JPH0322515Y2 - - Google Patents
Info
- Publication number
- JPH0322515Y2 JPH0322515Y2 JP7568584U JP7568584U JPH0322515Y2 JP H0322515 Y2 JPH0322515 Y2 JP H0322515Y2 JP 7568584 U JP7568584 U JP 7568584U JP 7568584 U JP7568584 U JP 7568584U JP H0322515 Y2 JPH0322515 Y2 JP H0322515Y2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- engine
- combustion chamber
- pressure air
- valves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 27
- 238000007906 compression Methods 0.000 claims description 22
- 230000006835 compression Effects 0.000 claims description 16
- 239000003921 oil Substances 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Supercharger (AREA)
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【考案の詳細な説明】
(技術分野)
この考案は内燃機関の過給装置の改良に関す
る。[Detailed Description of the Invention] (Technical Field) This invention relates to improvement of a supercharging device for an internal combustion engine.
(背景技術)
デイーゼル機関では機関出力の向上のために、
例えばターボ過給機を採用したものがある。(Background technology) In order to improve engine output in diesel engines,
For example, there are some that use a turbo supercharger.
ターボ過給機は一般に、急加速時等での過給の
応答遅れを改善する上では低速型とする方が良い
が、しかし低速型は高速型に較べて部分負荷域で
必要以上の過給を行なうため、ポンピングロスが
増大し、燃費が悪化するという問題点がある。 In general, it is better to use a low-speed turbocharger to improve the response delay of supercharging during sudden acceleration, etc. However, compared to a high-speed type, a low-speed type tends to have more supercharging than necessary in the partial load range. As a result, there is a problem that pumping loss increases and fuel efficiency worsens.
そこで、デイーゼル機関において、部分負荷域
での燃費と急加速時での過給の応答遅れを改善す
るため、高速型のターボ過給機を採用し、第1図
のように構成したものが、実開昭58−181936号公
報に提案されている。 Therefore, in order to improve fuel efficiency in the partial load range and supercharging response delay during sudden acceleration in diesel engines, a high-speed turbo supercharger was adopted and configured as shown in Figure 1. This was proposed in Japanese Utility Model Application Publication No. 58-181936.
これを説明すると、1は機関本体、2は高速型
のターボ過給機、3は吸気マニホールド、4は排
気マニホールドを示す。 To explain this, 1 is the engine body, 2 is a high-speed turbo supercharger, 3 is an intake manifold, and 4 is an exhaust manifold.
吸気マニホールド3の直ぐ上流の吸気路5に
は、高圧空気タンク6に連通する高圧通路7が接
続され、この通路7の途中に常閉弁(電磁弁)8
が介装される。 A high pressure passage 7 communicating with a high pressure air tank 6 is connected to the intake passage 5 immediately upstream of the intake manifold 3, and a normally closed valve (electromagnetic valve) 8 is installed in the middle of this passage 7.
is interposed.
常閉弁8はリレー9を介しコントロール装置1
0によつて開閉制御される。 Normally closed valve 8 is connected to control device 1 via relay 9.
Opening/closing is controlled by 0.
コントロール装置10は機関回転センサ11と
負荷センサ12からの入力信号に基づき、低回転
高負荷域でリレー9にオン信号を出力し、常閉弁
8を開くようになつている。 Based on input signals from an engine rotation sensor 11 and a load sensor 12, a control device 10 outputs an ON signal to a relay 9 in a low rotation and high load range to open a normally closed valve 8.
従つて、低速走行から加速走行に移行すると、
コントロール装置10により、リレー9を介し常
閉弁8が開かれる。 Therefore, when moving from low speed driving to accelerated driving,
Control device 10 opens normally closed valve 8 via relay 9 .
これにより、高圧空気タンク6からも高圧空気
が吸気マニホールド3に供給され、従つて第2図
に示すようにブースト圧の立ち上りが急速にな
り、ターボ過給機の応答遅れが改善される。 As a result, high-pressure air is also supplied from the high-pressure air tank 6 to the intake manifold 3, so that the boost pressure rises quickly as shown in FIG. 2, and the response delay of the turbocharger is improved.
