[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03211702A - Thermosensor - Google Patents

Thermosensor

Info

Publication number
JPH03211702A
JPH03211702A JP572690A JP572690A JPH03211702A JP H03211702 A JPH03211702 A JP H03211702A JP 572690 A JP572690 A JP 572690A JP 572690 A JP572690 A JP 572690A JP H03211702 A JPH03211702 A JP H03211702A
Authority
JP
Japan
Prior art keywords
organic polymer
temperature
temperature sensing
sensing element
conjugated organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP572690A
Other languages
Japanese (ja)
Inventor
Junichi Muramatsu
淳一 村松
Hidenori Ishikawa
英典 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURABE KK
Original Assignee
KURABE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURABE KK filed Critical KURABE KK
Priority to JP572690A priority Critical patent/JPH03211702A/en
Publication of JPH03211702A publication Critical patent/JPH03211702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To inexpensively offer thermosensors which have a high degree freedom in the shape and area of a thermosensitive body and a high suitability for sensing the temperature of a non-dotted zone by constituting the title device of a pair of electrodes formed on an insulated substrate and a thermosensitive body made up of a semiconductive polymer whose ingredient is a partially doped electron conjugated organic polymer. CONSTITUTION:A pair of electrodes 3 and a thermosensitive body 2 made up of a semiconductive polymer whose ingredient is a partially doped electron conjugated organic polymer are formed on an insulated substrate 1. Hereupon, electron conjugated organic polymer is polypyrrole or polyaniline that is an organic polymer made up of a conjugated system where the atomic bond of the main chain of an organic polymer consists of alternated single bonds and double bonds. This structure can provide thermosensors which show sufficient variation in resistance with temperature and have NTC characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高分子半導体のNTC特性を利用した温度検
知素子に関し、特に任意の形状の感温体を持ち非点状部
の温度検知に適した温度検知素子に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a temperature sensing element that utilizes the NTC characteristics of a polymer semiconductor, and particularly to a temperature sensing element that has a temperature sensing element of an arbitrary shape and is suitable for sensing the temperature of a non-point area. Concerning suitable temperature sensing elements.

(従来の技術) 従来から温度検知素子としては、サーミスタと呼ばれる
無機酸化物の焼結体を用いた素子が広く利用されてきた
。このサーミスタは、ある−点の温度を検知する場合に
は有効であるが、温度が広い範囲に分布している場合は
複数個のサーミスタが必要となる。
(Prior Art) As a temperature sensing element, an element using a sintered body of an inorganic oxide called a thermistor has been widely used. This thermistor is effective when detecting the temperature at a certain point, but if the temperature is distributed over a wide range, multiple thermistors are required.

そこで近年では、これに対応する面状温度検知素子への
要求が高まりつつあり、高分子半導体の合成技術の進歩
とあいまって任意の形状の感温体を持たせることが可能
な高分子半導体を用いた温度検知素子が提案されてきた
。その提案の一例を挙げると特開昭55−102110
号公報においては、テトラシアノキノジメタン塩(以下
TCNQ塩という)を用いた温度検知素子が示されてい
る。
Therefore, in recent years, there has been an increasing demand for planar temperature sensing elements that can handle this, and with advances in polymer semiconductor synthesis technology, polymer semiconductors that can have temperature sensing elements of arbitrary shapes have been developed. Temperature sensing elements have been proposed. An example of such a proposal is JP-A-55-102110.
The publication discloses a temperature sensing element using tetracyanoquinodimethane salt (hereinafter referred to as TCNQ salt).

(発明が解決しようとする課題) 特開昭55−102110号公報の発明の詳細な説明の
項にも掲載されているとおり、TCNQ塩は本来、結晶
若しくは粉末状の有機半導体装置リ、任意の形状の感温
体を持つ温度検知素子を得るためには、TCNQ塩に高
分子バインダーを添加した後溶媒に溶解させ、スクリー
ン印刷法、ドクターブレード法等の成膜方法により素子
を形成するという工程が必要不可欠である。しかし、こ
の場合TCNQ塩の粒子径及び皮膜の厚さといったパラ
メーターを正確に制御しなければ再現性のある温度検知
素子を得ることはできない。
(Problems to be Solved by the Invention) As stated in the Detailed Description of the Invention section of JP-A No. 55-102110, TCNQ salt is originally used for crystalline or powdered organic semiconductor devices. In order to obtain a temperature sensing element with a shaped thermosensor, a polymer binder is added to TCNQ salt, then dissolved in a solvent, and an element is formed by a film forming method such as screen printing or doctor blade method. is essential. However, in this case, it is not possible to obtain a reproducible temperature sensing element unless parameters such as the particle size of the TCNQ salt and the thickness of the film are accurately controlled.

