten glass. Optical glass parts are obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス光学部品の製造方法に関し、特 に溶融状態にあるガラスを流下させながらその両側から
成形用型部材でプレスして光学部品を得る方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a glass optical component, and in particular, an optical component is obtained by pressing glass in a molten state with mold members from both sides while flowing down. Regarding the method.

[従来の技術及び発明が解決しようとする課題]ガラス
素材からプレス成形により光学部品を得る方法としては
、いわゆるリヒートプレス法とダイレクトプレス法とが
ある。
[Prior Art and Problems to be Solved by the Invention] Methods for obtaining optical components from glass materials by press molding include the so-called reheat press method and the direct press method.

上記リヒートプレス法では、−旦最終成形品の形状に近
似するガラスブランクを形成しておき、該ブランクを成
形用型装置内に収容して加熱及び加圧し、該型装置の型
部材により形成されるキャビティの形状に対応した最終
成形品を得る。
In the above-mentioned reheat press method, a glass blank having a shape similar to that of the final molded product is first formed, then the blank is placed in a molding device, heated and pressurized, and then formed by the mold members of the molding device. Obtain a final molded product that corresponds to the shape of the cavity.

上記ダイレクトプレス法では、溶融ガラスを成形用型装
置内に導入し加圧して、該型装置の型部材により形成さ
れるキャビティの形状に対応した最終成形品を直接得る
In the above-mentioned direct press method, molten glass is introduced into a mold device and pressurized to directly obtain a final molded product corresponding to the shape of a cavity formed by a mold member of the mold device.

ところで、上記リヒートプレス法に使用するガラスブラ
ンクは形状精度及び表面精度がある程度良好であること
が好ましいので、ガラス素材な研削及び研摩して所定の
精度のものを得ることもある。しかし、これでは研削及
び研摩に手間がかかるので、上記ガラスブランク製造の
ために、上記ダイレクトプレス法を利用することがある
By the way, since it is preferable that the glass blank used in the reheat pressing method has a certain degree of shape accuracy and surface accuracy, the glass blank may be ground and polished to obtain a blank with a predetermined accuracy. However, since this requires time and effort for grinding and polishing, the above-mentioned direct press method is sometimes used to manufacture the above-mentioned glass blank.

ダイレクトプレス法としては、たとえば特開昭63−2
48727号公報及び特開平1−133948号公報に
記載されている様に、溶融ガラスをノズルから流下させ
ながら、その両側から水平方向に対向する1対の成形用
型部材を用いて上記溶融ガラスを挟み、かくして形成さ
れるキャビティ内でガラスを冷却硬化させ、所定の形状
の成形品を得る方式がある。この方式では、片側の成形
用型部材の光学面成形面の外周にリング状切断部材を配
置して、これを型部材前進と同時または型部材前進後に
前進させて、はみ出したガラスを切断除去して所望の形
状の光学部品を形成している。この方式によれば、流下
する溶融ガラスの切断痕を光学面に残留させずに光学部
品が得られるので、好ましい。
As a direct press method, for example, Japanese Patent Application Laid-Open No. 63-2
As described in Japanese Patent Publication No. 48727 and Japanese Unexamined Patent Publication No. 1-133948, while the molten glass is flowing down from a nozzle, a pair of mold members for forming the glass are horizontally opposed from both sides of the molten glass. There is a method in which a molded product of a predetermined shape is obtained by sandwiching the glass and cooling and hardening the glass in the cavity thus formed. In this method, a ring-shaped cutting member is placed around the outer periphery of the optical surface molding surface of one mold member, and is moved forward at the same time as or after the mold member advances to cut and remove the protruding glass. An optical component having a desired shape is formed. According to this method, an optical component can be obtained without leaving cutting marks of flowing molten glass on the optical surface, which is preferable.

しかして、上記方式では、リング状切断部材によりガラ
スを切断する際に、該切断部材と他方の型部材との接触
により粉塵が発生し、該粉塵が成形品離型後に型部材の
成形面に付着し、次のプレスの際に光学面となるガラス
表面に付着して、成形品の光学的特性を劣化させること
がある。
However, in the above method, when glass is cut with a ring-shaped cutting member, dust is generated due to contact between the cutting member and the other mold member, and the dust is transferred to the molding surface of the mold member after the molded product is released. It may adhere to the glass surface that becomes the optical surface during the next pressing, deteriorating the optical properties of the molded product.

更に、以上の様に、上記リング状切断部材は他方の型部
材と接触するので寿命が短く、その頻繁な交換が必要で
あり、製造能率の向上の妨げとなっていた。
Furthermore, as described above, since the ring-shaped cutting member comes into contact with the other mold member, its lifespan is short, requiring frequent replacement, which hinders improvement in manufacturing efficiency.

また、上記方式では、プレス中にガラスに収縮(ヒケ)
が生じやす(、得られる光学部品の面精度は型部材の成
形面精度に比べてかなり低いという難点があった。
In addition, with the above method, shrinkage (sink marks) may occur in the glass during pressing.
(There was a problem that the surface precision of the obtained optical component was considerably lower than the molding surface precision of the mold member.