しかし、このように吸気路に過給気を供給する
のでは、吸排気弁のオーバラツプにもとづく過給
気の漏れ等が無視できず、所定の過給量を確保す
るのに高圧タンクの容量が極めて大きくなるとい
う欠点がある。 However, when supercharging air is supplied to the intake passage in this way, leakage of supercharging air due to overlapping of the intake and exhaust valves cannot be ignored, and the capacity of the high-pressure tank is required to secure the specified amount of supercharging. It has the disadvantage of being extremely large.
ところで、デイーゼル機関では、エンジンブレ
ーキを利かせる上で、例えば第3図のようなコン
プレツシヨンブレーキ装置が採用される(実開昭
56−126640号公報)。 By the way, in a diesel engine, a compression brake device as shown in Fig. 3 is adopted to utilize the engine brake.
56-126640).
13は燃焼室、14はピストン、15は吸気
弁、16は排気弁で、吸排気弁15,16はロツ
カアーム17,18を介し図外のカムシヤフトの
回転により機関回転に同期して所定のバルブタイ
ミングで開閉する。 13 is a combustion chamber, 14 is a piston, 15 is an intake valve, and 16 is an exhaust valve.The intake and exhaust valves 15 and 16 are synchronized with the engine rotation by the rotation of a camshaft (not shown) via rocker arms 17 and 18 to achieve a predetermined valve timing. Open and close with .
燃焼室13には吸排気ポート19,20のほか
に、リリーフポート21が開口され、リリーフポ
ート21の開口部に第3弁22が配設される。 In addition to the intake and exhaust ports 19 and 20, a relief port 21 is opened in the combustion chamber 13, and a third valve 22 is disposed at the opening of the relief port 21.
第3弁22はロツカアーム23を介し吸排気弁
15,16と同じくカムシヤフトにより駆動さ
れ、圧縮工程上死点付近で開くようになつてい
る。 The third valve 22 is driven by a camshaft via a rocker arm 23, like the intake and exhaust valves 15 and 16, and opens near the top dead center of the compression process.
この第3弁22の動弁機構にはエンジンブレー
キの非作動時にバルブリフトを吸収する、つまり
第3弁22の開閉作動を停止する装置(図示せ
ず)が設けられる。 The valve operating mechanism of the third valve 22 is provided with a device (not shown) that absorbs the valve lift when the engine brake is not activated, that is, stops the opening/closing operation of the third valve 22.
従つて、エンジンブレーキ作動時には第3弁2
2が圧縮工程上死点付近で開くと、この弁22を
介し燃焼室13内の圧縮空気(燃料噴射はカツト
される)が逃げ出す。 Therefore, when the engine brake is activated, the third valve 2
When valve 22 opens near the top dead center of the compression process, compressed air (fuel injection is cut off) in the combustion chamber 13 escapes through this valve 22.
このため、ピストン14を上死点から下死点に
下げるまでの仕事量が増加し(圧縮工程での損失
が回収できず)その結果、エンジンブレーキの利
きが良くなる。 Therefore, the amount of work required to lower the piston 14 from the top dead center to the bottom dead center increases (losses in the compression process cannot be recovered), and as a result, engine braking becomes more effective.
ところで、前記のターボ過給機付デイーゼル機
関ではコンプレツサ55を駆動し、高圧空気タン
ク6に過給用の高圧空気を蓄えるようになつてい
るが、このため、コンプレツサ55を駆動するの
に機関出力がロスされるという問題点があつた。 By the way, in the above-mentioned diesel engine with a turbocharger, the compressor 55 is driven and high pressure air for supercharging is stored in the high pressure air tank 6, but for this reason, the engine output is required to drive the compressor 55. There was a problem that the data was lost.