尚、前記TCNQ塩は高価なものであるため経済面から
も実用化のためにはさらなる努力、工夫が必要である。
Incidentally, since the TCNQ salt is expensive, further efforts and ingenuity are required from an economical point of view in order to put it into practical use.

また、TCNQ塩に添加される高分子バインダーとして
は、ポリ酢酸ビニル、ポリスチレン、エチレン−酢酸ビ
ニル共重合体、塩化ビニル−酢酸ビニル共重合体等の熱
可塑性樹脂が用いられるため、素子の温度検知範囲は用
いられる高分子バインダーの転移点以下に制限されてし
まう。
In addition, as the polymer binder added to the TCNQ salt, thermoplastic resins such as polyvinyl acetate, polystyrene, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer, etc. are used, so the temperature of the element can be detected. The range is limited to below the transition point of the polymer binder used.

本発明の目的は、上記欠点を解消するもので、簡単な製
造工程により任意の形状の感温体を持ち非点状部の温度
検知に適した温度検知素子を安価に提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks, and to provide a temperature sensing element having a temperature sensing element of an arbitrary shape and suitable for sensing the temperature of an astigmatism portion at a low cost through a simple manufacturing process.

(課題を解決するための手段) 前記目的を達成するために本発明による温度検知素子は
、一対の電極と、部分ドープされた電子共役有機重合体
を成分とする高分子半導体からなる感温体とが絶縁基板
上に形成されるよう構成しである。
(Means for Solving the Problems) In order to achieve the above object, a temperature sensing element according to the present invention comprises a pair of electrodes and a temperature sensitive body made of a polymer semiconductor comprising a partially doped electronically conjugated organic polymer. and are formed on an insulating substrate.

ここで前記電子共役有機重合体とは有機重合体の主鎖の
原子結合が、単結合と二重結合が交互に結合している共
役系よりなる有機重合体のことであり、前記電子共役有
機重合体としては、ポリピロール又はポリアニリンが挙
げられる。
Here, the electronically conjugated organic polymer is an organic polymer in which the atomic bonds in the main chain of the organic polymer are composed of a conjugated system in which single bonds and double bonds are alternately bonded, and the electronically conjugated organic polymer is Polymers include polypyrrole or polyaniline.

本発明に用いられる電子共役有機重合体は、例えば電解
重合法によって容易に得ることができる。
The electronically conjugated organic polymer used in the present invention can be easily obtained by, for example, an electrolytic polymerization method.

このとき溶媒としては一般的に知られているアセトニト
リル、水、又支持電解質としてはテトラブチルアンモニ
ウムバークロレート、テトラエチルアンモニウムフルオ
ロポレート、塩酸等を使用しても良く、直流電圧を印加
することにより陽極上に電子共役有機重合体膜を得るこ
とが可能である。
At this time, commonly known acetonitrile and water may be used as the solvent, and tetrabutylammonium verchlorate, tetraethylammonium fluoroporate, hydrochloric acid, etc. may be used as the supporting electrolyte. It is possible to obtain an electronically conjugated organic polymer film.

尚、電解型合法以外に、塩化第二鉄等を酸化剤とした化
学重合法により電子共役有機重合体膜を合成することも
可能である。
In addition to the electrolytic method, it is also possible to synthesize an electronically conjugated organic polymer film by a chemical polymerization method using ferric chloride or the like as an oxidizing agent.

また、この電子共役有機重合体膜は、(化学量論的に考
えて、)七ツマー単位すべてがドープされているわけで
はなく、即ち“部分ドープ”の状態となっている。
Furthermore, this electronically conjugated organic polymer film is not doped with all the seven-mer units (in terms of stoichiometry), that is, it is in a "partially doped" state.