そこで、本発明は、上記の如き従来技術に鑑み、表面精
度を含む光学的特性が良好な光学部品が得られ、且つ製
造能率を向上させ得る、ガラス光学部品の製造方法を提
供することを目的とするものである。
Therefore, in view of the prior art as described above, the present invention aims to provide a method for manufacturing glass optical components that can obtain optical components with good optical properties including surface precision and improve manufacturing efficiency. That is.

[課題を解決するための手段] 本発明によれば、上記目的を達成するものとして、 流下する溶融ガラスをその両側から1対の成形用型部材
によりプレスし該型部材の成形面と対応する表面を有す
る光学部品を製造する方法において、ガラスがその歪点
以下の温度になるまで上記1対の成形用型部材間の周囲
を閉じることなしにプレスし続け、流下する溶融ガラス
を上記プレスされている部分の上方にて切断し、上記成
形用型部材間に形成される光学部品本体部に対し外側に
はみ出した耳部を付属させたガラス成形品を得ることを
特徴とする、ガラス光学部品の製造方法、 が提供される。
[Means for Solving the Problems] According to the present invention, the above object is achieved by pressing the flowing molten glass from both sides with a pair of mold members for molding so as to correspond to the molding surfaces of the mold members. In the method for manufacturing an optical component having a surface, pressing is continued without closing the periphery between the pair of mold members until the glass reaches a temperature equal to or lower than its strain point, and the flowing molten glass is poured into the pressed material. A glass optical component characterized in that a glass molded product is obtained by cutting the glass molded product above the portion where the mold member is formed, and having an ear protruding outward from the optical component main body formed between the mold members. A method of manufacturing is provided.

本発明においては、上記成形用型部材の少なくとも一方
の成形面の周囲に溝形成リングを設け、該溝形成リング
により上記プレス時に溶融ガラスに溝を形成し、該溝形
成リングの上記型部材成形面からの突出量を変化させる
ことにより成形ガラス光学部品の厚さを調節する。態が
ある。
In the present invention, a groove forming ring is provided around at least one molding surface of the mold member for forming, the groove forming ring forms a groove in the molten glass during the pressing, and the groove forming ring forms the mold member. The thickness of the molded glass optical component is adjusted by varying the amount of protrusion from the surface. There is a state.

本発明においては、上記方法により得られた光学部品の
上記耳部を除去する形態がある。
In the present invention, there is a mode in which the above-mentioned ears of the optical component obtained by the above-mentioned method are removed.

本発明においては、上記方法により得られた光学部品の
本体部の一面を更に所望の形状及び精度に加工するとと
もに所望の厚さの光学部品となす形態がある。
In the present invention, there is a mode in which one surface of the main body of the optical component obtained by the above method is further processed into a desired shape and precision, and an optical component having a desired thickness is formed.

本発明によれば、上記方法により、少なくとも片面が非
球面である、ガラス光学部品、が提供される。
According to the present invention, the above method provides a glass optical component having at least one aspherical surface.

[実施例] 以下、本発明の実施例について図面を参照しながら説明
する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明によるガラス光学部品の製造方法の一実
施例の概略工程を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing the steps of an embodiment of the method for manufacturing a glass optical component according to the present invention.

図において、2は不図示のガラス溶融装置に接続されて
いる溶融ガラス流出ノズルであり、4は該ノズルから一
連続的に流下せしめられる溶融ガラスである。6は上記
ノズル4の直下にあって流下溶融ガラス4を適宜のタイ
ミングで切断するためのシャー(切断刃)である。
In the figure, 2 is a molten glass outflow nozzle connected to a glass melting device (not shown), and 4 is molten glass that is continuously made to flow down from the nozzle. Reference numeral 6 denotes a shear (cutting blade) located directly below the nozzle 4 for cutting the flowing molten glass 4 at appropriate timing.

12.12’は上記流下溶融ガラスの両側に配置された
1対の成形用型部材であり、本実施例では凸メニスカス
レンズを成形するためのものである。12a、12a’
はその光学面形成のための成形面を示し、該成形面は鏡
面に仕上げられている。これら型部材は回転対称形であ
り、成形面を対向させて同軸状に配置されている。上記
各型部材12,12°を含んで1対の型セットが構成さ
れている。
Reference numerals 12 and 12' designate a pair of mold members disposed on both sides of the flowing molten glass, and in this embodiment, they are used to mold a convex meniscus lens. 12a, 12a'
indicates a molding surface for forming the optical surface, and the molding surface is finished to a mirror surface. These mold members are rotationally symmetrical and are coaxially arranged with their molding surfaces facing each other. A pair of mold sets includes the mold members 12 and 12°.

上記型部材12.12’ としては、Ni基超超耐熱合
金母材成形面を表面粗さRmaxO,01μm且つ所望
の形状精度に研摩仕上げし、その表面に窒化物セラミッ
クス被覆層を約0.8μm厚にコーティングしたものを
用いることができる。
For the mold member 12.12', the molding surface of the Ni-based super super heat-resistant alloy base material is polished to a surface roughness RmaxO of 01 μm and a desired shape accuracy, and a nitride ceramic coating layer is applied to the surface to a thickness of about 0.8 μm. A thickly coated material can be used.