(考案の目的)
この考案はこのような問題点に着目しなされた
もので、コンプレツシヨンブレーキ装置を採用し
た内燃機関に、第3弁を介して燃焼室から逃げ出
す圧縮空気を高圧タンクに蓄え、過給用の高圧空
気として再利用することにより、コンプレツサの
駆動力を節約するようにした内燃機関の過給装置
を提供することを目的とする。(Purpose of the invention) This invention was devised by focusing on these problems, and is based on an internal combustion engine equipped with a compression brake system, in which the compressed air that escapes from the combustion chamber through the third valve is stored in a high-pressure tank. An object of the present invention is to provide a supercharging device for an internal combustion engine that saves driving force of a compressor by reusing high-pressure air for supercharging.
(考案の構成及び作用)
そのため、この考案は、燃焼室に吸排気弁とと
もに第3弁を設け、燃焼室と高圧空気源を第3弁
を介し接続する高圧通路を形成する一方、機関運
転状態を検出する手段を設け、機関低速高負荷時
に第3弁を圧縮行程初期に所定期間だけ開弁させ
る制御手段と、機関減速時に同じく第3弁を圧縮
行程初期と終期にそれぞれ所定期間開弁させる制
御手段とを備える。(Structure and operation of the device) Therefore, this device provides a third valve together with the intake and exhaust valves in the combustion chamber, forms a high-pressure passage that connects the combustion chamber and the high-pressure air source via the third valve, and control means for opening the third valve for a predetermined period at the beginning of the compression stroke when the engine is at low speed and high load, and for opening the third valve for a predetermined period at the beginning and end of the compression stroke when the engine is decelerating. and control means.
即ち、エンジンブレーキ作動時(減速時)に、
第3弁が圧縮工程上死点付近で開くと、第3弁を
介して燃焼室から逃げ出す圧縮空気は高圧空気源
に蓄えられる。 In other words, when the engine brake is activated (during deceleration),
When the third valve opens near the top dead center of the compression stroke, the compressed air escaping from the combustion chamber via the third valve is stored in the high-pressure air source.
そして、この圧縮空気は加速走行に移行する
と、この時には圧縮行程初期で開く第3弁を介し
過給用の高圧空気として燃焼室に供給される。 Then, when the vehicle starts accelerating, this compressed air is supplied to the combustion chamber as high-pressure air for supercharging via the third valve, which opens at the beginning of the compression stroke.
(実施例)
以下、この考案を第4〜6図のターボ過給デイ
ーゼル機関に適用した実施例に従つて説明する。
尚、第1図と同一部分は同一符号を付す。(Example) Hereinafter, this invention will be explained according to an example in which this invention is applied to a turbocharged diesel engine shown in FIGS. 4 to 6.
Note that the same parts as in FIG. 1 are given the same reference numerals.
第4図において、13は機関本体1の燃焼室、
15はその吸気弁、16は排気弁、2は高速型の
ターボ過給機を示す。 In FIG. 4, 13 is the combustion chamber of the engine body 1;
15 is its intake valve, 16 is its exhaust valve, and 2 is a high-speed turbo supercharger.
燃焼室13は高圧通路25を介し高圧空気タン
ク6に連通され、高圧通路25の燃焼室13側の
開口部には第3弁26が配設される。 The combustion chamber 13 is communicated with the high pressure air tank 6 via a high pressure passage 25, and a third valve 26 is disposed at the opening of the high pressure passage 25 on the combustion chamber 13 side.
第3弁26は後述するコントロール装置27に
より駆動制御され、加速時には機関回転に同期し
て圧縮工程下死点付近で所定期間開き、高圧空気
タンク6からの高圧空気を燃焼室13に過給する
一方、減速時には同じく圧縮工程下死点付近とと
もに上死点付近で所定期間だけ開き、燃焼室13
の圧縮空気を高圧空気タンク6へと逃がし、エン
ジンブレーキの利きを良くする。 The third valve 26 is driven and controlled by a control device 27, which will be described later, and opens for a predetermined period near the bottom dead center of the compression process in synchronization with engine rotation during acceleration, supercharging the combustion chamber 13 with high-pressure air from the high-pressure air tank 6. On the other hand, during deceleration, the combustion chamber 13 opens for a predetermined period near the bottom dead center and top dead center of the compression process.