ここで前記電子共役有機重合体膜の所望のB定数を得る
方法として、七ツマ−の初期濃度に対する支持電解質(
ドーパント)の濃度を調整する方法と、前記電子共役有
機重合体膜に対し、マイナス電位を印加(脱ドープ)す
る方法の2つが挙げられる。
Here, as a method for obtaining the desired B constant of the electronically conjugated organic polymer membrane, the supporting electrolyte (
There are two methods: a method of adjusting the concentration of a dopant) and a method of applying a negative potential to the electronically conjugated organic polymer film (dedoping).

本実施例では、所望のB定数と膜厚を簡単に設定できる
後者の方法により行った。
In this example, the latter method was used, which allows the desired B constant and film thickness to be easily set.

尚、ドープ量が多い程得られたポリマーの導電率は増加
する。
Incidentally, the larger the amount of doping, the higher the electrical conductivity of the obtained polymer.

特に、素子のB定数は500以上3000未満のものが
好ましい。B定数が500未満であるとく、一応はNT
C特性を示すが感度が低いため温度検知が不可能となっ
てしまう。
In particular, the B constant of the element is preferably 500 or more and less than 3,000. If the B constant is less than 500, NT
Although it exhibits C characteristics, temperature detection becomes impossible due to low sensitivity.

また、B定数が3000以上のものは、素子の電気抵抗
が増大してしまい脱ドープ工程では所望のB定数を得る
ことができない。
Further, if the B constant is 3000 or more, the electrical resistance of the device increases, making it impossible to obtain the desired B constant in the dedoping step.

本発明の絶縁基板は感温体を支持するものであり絶縁材
料であれば使用できるが、熱伝導率k[Wm −I K
−1]は低い程好ましく、石英ガラス(k=1.38)
、パイレックスガラス(k−1−10)等の無機系ガラ
ス材料やポリエチレン(k−0。
The insulating substrate of the present invention supports the temperature sensitive body, and any insulating material can be used.
-1] is preferably lower, and quartz glass (k = 1.38)
, inorganic glass materials such as Pyrex glass (k-1-10) and polyethylene (k-0.

22)、ポリ塩化ビニル(k=0.16)、ポリテトラ
フルオロエチレン(k=0.30)、シリコンゴム(k
−0,20)等の高分子材料等を用いることができる。
22), polyvinyl chloride (k = 0.16), polytetrafluoroethylene (k = 0.30), silicone rubber (k
-0,20), etc. can be used.

尚、高分子材料を絶縁基板として用いる場合は任意の形
状に成形した後に一般に知られている方法により架橋構
造をとったものを使用しても良い。
In addition, when using a polymeric material as an insulating substrate, it may be formed into an arbitrary shape and then crosslinked by a generally known method.

(作 用) 前述した本発明の手段によれば、簡単な合成方法体とし
て使用するため構造は単純で、その成膜性を有効に利用
し、任意の形状の感温体を持ち非点状部の温度検知に適
した温度検知素子を安価に提供することができる。
(Function) According to the above-mentioned means of the present invention, the structure is simple because it is used as a simple synthesis method, and its film forming property is effectively utilized, and it has a thermosensor of any shape and a non-point shape. It is possible to provide a temperature sensing element suitable for detecting temperature at a low cost.

尚、ポリピロール及びポリアニリンは、TCNQ塩に添
加される高分子バインダーとして例に挙げた熱可塑性樹
脂と異なり融点を持たない。従って温度に対しては土兄
樹脂と比較して安定であると考えられる。
Note that polypyrrole and polyaniline do not have melting points, unlike the thermoplastic resins mentioned as examples of polymer binders added to the TCNQ salt. Therefore, it is considered to be more stable with respect to temperature than Tsuchien resin.

(実施例) 以下、本発明を図面等を参照して更に詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to the drawings and the like.

第1図は、本発明による温度検知素子の一実施例を示す
断面図である。
FIG. 1 is a sectional view showing one embodiment of a temperature sensing element according to the present invention.