型母材としては、その他MO基耐熱性合金、Fe基耐熱
性合金、ステンレス系耐熱性合金、MOlTa、炭素、
及び炭素複合材等を用いることができる。被覆層は母材
の熱間強度を補うために用いられるのであり、BN%T
iN及びAIN等の窒化物の他に、Tic、SiC及び
TaC等の炭化物やC(ダイヤモンド)その他を用いる
ことができる。これらは各種成膜技術を用いて付するこ
とかできる。該被覆層は単一層である必要はな(、密着
強度や耐熱性を向上させるために中間層を設けることも
できる。また、CVD法により成膜された被覆層の場合
には該被覆層自体の表面を良好な表面精度となすため(
超精密研削や研摩等の処理を施すことができる。更に、
母材の熱間強度が太き(プレス成形を十分な回数行って
も形状精度を維持できる場合には、被覆層として軟質材
料である白金、白金系合金、Ni、及びその合金等を用
いることができる。
Other mold base materials include MO-based heat-resistant alloy, Fe-based heat-resistant alloy, stainless steel heat-resistant alloy, MOLTa, carbon,
and carbon composite materials, etc. can be used. The coating layer is used to supplement the hot strength of the base material, and the BN%T
In addition to nitrides such as iN and AIN, carbides such as Tic, SiC, and TaC, C (diamond), and others can be used. These can be applied using various film formation techniques. The coating layer does not need to be a single layer (an intermediate layer may be provided to improve adhesion strength and heat resistance.Also, in the case of a coating layer formed by CVD method, the coating layer itself In order to make the surface of (
Processing such as ultra-precision grinding and polishing can be performed. Furthermore,
If the hot strength of the base material is large (if the shape accuracy can be maintained even after press forming is performed a sufficient number of times, use soft materials such as platinum, platinum-based alloys, Ni, and their alloys as the coating layer). I can do it.

左側の型セットにおいて、上記成形用型部材12は支持
部材14に固定されており、該支持部材は取付は部材1
6に取付けられている。また、上記型部材12の周囲に
は溝形成リング18が取付けられている。該リングの先
端1”;]形状とされている。該リング18は上記取付
1〕て゛SSi20対しボルトで固定されており、該固
定に際しスペーサリング20が介在せしめられている。
In the mold set on the left, the mold member 12 for molding is fixed to a support member 14, and the support member is attached to member 1.
It is attached to 6. Further, a groove forming ring 18 is attached around the mold member 12. The tip of the ring has a shape of 1''. The ring 18 is fixed to the SSi 20 with bolts in the above-mentioned attachment 1, and a spacer ring 20 is interposed during the fixing.

該スペーサリングの厚さに応じて型部材成形面12aか
らのリング18の刃の突出量が設定される。尚、核力を
型部材成形面12aから突出させない場合(突出量0)
及び上記溝形成リングを取付けない場合もある。
The amount of protrusion of the blades of the ring 18 from the mold member molding surface 12a is set depending on the thickness of the spacer ring. In addition, when the nuclear force is not projected from the mold member molding surface 12a (projection amount 0)
There are also cases where the groove forming ring is not installed.

尚、上記型部材12の内部にはヒータ22及び温度測定
のための熱電対24が内蔵されている。
Incidentally, a heater 22 and a thermocouple 24 for temperature measurement are built inside the mold member 12.

そして、図示はされていないが、上記取付は部材16は
A−B方向に往復移動可能に不図示の基台により支持さ
れている。該往復移動は不図示の駆動手段によりなされ
る。
Although not shown, the mounting member 16 is supported by a base (not shown) so as to be movable back and forth in the direction AB. The reciprocating movement is performed by a drive means (not shown).

以上左側の型セットに関し述べたが、右側の型セットも
型部材成形面12a゛の形状を除き実質上同一であり、
対応する部材には「°」が付されている。但し、図示は
されていないが、右側の型セットにおいて、B方向の最
前進停止位置は不図示のストッパにより設定される。該
ストッパの位置を可変としておき、その位置を調節する
ことにより、上記停止位置を適宜設定できる。
Although the mold set on the left side has been described above, the mold set on the right side is also substantially the same except for the shape of the mold member molding surface 12a.
Corresponding members are marked with a “°”. However, although not shown, in the right mold set, the most advanced stop position in the B direction is set by a stopper (not shown). By making the position of the stopper variable and adjusting the position, the above-mentioned stopping position can be appropriately set.

以下、図面に従い、製造工程を説明する。Hereinafter, the manufacturing process will be explained according to the drawings.

先ず、第1図(a)に示される様に、左右の型セットを
所定の間隔に開き更にシャー6を開いた状態を維持しつ
つ、型部材12.12’間にノズル2から溶融ガラス4
を流下させる。そして、第1図(a)に示される様に該
溶融ガラス4の下端が型部材間より下方へと到達したこ
とを不図示のセンサで検知する。
First, as shown in FIG. 1(a), the left and right mold sets are opened at a predetermined interval, and while the shear 6 is kept open, the molten glass 4 is injected from the nozzle 2 between the mold members 12 and 12'.
flow down. Then, as shown in FIG. 1(a), a sensor (not shown) detects that the lower end of the molten glass 4 has reached below between the mold members.

次に、該検知信号に基づき、上記右側型セットをストッ
パに当接するまでB方向に前進させる。
Next, based on the detection signal, the right side type set is advanced in the direction B until it comes into contact with the stopper.