This compressed air is released to a high-pressure air tank 6 to improve the efficiency of engine braking.
第3弁26は第5図の示すように、弁軸26A
上部にシリンダヘツド28に形成した油室(シリ
ンダ)29に摺動自由なピストン30が設けら
れ、油室29の油圧に応動するピストン30と一
体的に開閉作動する。58はリターンスプリング
を示す。 As shown in FIG. 5, the third valve 26 has a valve shaft 26A.
An oil chamber (cylinder) 29 formed in the upper part of the cylinder head 28 is provided with a freely sliding piston 30, which opens and closes integrally with the piston 30 in response to the oil pressure in the oil chamber 29. 58 indicates a return spring.
上記油室29は第6図のように、油圧回路3
1,32を介し第1と第2のピストンポンプ3
3,34に接続される。 The oil chamber 29 is connected to the hydraulic circuit 3 as shown in FIG.
1 and 32 via the first and second piston pumps 3
3 and 34.
第1と第2のピストンポンプ33,34はカム
シヤフト35の第1と第2のカムシヤフト36,
37(吸排気弁のカムとは別に形成される)によ
りピストン38,39が押し上げられると、上記
油室29に油圧を供給する。 The first and second piston pumps 33 and 34 are connected to the first and second camshafts 36 of the camshaft 35,
When the pistons 38 and 39 are pushed up by the cam 37 (formed separately from the cam of the intake and exhaust valves), hydraulic pressure is supplied to the oil chamber 29.
尚、第1のカム36は機関回転に同期して圧縮
行程下死点付近でピストン38を所定期間リフト
させるカムプロフイールに、第2のカム37は同
じく圧縮工程上死点付近でピストン39をリフト
させるカムプロフイールに各々設定される。 The first cam 36 has a cam profile that lifts the piston 38 for a predetermined period near the bottom dead center of the compression stroke in synchronization with engine rotation, and the second cam 37 similarly lifts the piston 39 near the top dead center of the compression stroke. Each is set in the cam profile to be used.
油圧回路31,32にはリリーフ弁40,41
の開き時にピストンポンプ33,34からの圧油
をタンク側に逃がす戻し通路42,43が接続さ
れ、リリーフ弁40,41は電磁弁44,45を
介しパイロツト圧が供給されると開くようになつ
ている。 Relief valves 40, 41 are provided in the hydraulic circuits 31, 32.
Return passages 42, 43 are connected to release the pressure oil from the piston pumps 33, 34 to the tank side when the valves are opened, and the relief valves 40, 41 open when pilot pressure is supplied via the solenoid valves 44, 45. ing.
電磁弁44,45を駆動制御するのがコントロ
ール装置で、コントロール装置27は機関回転セ
ンサ11と負荷センサ12からの入力信号に基づ
き、加速時に一方の電磁弁44に、減速時に両方
の電磁弁44,45にオン信号を出力し、リリー
フ弁40又は40,41へのパイロツト圧の供給
を停止させる。 A control device drives and controls the solenoid valves 44 and 45, and the control device 27 controls one solenoid valve 44 during acceleration and both solenoid valves 44 during deceleration based on input signals from the engine rotation sensor 11 and load sensor 12. , 45 to stop the supply of pilot pressure to the relief valve 40 or 40, 41.