〈ポリピロールを用いた実施例〉 第1図に示す如く、絶縁基板1として縦、横及び厚さが
15X15X0.5mmの石英基板(300Kにおける
熱伝導率に=1.38)を用意し、該基板上に感温体2
としてポリピロール膜を装着する。次に感温体2の両端
に金の真空蒸着を行い電極3を設けることにより温度検
知素子を形成した。
<Example using polypyrrole> As shown in FIG. 1, a quartz substrate (thermal conductivity at 300K = 1.38) with length, width, and thickness of 15 mm x 15 mm x 0.5 mm was prepared as the insulating substrate 1, and the substrate Temperature sensing element 2 on top
Attach a polypyrrole membrane as a protective layer. Next, gold was vacuum deposited on both ends of the temperature sensitive body 2 and electrodes 3 were provided to form a temperature sensing element.

ここでポリピロール膜の合成は以下に述べる方法により
行った。
Here, the polypyrrole film was synthesized by the method described below.

まず溶媒として試薬特級のアセトニトリルを更に一回蒸
留したものを用意し、陽極として(1000人25Ω/
口)のITO付ガツガラス極として白金の電極を設けた
電解槽内で支持電解質を混入したポリピロールの電解重
合を行い陽極上にポリピロールを成膜した。
First, we prepared reagent-grade acetonitrile distilled once more as a solvent, and used it as an anode (1000 people 25Ω/
Polypyrrole mixed with a supporting electrolyte was electrolytically polymerized in an electrolytic cell equipped with a platinum electrode as a glass electrode with ITO to form a film on the anode.

このときピロールの初期濃度は0、IM/lであり、支
持電解質としては0.075M/!!/のテトラブチル
アンモニウムバークロレートを使用した。又、ドープ条
件としては電極間電位3.Ov及び3.5V1電解時間
10分間である。
At this time, the initial concentration of pyrrole is 0, IM/l, and the supporting electrolyte is 0.075 M/l! ! / of tetrabutylammonium verchlorate was used. Also, the doping conditions are: 3. Electrode potential. Ov and 3.5V1 electrolysis time is 10 minutes.

次に、このようにして陽極上に成膜されたポリピロール
に対し電極間電位−3,OV、電解時間1分間及び10
分間の条件で脱ドープを施すことによりポリピロール膜
のB定数を制御した。
Next, for the polypyrrole film formed on the anode in this way, the interelectrode potential was -3, OV, the electrolysis time was 1 minute, and 10
The B constant of the polypyrrole film was controlled by dedoping under conditions of 1 minute.

本実施例では、このようにして得られたポリピロール膜
を感温体として用いた温度検知素子4種類(本実施例A
、B、C,D)を作成した。
In this example, four types of temperature sensing elements (this example A
, B, C, D) were created.

尚、表−1には各々の素子についてのドープ条件。Furthermore, Table 1 shows the doping conditions for each element.

脱ドーグ条件及びB定数を示した。Dedoguing conditions and B constants are shown.

ここで上記4種類の温度検知素子について、温度変化に
対する素子の電気抵抗(温度特性)を測定したところ第
2図に示すようなグラフを得ることができた。
When the electric resistance (temperature characteristics) of the four types of temperature sensing elements described above was measured against temperature changes, a graph as shown in FIG. 2 was obtained.

第2図によれば、本実施例A(B定数250)の素子は
、温度変化に対する抵抗変化の割合が低く温度検知素子
としては適していない。本実施例B、C及びDは、それ
ぞれ500.1430及び2300のB定数を有する素
子であるが、これらは温度変化に対する抵抗変化は十分
でありNTC特性を有する温度検知素子として適してい
る。
According to FIG. 2, the element of Example A (B constant 250) has a low rate of resistance change with respect to temperature change and is not suitable as a temperature sensing element. Examples B, C, and D have B constants of 500.1430 and 2300, respectively, and these have sufficient resistance changes with respect to temperature changes and are suitable as temperature sensing elements having NTC characteristics.

また、本実施例の中には加えていないが、B定数が30
00以上のものは、素子の電気抵抗が増大し脱ドープ工
程では所望のB定数を得ることができなかった。
Also, although not included in this example, the B constant is 30
If it is more than 00, the electrical resistance of the device increases and a desired B constant cannot be obtained in the dedoping step.