該前進動作に対し極くわずかだけ遅延して上記左側型セ
ットをA方向に前進させる。これにより、第1図(b)
に示される様に、1対の型部材12.12°及び溝形成
リング18.18’ により形成されるキャビティに対
応して溶融ガラスがプレスされる。尚、この時、第1図
(b)に示される様に、溝形成リング18.18’の先
端どうしは接触しておらず間隔りをもって隔てられてお
り、従ってプレスされた溶融ガラスの左右両面には型部
材成形面12a、12a’に対応する面の周囲に溝が形
成される。そして、該溝の内側にガラス光学部品本体部
30が形成される。
The left mold set is advanced in the A direction with a very slight delay in response to the forward movement. As a result, Fig. 1(b)
As shown in Figure 1, molten glass is pressed into a cavity formed by a pair of mold members 12.12° and a groove forming ring 18.18'. At this time, as shown in FIG. 1(b), the tips of the groove forming rings 18 and 18' are not in contact with each other but are separated by a gap, so that both the left and right sides of the pressed molten glass A groove is formed around the surface corresponding to the mold member molding surfaces 12a, 12a'. Then, a glass optical component main body portion 30 is formed inside the groove.

次に、第1図(C)に示される様に、シャー6を閉じ、
溶融ガラス4を切断する。これにより、上記ガラス光学
部品本体部30の周囲に、上記溝の外側にはみ出した耳
部32が形成される。
Next, as shown in FIG. 1(C), close the shear 6,
Cut the molten glass 4. As a result, an ear portion 32 protruding outside the groove is formed around the glass optical component main body portion 30.

そして、ガラス温度が歪点以下となるまでプレスを続け
る。この間、左側型セットはストッパ等により停止せし
められることなく、ガラスに対しプレス圧力を印加し続
ける。
Then, pressing is continued until the glass temperature falls below the strain point. During this time, the left mold set continues to apply press pressure to the glass without being stopped by a stopper or the like.

その後、第1図(d)に示される様に、左右の型セット
を開き更にシャー6を開いて、成形品を取出す。該取出
しには不図示のテークアウトロボットが利用される。
Thereafter, as shown in FIG. 1(d), the left and right mold sets are opened, and the shear 6 is opened to take out the molded product. A take-out robot (not shown) is used for the take-out.

第2図は以上の工程で得られた成形品を示す正面図であ
り、第3図はその部分断面概略図である。
FIG. 2 is a front view showing the molded product obtained in the above process, and FIG. 3 is a schematic partial cross-sectional view thereof.

1 これらの図において、30は光学部品本体部であり、3
2はその外側にはみ出しまた耳部であり、34.36は
上記本体部30と耳部32との間において両面に形成さ
れた溝である。該溝の断面形状は、第3図に示されてい
る様に、くさび形であり、レンズ光軸と平行な方向に対
し、左面側で内側が角度θ1且つ外側が角度θ2をなし
、右面側で内側が角度θ1°で外側が角度θ2゛をなす
1 In these figures, 30 is the optical component body;
Reference numeral 2 indicates an ear portion protruding from the outside, and reference numeral 34 and 36 indicate grooves formed on both sides between the main body portion 30 and the ear portion 32. As shown in Fig. 3, the cross-sectional shape of the groove is wedge-shaped, and the inner side on the left side forms an angle θ1, the outer side forms an angle θ2, and the right side makes an angle θ1 with respect to the direction parallel to the optical axis of the lens. The inner side forms an angle θ1° and the outer side forms an angle θ2°.

これら角度は、たとえばθ1=30°、θ2=156 
θ1°=45’ 、θ2°=15°である。
These angles are, for example, θ1=30°, θ2=156
θ1°=45', θ2°=15°.

尚、上記工程において、型部材12.12’は熱電対2
4,24°による温度測定結果に基づき定点温度にPI
D制御されている。該定点温度は適宜設定変更すること
ができる。
In addition, in the above process, the mold member 12, 12' is connected to the thermocouple 2.
PI to the fixed point temperature based on the temperature measurement result at 4,24°
D is controlled. The fixed point temperature can be changed as appropriate.

以上の様にして成形された成形品は、そのままで鏡筒に
組込んで使用することも出来るし、その後耳部32を除
去して使用することもできる。
The molded product formed as described above can be used as is by being assembled into a lens barrel, or the ear portion 32 can be removed and used.

この除去は、溝34.36が形成されているため、所望
の位置に引張り応力を発生せしめ容易に機械的に行うこ
とができる。即ち、たとえば手指にて力をかけて割るこ
とにより除去できるし、あるいはわずかな高さからの落
下衝撃により除去することもできるし、更に専用の治具
を用いて本体部30を支持しつつ耳部32に力をかけて
除去することもできる。
Since the grooves 34 and 36 are formed, this removal can be easily performed mechanically by generating tensile stress at a desired location. That is, for example, it can be removed by applying force with your fingers and breaking it, or it can be removed by impact from falling from a slight height, or it can be removed by using a special jig to support the main body part 30 while holding the ear. It is also possible to apply force to the portion 32 and remove it.

第4図は耳部32の除去された光学部品本体部30を示
す部分概略断面図である。
FIG. 4 is a partial schematic sectional view showing the optical component main body 30 from which the ears 32 have been removed.