56,57は電磁弁44,45を介しパイロツ
ト圧が供給されると開く遮断弁、46,47はリ
リーフ弁40,41を介しタンク側に逃げた作動
油を補うための補充通路で、電磁弁44,45を
介しリリーフ弁40,41と遮断弁56,57に
パイロツト圧も供給する。50〜53はチエツク
弁を示す。 Reference numerals 56 and 57 are cutoff valves that open when pilot pressure is supplied via the solenoid valves 44 and 45, and 46 and 47 are replenishment passages for replenishing the hydraulic oil that has escaped to the tank side via the relief valves 40 and 41. Pilot pressure is also supplied to relief valves 40, 41 and cutoff valves 56, 57 via 44, 45. 50 to 53 indicate check valves.
次に作用を説明する。 Next, the action will be explained.
例えば低速走行から加速走行に移行すると、コ
ントロール装置27は電磁弁44を介しリリーフ
弁40を閉じる。 For example, when the vehicle shifts from low-speed travel to accelerated travel, the control device 27 closes the relief valve 40 via the solenoid valve 44.
これに伴つて、ピストンポンプ33からの油圧
が油室29へと供給され、第3弁26は第7図実
線で示すように、機関回転に同期して圧縮行程下
死点付近で所定期間開く。 Along with this, hydraulic pressure from the piston pump 33 is supplied to the oil chamber 29, and the third valve 26 opens for a predetermined period near the bottom dead center of the compression stroke in synchronization with the engine rotation, as shown by the solid line in FIG. .
これにより、高圧空気タンク6から第3弁26
を介し高圧空気が直接内に燃焼室13に供給さ
れ、従つて燃焼室内の空気量はターボ過給機2の
過給気量に加えて、低回転から急速に増加するた
め、ターボ過給の応答遅れ(ターボラグ)が改善
される。 This allows the third valve 26 to be removed from the high pressure air tank 6.
High-pressure air is directly supplied to the combustion chamber 13 through Response delay (turbo lag) is improved.
この場合、高圧空気タンク6からの高圧空気は
直接、燃焼室13に供給されるため、従来(第1
図)のように吸気マニホールド3を介し供給する
場合と違つて吸排気系に逃げることがなく、この
ため、燃焼室13の空気量の立ち上りが急速で、
ターボラグの更に一段の改善が図れる。 In this case, the high pressure air from the high pressure air tank 6 is directly supplied to the combustion chamber 13.
Unlike the case where the air is supplied through the intake manifold 3 as shown in Fig. 3, there is no leakage into the intake and exhaust system, and therefore, the amount of air in the combustion chamber 13 rises rapidly.
Turbo lag can be further improved.
一方、コントロール装置27は減速時に電磁弁
44,45を介し、今度はリリーフ弁40ととも
にリリーフ弁41を閉じる。 On the other hand, the control device 27 closes the relief valve 41 together with the relief valve 40 via the electromagnetic valves 44 and 45 during deceleration.
これにより、ピストンポンプ34からの油圧が
油室29へと供給され、第3弁26は第7図点線
のように、機関回転に同期して圧縮行程上死点付
近でも所定期間開く。 As a result, the hydraulic pressure from the piston pump 34 is supplied to the oil chamber 29, and the third valve 26 opens for a predetermined period even near the top dead center of the compression stroke in synchronization with the engine rotation, as shown by the dotted line in FIG.
従つて、圧縮工程の初期に過給された空気は、
燃焼室13でピストン14の上昇に伴つて圧縮高
圧化された後、圧縮終了付近で第3弁26を介し
高圧空気タンク6へと逃げる。 Therefore, the supercharged air at the beginning of the compression process is
After being compressed to high pressure in the combustion chamber 13 as the piston 14 rises, it escapes to the high-pressure air tank 6 via the third valve 26 near the end of compression.
このため、第8図で示したように圧縮行程での
仕事の増加と、膨張行程での燃焼室13内の圧力
低下で、ピストン14を下死点に押し戻すに要す
る仕事量が増大し、その結果、エンジンブレーキ
の利きが良くなる。 Therefore, as shown in Fig. 8, the amount of work required to push the piston 14 back to bottom dead center increases due to the increase in work during the compression stroke and the decrease in pressure within the combustion chamber 13 during the expansion stroke. As a result, engine braking becomes more effective.