尚、本実施例A及びBに関してはいずれも15μmの膜
厚のポリピロール膜が得られ、C及びDに関してはいず
れも10μmの膜厚のポリピロール膜が得られた。即ち
七ツマー濃度、支持電解質濃度及び電解重合条件という
必要最小限のパラメーターの制御により再現性のある感
温体を得ることができる。
It should be noted that in both Examples A and B, polypyrrole films with a thickness of 15 μm were obtained, and in both Examples C and D, polypyrrole films with a thickness of 10 μm were obtained. That is, a reproducible thermosensitive body can be obtained by controlling the minimum necessary parameters of the hexamer concentration, the supporting electrolyte concentration, and the electrolytic polymerization conditions.

〈絶縁基板の熱伝導率を代えた実施例〉次に異なった熱
伝導率をもつ絶縁基板について素子の応答性を比較した
<Example in which the thermal conductivity of the insulating substrate was changed> Next, the responsiveness of the element was compared for insulating substrates having different thermal conductivities.

本実施例Xは、感温体として前述の方法により得られた
B定数1430のポリピロール膜、絶縁基板として縦、
横及び厚さが15Xl 5XO,5mmの石英基板(3
00Kにおける熱伝導率に−1,38)より構成された
素子について80℃に保った恒温槽中に放置してから時
間−抵抗特性を測定し熱時定数τを求めたものであり、
その結果を表−2に示した。
In this Example
Quartz substrate with width and thickness of 15Xl 5XO, 5mm (3
The thermal conductivity at 00K is -1,38), and the time-resistance characteristics are measured after being left in a constant temperature bath kept at 80°C to determine the thermal time constant τ.
The results are shown in Table-2.

また、比較例Yは、感温体としては本実施例Xと同一と
し、絶縁基板については縦、横及び厚さが15X15X
0.5mmの多結晶酸化アルミニウム基板(300Kに
おける熱伝導率に=36)より構成された素子について
本実施例Xと同一の方法により時間−抵抗特性を測定し
熱時定数τを求めたものであリ、その結果を表−2に併
記した。
In Comparative Example Y, the temperature sensor was the same as Example X, and the length, width, and thickness of the insulating substrate were 15X15X.
Using the same method as Example The results are also listed in Table 2.

これを見てもわかるように、素子の応答性は熱伝導率の
低い基板を使用した本実施例Xが優れており、比較例Y
は本実施例Xに比べ約20倍の応答時間が必要であっt
;。
As can be seen, the responsiveness of the element is excellent in Example X, which uses a substrate with low thermal conductivity, and in Comparative Example Y.
The response time required is about 20 times that of Example X.
;.

くポリアニリンを用いた実施例〉 次に感温体としてポリピロールに代えてポリアニリンを
用いた温度検知素子を作成しt:。
Example using polyaniline> Next, a temperature sensing element was created using polyaniline instead of polypyrrole as the temperature sensing element.

ポリアニリン膜の合成は以下に述べる方法により行った
The polyaniline film was synthesized by the method described below.

まず溶媒として水を用意し、陽極として(1000A2
5Ω/口)のITO付ガツガラス極として白金の電極を
設けた電解槽内で支持電解質を混入したポリアニリンの
電解重合を行い陽極上にポリアニリンを成膜した。
First, prepare water as a solvent, and use it as an anode (1000A2
Polyaniline mixed with a supporting electrolyte was electrolytically polymerized in an electrolytic cell equipped with a platinum electrode as a glass electrode with ITO (5Ω/mouth) to form a film of polyaniline on the anode.

このときアニリンの初期濃度は1.OM/、/、であり
、支持電解質としては1.5M/、4の塩酸を使用した
。又、ドープ条件としては電極間電位2.5V。
At this time, the initial concentration of aniline is 1. OM/,/, and 1.5M/,4 hydrochloric acid was used as the supporting electrolyte. Also, the doping condition is an interelectrode potential of 2.5V.

電解時間10分間である。The electrolysis time was 10 minutes.

次に、このようにして陽極上に成膜されたポリアニリン
に対し電極間電位−2,5V、電解時間10分間の条件
で脱ドープを施すことによりポリアニリン膜のB、定数
を制御した。
Next, the polyaniline thus formed on the anode was dedoped under the conditions of an interelectrode potential of -2.5 V and an electrolysis time of 10 minutes to control the B constant of the polyaniline film.

本実施例では、このようにして得られたポリアニリン膜
を感温体として用いた温度検知素子2種類(本実施例E
、F)を作成した。
In this example, two types of temperature sensing elements (this example E
, F) was created.