図示されている様に、光学部品本体部30は、その外周
部に上記溝34.36の一部たる斜面35.37と上記
耳部除去の際の破断面40とを有する。該破断面は耳部
除去の際に溝34の底部から溝36の底部へと安定して
破断が発生するため、所望の位置に形成される。
As shown in the figure, the optical component main body 30 has a slope 35.37, which is a part of the groove 34, 36, and a fractured surface 40 when the ear is removed, on its outer circumference. The fracture surface is formed at a desired position because the fracture occurs stably from the bottom of the groove 34 to the bottom of the groove 36 when the ear is removed.

尚、上記斜面35.37は、ちょうど光学部品本体部3
0の両面の面取り部としての機能を発揮している。
Note that the slopes 35 and 37 are just above the optical component main body 3.
It functions as a chamfered portion on both sides of 0.

以上のプレスにおいて、左側型セットはストッパ等によ
り停止せしめられないので、ガラスが硬化し成形品の最
終形状が決定されるまでガラスに対し均等にプレス圧力
な印加でき、これにより少なくとも片面にヒケを生ずる
ことなしに型部材成形面の精度を十分良好に成形品に転
写することができる。尚、右側型セットは左側型セット
の抑圧に対し後退しない様に、停止位置において十分大
きな力で支えることができる。
In the above-described press, the left die set is not stopped by a stopper, etc., so press pressure can be applied evenly to the glass until the glass hardens and the final shape of the molded product is determined, thereby preventing sink marks on at least one side. The precision of the molding surface of the mold member can be sufficiently transferred to the molded product without causing any problems. Note that the right-side type set can be supported with a sufficiently large force at the stop position so as not to retreat against the oppression of the left-side type set.

成形品の厚さは、供給される溶融ガラスの粘度、型部材
の温度及びプレス圧力その他の成形条件により決まり、
これらを適宜調節することにより所望の厚さの成形品を
得ることができる。上記供給溶融ガラスの粘度は、たと
えば106〜10”ポアズの範囲で調節できる。上記型
部材の温度は、たとえば初期にガラスの転移点〜歪点の
範囲に設定しておき以後必要に応じて変化させることが
できる。上記プレス圧力は、たとえば1〜500Kg/
cm”の範囲で調節できる。
The thickness of the molded product is determined by the viscosity of the supplied molten glass, the temperature of the mold member, the press pressure, and other molding conditions.
By adjusting these appropriately, a molded product with a desired thickness can be obtained. The viscosity of the supplied molten glass can be adjusted, for example, in the range of 106 to 10" poise. The temperature of the mold member is initially set, for example, in the range from the transition point to the strain point of the glass, and then changed as necessary. The above press pressure may be, for example, 1 to 500 kg/
It can be adjusted within a range of "cm".

そして、上記成形品の厚さは、上記溝形成リング18.
18°の上記型部材成形面12a、12a゛からの突出
量を変化させることによっても調節でき、突出量が大き
いほど成形品の厚さが厚くなる。
The thickness of the molded product is determined by the thickness of the groove forming ring 18.
It can also be adjusted by changing the amount of protrusion from the 18° molding surfaces 12a, 12a'; the greater the amount of protrusion, the thicker the molded product will be.

第5図は本発明によるガラス光学部品の製造方法の上記
実施例の変形例を示す断面図である。本図は上記第1図
(b)に対応する図であり、同図におけると同様の部材
には同一の符号が付されている。
FIG. 5 is a sectional view showing a modification of the above embodiment of the method for manufacturing a glass optical component according to the present invention. This figure corresponds to the above-mentioned FIG. 1(b), and the same members as in the same figure are given the same reference numerals.

本変形例は、右側の型部材12°の周囲に溝形成リング
が設けられておらず、型部材12゛の外径が大きい点の
み上記第1図の実施例と異なる。
This modification differs from the embodiment shown in FIG. 1 only in that no groove forming ring is provided around the right mold member 12°, and the outer diameter of the mold member 12° is larger.

また、第5図では、右側の型セットのB方向の最前進停
止位置設定のためのストッパ50が図示されている。
Also shown in FIG. 5 is a stopper 50 for setting the most advanced stop position in the B direction of the right mold set.

次に、以上の様な方法を用いて、具体的にガラス光学部
品を製造した結果を以下に示す。
Next, the results of specifically manufacturing a glass optical component using the method described above are shown below.

塞11肌1: 上記第1図に示される様な装置を用い、但し溝形成リン
グ18.18°を取り外して、外径16.0mmφ、最
大光線有効口径14.8mmφ、コバ厚1.33mm、
肉厚差0.55mmの両球面の凹メニスカスレンズを、
以下のとおり製造した。
Closure 11 Skin 1: Using a device as shown in Fig. 1 above, but removing the groove forming ring 18.18°, the outer diameter was 16.0 mmφ, the maximum effective beam aperture was 14.8 mmφ, the edge thickness was 1.33 mm,
A double spherical concave meniscus lens with a wall thickness difference of 0.55mm,
It was manufactured as follows.

型部材12,12°の径をいずれも16.0mmφとし
た。
The diameters of the mold members 12 and 12° were both 16.0 mmφ.