ところで、この実施例ではエンジンブレーキは
作動時に燃焼室13から第3弁26を介し逃げ出
す圧縮空気は、上述のように高圧空気タンク6に
蓄えられ、加速時にはこれを過給用の高圧空気と
して燃焼室13に供給するようにしたので、従来
(第1図)の場合に比べて高圧空気タンク6のコ
ンプレツサ55に要する駆動力が大幅に節約でき
る。 By the way, in this embodiment, when the engine brake is activated, the compressed air that escapes from the combustion chamber 13 through the third valve 26 is stored in the high-pressure air tank 6 as described above, and during acceleration, this is combusted as high-pressure air for supercharging. Since the air is supplied to the chamber 13, the driving force required for the compressor 55 of the high-pressure air tank 6 can be significantly reduced compared to the conventional case (FIG. 1).
尚、加減速時以外ではリリーフ弁40,41が
開かれ、ピストンポンプ33,34からの圧油は
油室29に作用せず、常閉弁26は閉じ位置で作
動が停止される。 Note that the relief valves 40 and 41 are opened except during acceleration and deceleration, the pressure oil from the piston pumps 33 and 34 does not act on the oil chamber 29, and the normally closed valve 26 is in the closed position and its operation is stopped.
以上本考案をターボ過給デイーゼル機関に適用
した例を用い説明したが本考案はターボ過給の有
無を問わず内燃機関一般に適用できることは明ら
かである。 Although the present invention has been described above using an example in which it is applied to a turbocharged diesel engine, it is clear that the present invention can be applied to internal combustion engines in general, regardless of whether or not turbocharged engines are used.
(考案の効果)
以上要するにこの考案によれば、加速時など効
率よく第3弁を通して過給することができ、エン
ジンの加速応答性を向上させられる一方、エンジ
ンブレーキ時には圧縮初期に高圧空気を吹込むた
めに強力なコンプレツシヨンブレーキ効果が得ら
れ、このブレーキ時に逃がした空気は過給用の高
圧空気として再利用するので高圧空気を生成する
コンプレツサの駆動力が大幅に節約できるという
効果も得られる。(Effects of the invention) In summary, according to this invention, it is possible to efficiently supercharge through the third valve during acceleration, improving the acceleration response of the engine, while at the same time, during engine braking, high-pressure air is blown into the initial stage of compression. This provides a powerful compression braking effect, and the air released during braking is reused as high-pressure air for supercharging, resulting in a significant saving in the driving force of the compressor that generates high-pressure air.
第1図は従来装置の慨略構成図、第2図はその
ブースト圧特性図、第3図は他の従来装置の要部
断面図、第4図はこの考案の実施例を示す概略構
成図、第5図はその要部断面図、第6図は同じく
油圧回路図、第7図は常閉弁の制御特性図、第8
図はエンジンブレーキ作動時のP−V線図であ
る。
1……機関本体、2……ターボ過給機、6……
高圧空気タンク、13……燃焼室、25……高圧
通路、26……第3弁、27……コントロール装
置、29……油室、30……ピストン、31,3
2……油圧回路、33,34……ピストンポン
プ、35……カムシヤフト、36,37……カ
ム、40,41……リリーフ弁、44,45……
電磁弁、56,57……遮断弁。
Fig. 1 is a schematic configuration diagram of a conventional device, Fig. 2 is a boost pressure characteristic diagram thereof, Fig. 3 is a sectional view of main parts of another conventional device, and Fig. 4 is a schematic configuration diagram showing an embodiment of this invention. , Fig. 5 is a sectional view of its main parts, Fig. 6 is a hydraulic circuit diagram, Fig. 7 is a control characteristic diagram of a normally closed valve, and Fig. 8 is a diagram of control characteristics of a normally closed valve.