尚、表−3には各々の素子についてのドープ条件。Furthermore, Table 3 shows the doping conditions for each element.

脱ドープ条件及びB定数を示した。Dedoping conditions and B constants are shown.

ここで上記2種類の温度検知素子について、温度変化に
対する素子の電気抵抗(温度特性)を測定したところ第
3図に示すようなグラフを得ることかできt二。
When we measured the electrical resistance (temperature characteristics) of the two types of temperature sensing elements mentioned above against temperature changes, we were able to obtain a graph as shown in Figure 3.

第3図によれば、本実施例E (B定数270)の素子
は、温度変化に対する抵抗変化の割合が低く温度検知素
子としては適していない。本実施例F (B定数150
0)の素子は温度変化に対する抵抗変化は十分でありN
TC特性を有する温度検知素子として適していることが
判る。
According to FIG. 3, the element of Example E (B constant 270) has a low rate of resistance change with respect to temperature change and is not suitable as a temperature sensing element. Example F (B constant 150
0) has a sufficient resistance change due to temperature change, and N
It can be seen that it is suitable as a temperature sensing element having TC characteristics.

(以下余白) 表=1 表−2 表−3 (発明の効果) 以上説明したように本発明によれば、TCNC’l塩等
の結晶もしくは粉末状の有機半導体を用いることなく成
膜性の良好な電子共役有機重合体(ポリピロール又はポ
リアニリン)を感温体とすることにより、感温体の形状
及び面積の自由度の高い、非点状部の温度検知に適した
温度検知素子を安価に提供することが可能であり、その
工業的価値は極めて大きい。
(Leaving space below) Table = 1 Table 2 Table 3 (Effects of the invention) As explained above, according to the present invention, film formability can be improved without using crystalline or powdered organic semiconductors such as TCNC'l salt. By using a good electronically conjugated organic polymer (polypyrrole or polyaniline) as a temperature sensing element, we can create a low-cost temperature sensing element suitable for temperature sensing in non-point areas with a high degree of freedom in the shape and area of the temperature sensing element. It is possible to provide this product, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による温度検知素子の一実施例を示す
断面図である。 第2図及び第3図は、本実施例による温度検知素子の温
度特性図である。 l・・・・絶縁基板 2・・・・感温体 3・・・・電極
FIG. 1 is a sectional view showing one embodiment of a temperature sensing element according to the present invention. FIGS. 2 and 3 are temperature characteristic diagrams of the temperature sensing element according to this embodiment. l...Insulating substrate 2...Temperature sensing element 3...Electrode

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成された一対の電極と、部分ドー
プされた電子共役有機重合体を成分とする高分子半導体
からなる感温体とによって構成された温度検知素子。
(1) A temperature sensing element composed of a pair of electrodes formed on an insulating substrate and a temperature sensitive body made of a polymer semiconductor whose component is a partially doped electronically conjugated organic polymer.
(2)前記電子共役有機重合体がポリピロールであるこ
とを特徴とする特許請求の範囲第1項記載の温度検知素
子。
(2) The temperature sensing element according to claim 1, wherein the electronically conjugated organic polymer is polypyrrole.
(3)前記電子共役有機重合体がポリアニリンであるこ
とを特徴とする特許請求の範囲第1項記載の温度検知素
子。
(3) The temperature sensing element according to claim 1, wherein the electronically conjugated organic polymer is polyaniline.
JP572690A 1990-01-13 1990-01-13 Thermosensor Pending JPH03211702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP572690A JPH03211702A (en) 1990-01-13 1990-01-13 Thermosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP572690A JPH03211702A (en) 1990-01-13 1990-01-13 Thermosensor

Publications (1)

Publication Number Publication Date
JPH03211702A true JPH03211702A (en) 1991-09-17

Family

ID=11619130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP572690A Pending JPH03211702A (en) 1990-01-13 1990-01-13 Thermosensor

Country Status (1)