転移点温度455℃で歪点温度378℃の重フリントガ
ラスを、内径15mmφの白金製ノズル2から粘度10
61ポアズとして安定化させ流下させた。
Heavy flint glass with a transition point temperature of 455°C and a strain point temperature of 378°C was heated to a viscosity of 10 through a platinum nozzle 2 with an inner diameter of 15 mmφ.
It was stabilized at 61 poise and allowed to flow down.

プレス条件は、初期型部材温度を360℃としプレス開
始2秒後に加熱を停止し、プレス圧力を50Kg/cm
”とし、プレス時間を9秒間とし、その後離型し、この
プレスサイクルを連続的に行った。
The press conditions were as follows: initial mold member temperature was 360°C, heating was stopped 2 seconds after the start of pressing, and press pressure was 50 kg/cm.
'', the press time was 9 seconds, the mold was released, and this press cycle was performed continuously.

か(して、600個の成形品を得た。該成形光学部品の
本体部の両面は表面欠陥がな(外観良好な光学面であり
、その面精度のばらつきも凸面がニュートン3本以内で
あり凹面がニュートン1゜5本以内であった。また、厚
さのばらつきは±0.09mmであった。これは光学レ
ンズとして十分実用可能なものである。
(As a result, 600 molded products were obtained. Both surfaces of the main body of the molded optical component had no surface defects (optical surfaces with good appearance, and the variation in surface accuracy was within 3 Newtons on the convex surface. The dovetail concavity was within 1°5 Newtons.The variation in thickness was ±0.09 mm.This is sufficiently usable as an optical lens.

本実施例で得られた成形品は、所望により芯取り加工を
行うことにより、通常の形状の光学レンズとすることが
できる。
The molded product obtained in this example can be made into an optical lens of a normal shape by performing centering processing if desired.

塞]l肌λ: 上記第5図に示される様な装置を用いて、外径21.0
mmφ、最大光線有効口径20.0mmφ、コバ厚1.
78mm、肉厚差1.42mmの両球面の凸メニスカス
レンズを、以下のとおり製造した。
] l Skin λ: Using a device as shown in Fig. 5 above, the outer diameter is 21.0.
mmφ, maximum beam effective aperture 20.0mmφ, edge thickness 1.
A double-spherical convex meniscus lens with a diameter of 78 mm and a wall thickness difference of 1.42 mm was manufactured as follows.

型部材12の径を21.0mmφとし、型部材12゛の
径を26.0mmφとし、溝形成リング18の先端の突
出量を1.20mmとした。
The diameter of the mold member 12 was 21.0 mmφ, the diameter of the mold member 12 was 26.0 mmφ, and the protrusion amount of the tip of the groove forming ring 18 was 1.20 mm.

転移点温度430℃で歪点温度373℃の重フリントガ
ラスを、内径15mmφの白金製ノズル2から粘度10
47ボアズとして安定化させ流下させた。
Heavy flint glass with a transition point temperature of 430°C and a strain point temperature of 373°C is heated to a viscosity of 10 through a platinum nozzle 2 with an inner diameter of 15 mmφ.
It was stabilized at 47 bores and allowed to flow down.

プレス条件は、初期型部材温度を380℃としプレス開
始3.5秒後に330℃とし、プレス圧力を40 K 
g / c m ”とし、プレス時間を14秒間とし、
その後離型した。
The press conditions were as follows: initial mold member temperature was 380°C, 3.5 seconds after the start of pressing, it was increased to 330°C, and press pressure was 40K.
g/cm”, press time was 14 seconds,
It was then released from the mold.

かくして得た成形光学部品の本体部30の凹面は表面欠
陥がな(外観良好な光学面であり、その面精度はニュー
トン1本程度と十分に高いものであった。また、凸面は
中心部に若干のヒケが認められた程度であった。従って
、この光学部品は、凹面に反射膜を形成して表面反射鏡
として良好に使用できる。また、凸面を更に良好な表面
精度に加工して、光学レンズとして使用することもでき
る。
The concave surface of the main body 30 of the thus obtained molded optical component had no surface defects (it was an optical surface with a good appearance, and its surface accuracy was sufficiently high at about 1 newton). Only a few sink marks were observed.Therefore, this optical component can be used well as a surface reflector by forming a reflective film on the concave surface.In addition, the convex surface can be processed to have even better surface precision. It can also be used as an optical lens.

次に、上記溝形成リング18の先端の突出量を変化させ
て成形品の厚さ変化を測定した。尚、同一の突出量につ
き100回の成形を行った。その結果を第6図に示す。
Next, the amount of protrusion of the tip of the groove-forming ring 18 was varied, and changes in the thickness of the molded product were measured. Incidentally, molding was performed 100 times for the same amount of protrusion. The results are shown in FIG.

第6図から分かる様に、溝形成リング18の上■ 記型部材成形面12aからの突出量を変化させることに
より成形ガラス光学部品の厚さを調節することができる
As can be seen from FIG. 6, the thickness of the molded glass optical component can be adjusted by changing the amount of protrusion of the groove forming ring 18 from the molding member molding surface 12a.

夾」l壓鼻; 上記第1図に示される様な装置を用いて、外径28.8
mmφ、最大光線有効口径27.0mmφ、コバ厚2.
18mm、肉厚差0.89mmの両球面の凸メニスカス
レンズを、以下のとおり製造した。
28.8mm diameter; using a device such as that shown in Figure 1 above,
mmφ, maximum beam effective aperture 27.0mmφ, edge thickness 2.
A double-spherical convex meniscus lens with a diameter of 18 mm and a wall thickness difference of 0.89 mm was manufactured as follows.