The figure is a PV diagram when the engine brake is activated. 1... Engine body, 2... Turbo supercharger, 6...
High pressure air tank, 13... Combustion chamber, 25... High pressure passage, 26... Third valve, 27... Control device, 29... Oil chamber, 30... Piston, 31,3
2... Hydraulic circuit, 33, 34... Piston pump, 35... Camshaft, 36, 37... Cam, 40, 41... Relief valve, 44, 45...
Solenoid valve, 56, 57... shutoff valve.
Claims (1)
室と高圧空気源を第3弁を介し接続する高圧通路
を形成する一方、機関運転状態を検出する手段を
設け、機関低速高負荷時に第3弁を圧縮行程初期
に所定期間だけ開弁させる制御手段と、機関減速
時に同じく第3弁を圧縮行程初期と終期にそれぞ
れ所定期間開弁させる制御手段とを備えたことを
特徴とする内燃機関の過給装置。 A third valve is provided in the combustion chamber along with the intake and exhaust valves to form a high pressure passage connecting the combustion chamber and the high pressure air source via the third valve.Means for detecting the engine operating state are also provided, and when the engine is running at low speed and under high load, An internal combustion engine characterized by comprising a control means for opening three valves for a predetermined period at the beginning of a compression stroke, and a control means for opening the third valve for a predetermined period at the beginning and end of a compression stroke when the engine decelerates. supercharging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7568584U JPS60187331U (en) | 1984-05-23 | 1984-05-23 | Internal combustion engine supercharging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7568584U JPS60187331U (en) | 1984-05-23 | 1984-05-23 | Internal combustion engine supercharging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60187331U JPS60187331U (en) | 1985-12-12 |
JPH0322515Y2 true JPH0322515Y2 (en) | 1991-05-16 |
Family
ID=30617133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7568584U Granted JPS60187331U (en) | 1984-05-23 | 1984-05-23 | Internal combustion engine supercharging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187331U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4677979B2 (en) * | 2006-12-19 | 2011-04-27 | トヨタ自動車株式会社 | Control device for internal combustion engine |
EP2212531A1 (en) * | 2007-09-22 | 2010-08-04 | ETH Zurich | Pneumatic hybrid internal combustion engine on the basis of fixed camshafts |
-
1984
- 1984-05-23 JP JP7568584U patent/JPS60187331U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60187331U (en) | 1985-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU637352B2 (en) | A method and a device for engine braking a four stroke internal combustion engine | |
EP2245281B1 (en) | Engine for an air hybrid vehicle | |
JPS60113007A (en) | Control device of intake and exhaust valve in internal- combustion engine | |
US6216667B1 (en) | Method and device for a supercharged engine brake | |
US7380525B2 (en) | Method of operating an internal combustion engine | |
JPH0322515Y2 (en) | ||
JPH0117613Y2 (en) | ||
GB2414275A (en) | Engine internal gas transfer method | |
JP3084140B2 (en) | Intake control device for engine with mechanical supercharger | |
JP3426417B2 (en) | Exhaust gas recirculation system | |
GB2430975A (en) | Energy control valve for air hybrid engine | |
KR100319120B1 (en) | Engine auxiliary brake apparatus | |
JPH0144723Y2 (en) | ||
JPS5818520A (en) | Supercharger for internal-combustion engine | |
JPS59158365A (en) | Intake/exhaust device of engine | |
CN213392302U (en) | Three-valve overhead single camshaft engine air distribution system | |
JPH0338415Y2 (en) | ||
JPS6316803Y2 (en) | ||
JPS6231624Y2 (en) | ||
JPH0619807Y2 (en) | Engine scavenger | |
JP2940420B2 (en) | Internal combustion engine with inertial supercharger | |
JPS6231622Y2 (en) | ||
JP3330196B2 (en) | Negative pressure supply for engine with mechanical supercharger | |
JPS5910344Y2 (en) | Engine separation supercharging device | |
JPH10274067A (en) | Engine auxiliary brake device |