Country Link
JP (1) JPH03211702A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588721A1 (en) * 1992-09-18 1994-03-23 Commissariat A L'energie Atomique Support with network of resistive elements in conductive polymer and method of making it
JP2002280746A (en) * 2001-03-20 2002-09-27 Polytronics Technology Corp Printed circuit board with embedded function element
WO2003052777A1 (en) * 2001-12-14 2003-06-26 Shin-Etsu Polymer Co., Ltd. Organic ntc composition, organic ntc element, and process for producing the same
JP2004335731A (en) * 2003-05-07 2004-11-25 Shin Etsu Polymer Co Ltd Organic ntc element
WO2012001465A1 (en) * 2010-06-29 2012-01-05 Indian Institute Of Technology Kanpur Flexible temperature sensor and sensor array
JP6352517B1 (en) * 2017-11-21 2018-07-04 住友化学株式会社 Composition for temperature sensor
JP2020165955A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element
WO2020202999A1 (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588721A1 (en) * 1992-09-18 1994-03-23 Commissariat A L'energie Atomique Support with network of resistive elements in conductive polymer and method of making it
FR2696043A1 (en) * 1992-09-18 1994-03-25 Commissariat Energie Atomique Support for a network of resistive elements in conductive polymer and its manufacturing process.
JP2002280746A (en) * 2001-03-20 2002-09-27 Polytronics Technology Corp Printed circuit board with embedded function element
WO2003052777A1 (en) * 2001-12-14 2003-06-26 Shin-Etsu Polymer Co., Ltd. Organic ntc composition, organic ntc element, and process for producing the same
US7161463B2 (en) 2001-12-14 2007-01-09 Shin-Etsu Polymer Co., Ltd. Organic NTC composition, organic NTC device and production method of the same
JP2004335731A (en) * 2003-05-07 2004-11-25 Shin Etsu Polymer Co Ltd Organic ntc element
US8783948B2 (en) 2010-06-29 2014-07-22 Indian Institute Of Technology Kanpur Flexible temperature sensor and sensor array
US20120263209A1 (en) * 2010-06-29 2012-10-18 Indian Institute Of Technology Kanpur Flexible temperature sensor and sensor array
WO2012001465A1 (en) * 2010-06-29 2012-01-05 Indian Institute Of Technology Kanpur Flexible temperature sensor and sensor array
JP6352517B1 (en) * 2017-11-21 2018-07-04 住友化学株式会社 Composition for temperature sensor
JP2019094410A (en) * 2017-11-21 2019-06-20 住友化学株式会社 Composition for temperature sensors
JP2020165955A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element
WO2020202999A1 (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element
WO2020202997A1 (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element
JP2020165881A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Temperature sensor element
US11885694B2 (en) 2019-03-29 2024-01-30 Sumitomo Chemical Company, Limited Temperature sensor element

Similar Documents

Publication Publication Date Title
McGovern et al. Micro-humidity sensors based on a processable polyaniline blend
Jain et al. Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers
US20190228918A1 (en) Sensor and supercapacitor based on graphene polypyrrole 3d porous structure, and integrated device including the same
US10302506B2 (en) Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for producing element for temperature sensor
JPH06506411A (en) Sensors based on nanostructured composite films
JPH03211702A (en) Thermosensor
Lee et al. Polymeric humidity sensor using organic/inorganic hybrid polyelectrolytes
KR960008376A (en) Liquid crystal elements
CA1166336A (en) Functional electric devices
JPH0529255B2 (en)
KR20150145257A (en) Ferroelectric memory device
Elyashevich et al. Thermochemical and deformational stability of microporous polyethylene films with polyaniline layer
JP3053633B2 (en) Thin film thermistor element
Modine et al. Electrical conduction in CaF2 and CaF2‐Al2O3 nanocomposite films on Al2O3 substrates
Rusu et al. High-field electrical conduction in thin-film sandwich structures of the metal/organic semiconductor/metal type
JPS5874086A (en) Stress detecting element
KR20160120106A (en) Piezoelectric sensor using PVDF film bonded with azobenzene, manufacturing method thereof
JPS6358249A (en) Humidity detecting element
JPS6321321B2 (en)
JP2719359B2 (en) Non-linear electric conduction element
JP2619554B2 (en) Liquid crystal display
JPS60201244A (en) Moisture sensor
JPH0766991B2 (en) Electric control element
US4807187A (en) Method and device of memory using liquid crystal
Réczey et al. Electroconducting Polymer Mim Based Gas Sensor on Thick Film Substrate'