型部材12の径をいずれも28.8mmφとし、溝形成
リング18.18”の先端の突出量をいずれも0.45
mmとした。
The diameter of the mold member 12 is 28.8 mmφ, and the protrusion amount of the tip of the groove forming ring 18.18” is 0.45 mm.
mm.

転移点温度659℃で歪点温度602℃の重クラウンガ
ラスを、25mmX5mmの開口を有する白金製ノズル
2から粘度1037ボアズとして安定化させ流下させた
Heavy crown glass having a transition point temperature of 659° C. and a strain point temperature of 602° C. was stabilized at a viscosity of 1037 bores and allowed to flow down from a platinum nozzle 2 having an opening of 25 mm×5 mm.

プレス条件は、型部材温度を550℃とし、プレス圧力
を113Kg/cm”とし、プレス時間を8秒間とし、
その後離型した。
The pressing conditions were a mold member temperature of 550°C, a pressing pressure of 113 kg/cm'', and a pressing time of 8 seconds.
It was then released from the mold.

 0 かくして得た成形光学部品の本体部300両面は表面欠
陥がなく外観良好な光学面であり、その面精度はニュー
トン3本以内であった。また、成形光学部品のコバ厚は
目標値2.18mmに対し、±0.05mm内であった
0 Both surfaces of the main body portion 300 of the thus obtained molded optical component had optical surfaces with no surface defects and good appearance, and the surface accuracy was within 3 Newtons. Furthermore, the edge thickness of the molded optical component was within ±0.05 mm with respect to the target value of 2.18 mm.

尚、上記3つの実施例においては、プレス時間経過時に
ガラス温度が歪点以下になることを測定確認した上でプ
レス時間の設定を行った。
In the three examples described above, the press time was set after measuring and confirming that the glass temperature became equal to or lower than the strain point after the press time had elapsed.

以上の実施例では、成形光学部品の両面が球面である場
合が示されているが、片面または両面とも非球面とする
ことができることはもちろんである。
In the above embodiments, both surfaces of the molded optical component are spherical, but it goes without saying that one or both surfaces can be aspheric.

[発明の効果] 以上説明した様に、本発明によれば、ガラスの歪点以下
の温度になるまで1対の成形用型部材間の周囲を閉じる
ことなしにプレスし続は上記成形用型部材間に形成され
る光学部品本体部に対し外側にはみ出した耳部を付属さ
せたガラス成形品を得ることにより、プレス時において
粉塵の発生がないため型部材成形面に粉塵が付着して表
面精度を劣化させる様なことがなく良好な光学的特性の
光学部品が得られる。また、ガラスが硬化し成形品の最
終形状が決定されるまでガラスに対し均等にプレス圧力
な印加でき、これにより少なくとも片面にヒケを生ずる
ことなしに型部材成形面の精度を十分良好に成形品に転
写することができ、所望の形状及び精度の光学部品が容
易に得られる。
[Effects of the Invention] As explained above, according to the present invention, pressing is continued without closing the periphery between the pair of mold members until the temperature reaches the strain point of the glass or lower. By obtaining a glass molded product with ears that protrude outward from the optical component body formed between the parts, there is no generation of dust during pressing, which prevents dust from adhering to the molding surface of the mold part. Optical components with good optical characteristics can be obtained without deteriorating accuracy. In addition, press pressure can be applied evenly to the glass until the glass hardens and the final shape of the molded product is determined, and this allows the molded product to be molded with sufficient precision on the molding surface without causing sink marks on at least one side. It is possible to easily obtain an optical component with a desired shape and precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガラス光学部品の製造方法の一実
施例の概略工程を示す断面図である。 第2図は成形品を示す正面図であり、第3図はその部分
断面概略図である。 第4図は耳部の除去された光学部品本体部を示す部分概
略断面図である。 第5図は本発明によるガラス光学部品の製造方法の変形
例を示す断面図である。 第6図は溝形成リングの先端の突出量を変化させて得ら
れる成形品の厚さ変化の測定結果を示すグラフである。 2:ノズル、   4:溶融ガラス、 6:シャー 12.12° :成形用型部材、 12a、12a  :成形面、 18.18° :溝形成リング、 22.22” :ヒータ、 24.24° :熱電対、 30:光学部品本体部、 32;耳部、   34,36:溝、 35.37:面取り部、 40:破断面。
FIG. 1 is a cross-sectional view schematically showing the steps of an embodiment of the method for manufacturing a glass optical component according to the present invention. FIG. 2 is a front view of the molded product, and FIG. 3 is a schematic partial cross-sectional view thereof. FIG. 4 is a partial schematic sectional view showing the main body of the optical component with the ears removed. FIG. 5 is a sectional view showing a modification of the method for manufacturing a glass optical component according to the present invention. FIG. 6 is a graph showing the results of measuring changes in the thickness of a molded product obtained by varying the amount of protrusion of the tip of the groove forming ring. 2: Nozzle, 4: Molten glass, 6: Shear 12.12°: Molding mold member, 12a, 12a: Molding surface, 18.18°: Groove forming ring, 22.22": Heater, 24.24°: Thermocouple, 30: Optical component main body, 32: Ear portion, 34, 36: Groove, 35. 37: Chamfered portion, 40: Fractured surface.

Claims (5)

【特許請求の範囲】[Claims] (1)流下する溶融ガラスをその両側から1対の成形用
型部材によりプレスし該型部材の成形面と対応する表面
を有する光学部品を製造する方法において、ガラスがそ
の歪点以下の温度になるまで上記1対の成形用型部材間
の周囲を閉じることなしにプレスし続け、流下する溶融
ガラスを上記プレスされている部分の上方にて切断し、
上記成形用型部材間に形成される光学部品本体部に対し
外側にはみ出した耳部を付属させたガラス成形品を得る
ことを特徴とする、ガラス光学部品の製造方法。
(1) In a method of manufacturing an optical component having a surface corresponding to the molding surface of the mold member by pressing flowing molten glass from both sides with a pair of mold members, the glass is heated to a temperature below its strain point. Continue pressing without closing the periphery between the pair of mold members until the molten glass is pressed, and cut the flowing molten glass above the pressed part,
A method for manufacturing a glass optical component, the method comprising obtaining a glass molded product having an outer protruding ear attached to an optical component main body formed between the mold members.
(2)上記成形用型部材の少なくとも一方の成形面の周
囲に溝形成リングを設け、該溝形成リングにより上記プ
レス時に溶融ガラスに溝を形成し、該溝形成リングの上
記型部材成形面からの突出量を変化させることにより成
形ガラス光学部品の厚さを調節する、請求項1に記載の
ガラス光学部品の製造方法。
(2) A groove-forming ring is provided around at least one molding surface of the mold member for forming, the groove-forming ring forms a groove in the molten glass during the pressing, and the groove-forming ring forms a groove in the molten glass from the molding surface of the mold member. 2. The method for manufacturing a glass optical component according to claim 1, wherein the thickness of the molded glass optical component is adjusted by changing the amount of protrusion of the molded glass optical component.
(3)請求項1に記載の方法により得られた光学部品の
上記耳部を除去する、ガラス光学部品の製造方法。
(3) A method for manufacturing a glass optical component, which comprises removing the ears of the optical component obtained by the method according to claim 1.
(4)請求項1に記載の方法により得られた光学部品の
本体部の一面を更に所望の形状及び精度に加工するとと
もに所望の厚さの光学部品となす、ガラス光学部品の製
造方法。
(4) A method for manufacturing a glass optical component, which further processes one surface of the main body of the optical component obtained by the method according to claim 1 into a desired shape and precision, and forms an optical component with a desired thickness.
(5)上記請求項1〜4のいずれかに記載の方法により
得られた、少なくとも片面が非球面である、ガラス光学
部品。
(5) A glass optical component obtained by the method according to any one of claims 1 to 4, wherein at least one surface is an aspherical surface.
JP2019340A 1990-01-31 1990-01-31 Manufacturing method of glass optical parts Expired - Fee Related JP2579016B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019340A JP2579016B2 (en) 1990-01-31 1990-01-31 Manufacturing method of glass optical parts
US07/645,633 US5275637A (en) 1990-01-31 1991-01-25 Method of manufacturing a glass optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019340A JP2579016B2 (en) 1990-01-31 1990-01-31 Manufacturing method of glass optical parts

Publications (2)

Publication Number Publication Date
JPH03228837A true JPH03228837A (en) 1991-10-09
JP2579016B2 JP2579016B2 (en) 1997-02-05

Family

ID=11996672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019340A Expired - Fee Related JP2579016B2 (en) 1990-01-31 1990-01-31 Manufacturing method of glass optical parts

Country Status (1)

Country Link
JP (1) JP2579016B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133948A (en) * 1987-11-18 1989-05-26 Canon Inc Manufacture of optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133948A (en) * 1987-11-18 1989-05-26 Canon Inc Manufacture of optical element

Also Published As

Publication number Publication date
JP2579016B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US5275637A (en) Method of manufacturing a glass optical part
US4591373A (en) Method for molding high-precision glass products
JPH1128745A (en) Method and mold for molding plastic molded product
KR0152386B1 (en) Method and device for manufacturing optical elements
JP2005330152A (en) Method of forming optical device and optical device
JPH0471853B2 (en)
JPH03228837A (en) Production of optical glass parts
JP2651260B2 (en) Manufacturing method of glass optical parts
JP2579036B2 (en) Manufacturing method of glass optical parts
JP2016138008A (en) Set for molding glass optical element, and manufacturing method of glass optical element
JPH1190964A (en) Injection molding die and injection molding method
JPH0419172B2 (en)
JPH07330347A (en) Method for forming optical element
JPH03228836A (en) Production of optical glass parts
JPS6260623A (en) Injection compression molding method and device
JPS63248727A (en) Production of glass molded article
JPH10109312A (en) Production of glass mold for glasses
JPH0519490B2 (en)
JP2000000828A (en) Production of glass mold for glasses
JP3444515B2 (en) Optical element molding method
JP2662300B2 (en) Manufacturing method and apparatus for glass molded product
JPH02102136A (en) Mold for molding optical element and production thereof
JPH10203832A (en) Forming of molten glass
JPS63162539A (en) Forming of optical member
JPS63182223A (en) Method for molding glass lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees