[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03217227A - Membrane reactor for dehydrogenation reaction - Google Patents

Membrane reactor for dehydrogenation reaction

Info

Publication number
JPH03217227A
JPH03217227A JP2012645A JP1264590A JPH03217227A JP H03217227 A JPH03217227 A JP H03217227A JP 2012645 A JP2012645 A JP 2012645A JP 1264590 A JP1264590 A JP 1264590A JP H03217227 A JPH03217227 A JP H03217227A
Authority
JP
Japan
Prior art keywords
reaction
membrane
hydrogen
separation membrane
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012645A
Other languages
Japanese (ja)
Inventor
Tetsuya Imai
哲也 今井
Kennosuke Kuroda
健之助 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012645A priority Critical patent/JPH03217227A/en
Publication of JPH03217227A publication Critical patent/JPH03217227A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To increase conversion efficiency at a temp. lower than that of the conventional process by forming a Pd-contg. thin film having <=50mum thickness on one surface of a porous metallic body as the hydrogen separation membrane and forming the membrane reactor for dehydrogenation reaction with the membrane. CONSTITUTION:A dehydrogenation catalyst 3 is packed between the outer tube 1 of a reaction tube and a hydrogen separation membrane 2 and held by a catalyst supporting plate 7. The raw gas is supplied to the catalyst bed 3 from an inlet 4, hence the dehydrogenation reaction proceeds, and the generated hydrogen is permeated through the membrane 2 and discharged from a hydrogen outlet 6. The membrane 2 is formed by laminating a Pd-contg. thin film having <=0.5mu thickness at least on one surface of the metallic body having 0.1-2.0mu pores. The plural membranes 2 are set in the reaction tube 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脱水素反応に用いる反応器に関し、更に詳しく
は水素分離膜を反応管内に設置し、反応生成物の水素の
一部を除外しながら脱水素反応を行わせるメンブレンリ
アクタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reactor used for dehydrogenation reaction, and more specifically, a hydrogen separation membrane is installed in the reaction tube to exclude a part of the hydrogen of the reaction product. This invention relates to a membrane reactor that allows a dehydrogenation reaction to occur.

〔従来の技術〕[Conventional technology]

水素を生成する脱水素反応は一般に次のように表わされ
る。
The dehydrogenation reaction that produces hydrogen is generally expressed as follows.

Cr,H.  →  CnL−2+ L       
  (t)CnH+a  +  nLO    →  
ncO  +   (n+ m/2)Hz     (
2)CnL + 2nH20−  ncO2+  (2
n+m/2)Hz  (3)上記反応は大きな吸熱を伴
う反応で、熱力学平衡上転化率を高くするためには高温
にする必要があり、通常600℃以上の高温で実施され
ている。
Cr, H. → CnL-2+ L
(t)CnH+a+nLO →
ncO + (n+ m/2)Hz (
2) CnL + 2nH20- ncO2+ (2
n+m/2)Hz (3) The above reaction is a reaction accompanied by a large endotherm, and in order to increase the conversion rate above thermodynamic equilibrium, it is necessary to raise the temperature to a high temperature, and it is usually carried out at a high temperature of 600° C. or higher.

上記反応(1)の炭化水素の脱水素反応における各平衡
転化率を得るだめの反応温度を下北の表1に示す。
Table 1 of Shimokita shows the reaction temperatures required to obtain each equilibrium conversion rate in the hydrocarbon dehydrogenation reaction of reaction (1) above.

また、上記反応(2)及び(3)の代表例として、メタ
ンの水蒸気改質反応における平衡転化率を下記の表2に
示す。
Further, as a representative example of the above reactions (2) and (3), the equilibrium conversion rates in the steam reforming reaction of methane are shown in Table 2 below.

表  2 メタンの水蒸気改質反応における平衡 転化率( LD/CH4= 3 mol/mol)また
、脱水素反応を促進させる方法として、多孔質ガラス、
パラジウムメッキした多孔質ガラスなどの水素分離膜を
反応器内に設置し、反応生成物の水素の一部を反応器外
に取出しながら脱水素反応を行わせるメンブレンリアク
タを用いることが提案されている。
Table 2 Equilibrium conversion rate in methane steam reforming reaction (LD/CH4 = 3 mol/mol) In addition, porous glass,
It has been proposed to use a membrane reactor in which a hydrogen separation membrane such as palladium-plated porous glass is installed inside the reactor, and a portion of the hydrogen produced by the reaction is taken out of the reactor while the dehydrogenation reaction takes place. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したように、従来の脱水素反応は所定の転化率を得
るために非常に高温にする必要がある。そのため、高温
でも使用可能な高級な材料を使う必要がある。また、転
化率が低いため、リアクタ出口ガスを冷却゜して原料と
反応生成物を分離し、原料をリサイクルして使用してい
るが、リサイクルガスコンプレッサが必要であり、また
、加熱、冷却を繰返すため熱効率が低いなどの問題があ
る。さらには、反応温度が高いため、副反応が多く触媒
の活性低下が大きいという問題がある。
As previously mentioned, conventional dehydrogenation reactions require very high temperatures to achieve a given conversion. Therefore, it is necessary to use high-grade materials that can be used even at high temperatures. In addition, because the conversion rate is low, the reactor outlet gas is cooled to separate the raw material and the reaction product, and the raw material is recycled for use, but a recycling gas compressor is required, and heating and cooling are required. Because it is repeated, there are problems such as low thermal efficiency. Furthermore, since the reaction temperature is high, there is a problem in that there are many side reactions and the activity of the catalyst is greatly reduced.

さらに、また、多孔質ガラス,パラジウムメッキした多
孔質ガラスを用いるメンブレンリアクタでは、強度が弱
く、かつ、50cm長さ以上のパイプを製作するのが難
しく、実用上に問題がある。
Furthermore, membrane reactors using porous glass or palladium-plated porous glass have low strength and are difficult to manufacture into pipes with a length of 50 cm or more, which poses practical problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は原料供給口、生成物取出口を有し、内部に触媒
が充填され、外部に加熱手段を備えた反応器、該反応器
の触媒充填層に設けられた0. 1〜20μの細孔を有
する多孔質金属体の少なくとも一表面に50μ以下の膜
厚のPd含有薄膜を形成された水素分離膜で構成された
水素除去手段よりなることを特徴とする脱水素反応用メ
ンブレンリアクタである。
The present invention includes a reactor having a raw material supply port and a product discharge port, the inside of which is filled with a catalyst, and the outside of which is equipped with a heating means. A dehydrogenation reaction characterized by comprising a hydrogen removal means constituted by a hydrogen separation membrane in which a Pd-containing thin film with a thickness of 50μ or less is formed on at least one surface of a porous metal body having pores of 1 to 20μ. It is a membrane reactor for

すなわち、本発明は前述の問題点を解決すべくなされた
ものであり、0.1〜20μの細孔を有する多孔質金属
体の少なくとも一方の表面に膜厚が50μ以下のPdを
含有する薄膜を形成せしめた水素分離膜を反応器内に設
置し、反応生成物の水素の一部を除外しながら脱水素反
応を行わせるようにしたメンブレンリアクタである。
That is, the present invention was made to solve the above-mentioned problems, and includes a thin film containing Pd with a thickness of 50 μm or less on at least one surface of a porous metal body having pores of 0.1 to 20 μm. This is a membrane reactor in which a hydrogen separation membrane formed with hydrogen is installed in the reactor, and a dehydrogenation reaction is carried out while excluding a part of the hydrogen of the reaction product.

本発明において、細孔を有する多孔質金属としては、3
00℃以上の温度に耐える耐熱性を有し、処理すべき気
体と反応性を有せず、かつ、0.1〜10μの範囲の中
で、できるだけ均一な細孔を有する多孔質金属体を使用
するのが適当である。細孔径を0.1μ以上としたのは
、ガス拡散の妨害にならないようにするためであり、1
0μ以下としたのはPdを含有する薄膜を膜厚50μ以
下にコーティングした場合、ピンホールが生じ易くなる
からである。なお、多孔質金属体としては、円筒状、又
は板状のものを使用するのが適当であり、支持体として
の強度及び加工性などから、0.2〜2鵬の厚みのもの
が好ましい。
In the present invention, the porous metal having pores includes 3
A porous metal body that has heat resistance that can withstand temperatures of 00°C or higher, has no reactivity with the gas to be treated, and has pores as uniform as possible within the range of 0.1 to 10μ. It is appropriate to use. The reason why the pore diameter is set to 0.1μ or more is to prevent gas diffusion from being obstructed.
The reason why the thickness is set to 0μ or less is that pinholes are likely to occur when a thin film containing Pd is coated to a thickness of 50μ or less. Note that it is appropriate to use a cylindrical or plate-shaped porous metal body, and preferably one having a thickness of 0.2 to 2 mm from the viewpoint of strength as a support and workability.

本発明において多孔質金属体の一例としては以下のもの
があげられる。
Examples of porous metal bodies in the present invention include the following.

(1)発泡(多孔質)金属をプレス成型し細孔径を制御
したもの、さらにこれに溶射又はメッキなどにより細孔
を小さくしたもの。
(1) Foamed (porous) metal is press-molded to control the pore diameter, and the pores are further made smaller by thermal spraying or plating.

(2)粒径の小さい金属微粉末(50μ以下)を成型し
たもの。
(2) Molded metal fine powder with small particle size (50μ or less).

(3)化学反応により除去可能な粉末(例えば、燃焼除
去が可能なグラファイト)を金属粉末に混合又は溶融し
た金属に添加した後、粉末を化学反応により除去し細孔
を生成させたもの。
(3) Powder that can be removed by chemical reaction (for example, graphite that can be removed by combustion) is mixed with metal powder or added to molten metal, and then the powder is removed by chemical reaction to generate pores.

(4)金属繊維。(4) Metal fiber.

本発明において、Pctを含有する薄膜としては、Pd
l00%又はPdを10重量%以上含有する合金からな
り、膜厚が50μ以下、特に2〜20μのものが適当で
ある。Pdを10重量%以上含有する合金としては、P
d以外にPt , Rh ,Ru,Irなどの■族元素
、Cu , Ag , AuなどのIb族元素を含有す
るものをさす。
In the present invention, the thin film containing Pct is Pd
It is suitably made of an alloy containing 100% Pd or 10% by weight or more of Pd, and has a film thickness of 50 μm or less, particularly 2 to 20 μm. As an alloy containing 10% by weight or more of Pd, P
Refers to those containing, in addition to d, group Ⅰ elements such as Pt, Rh, Ru, and Ir, and group Ib elements such as Cu, Ag, and Au.

多孔質金属体の少なくとも一方の表面に膜厚が50μ以
下のPdを含有する薄膜を形成させる方法の一例として
は、下記の方法が用いられる。
As an example of a method for forming a Pd-containing thin film having a thickness of 50 μm or less on at least one surface of a porous metal body, the following method is used.

(1)  メッキなどの液相法 表面活性化処理(塩化スズの水溶液と塩化パラジウムの
各液に交互に浸漬)後、無電解メッキ(パラジウムの化
合物と還元剣を含有する液に浸漬) さらには、無電解メッキ後に電気メッキしたもの。
(1) After liquid-phase surface activation treatment such as plating (immersion alternately in an aqueous solution of tin chloride and palladium chloride), electroless plating (immersion in a solution containing a palladium compound and a reducing sword), and , electroplated after electroless plating.

(2)真空蒸着法、イオンプレーティング法、気相化学
反応法(CVD)などの気相法。
(2) Gas phase methods such as vacuum evaporation, ion plating, and vapor phase chemical reaction (CVD).

以上のようにしてPal又はPd合金の薄膜を形成させ
た多孔質金属体は水素のみを選択的に透過する水素分離
膜として使用できる。
A porous metal body on which a thin film of Pal or Pd alloy is formed as described above can be used as a hydrogen separation membrane that selectively permeates only hydrogen.

〔作用〕[Effect]

上記のようにして調製したPdを含有する薄膜を形成せ
しめた水素分離膜を反応管内に設置したメンブレンリア
クタは、次のような作用を有する。
A membrane reactor in which a hydrogen separation membrane having a Pd-containing thin film prepared as described above is installed in a reaction tube has the following effects.

(1)反応管内から反応生成物の一部である水素を除去
しながら同時に反応を行わせることにより、反応を熱力
学平衡の制約を受けずに進行させることができる。即ち
、平衡転化率以上の転化率が得られる。
(1) By simultaneously carrying out the reaction while removing hydrogen, which is a part of the reaction product, from inside the reaction tube, the reaction can proceed without being constrained by thermodynamic equilibrium. That is, a conversion rate higher than the equilibrium conversion rate can be obtained.

この作用により、反応温度を従来法より低くすることが
できる。
This effect allows the reaction temperature to be lower than in conventional methods.

(2)多孔質金属傳を用いることにより、強度、加工性
などの問題なく反応管内に設置することができる。
(2) By using a porous metal membrane, it can be installed in a reaction tube without problems with strength, workability, etc.

以下、本発明方法を実施する装置の概要を説明する。The outline of the apparatus for carrying out the method of the present invention will be explained below.

第1図は本発明方法を実施する装置の要部の概略図で、
1は反応管(外管)、2は水素分離膜、3は触媒層、4
は原料ガス導入口、5は生成ガス排出口、6は水素排出
口、7は触媒支持板である。
FIG. 1 is a schematic diagram of the main parts of an apparatus for carrying out the method of the present invention.
1 is a reaction tube (outer tube), 2 is a hydrogen separation membrane, 3 is a catalyst layer, 4
5 is a raw material gas inlet, 5 is a generated gas outlet, 6 is a hydrogen outlet, and 7 is a catalyst support plate.

反応管の外管1と水素分離膜2との間には、脱水素反応
用触媒3が充填されており触媒支持板7に保持されてい
る。触媒層3には原料ガスが導入口4より供給され、脱
水素反応が進行する。反応の進行に伴ない、発生した水
素は水素分離膜2を透過し、水素排出口6より排出され
る。未反応ガス及び生成ガスはガスが透過しやすいよう
に多孔板で形成されている触媒支持板7を通過し、生成
ガス排出口5より排出される。
A dehydrogenation reaction catalyst 3 is filled between the outer tube 1 of the reaction tube and the hydrogen separation membrane 2, and is held on a catalyst support plate 7. A raw material gas is supplied to the catalyst layer 3 through an inlet 4, and the dehydrogenation reaction proceeds. As the reaction progresses, generated hydrogen passes through the hydrogen separation membrane 2 and is discharged from the hydrogen outlet 6. The unreacted gas and the produced gas pass through the catalyst support plate 7, which is made of a perforated plate so that the gas can easily pass therethrough, and are discharged from the produced gas outlet 5.

反応管の外管1の外側からは、反応温度を維持し、反応
に必要な熱を補うための熱が供給される。水素分離膜2
は反応管1内に複数個設置される。また水素分離膜2に
右いては、水素透過速度を大きくするためにイナートガ
ス(スイープガス)を流すこともできる。
Heat is supplied from the outside of the outer tube 1 of the reaction tube to maintain the reaction temperature and supplement the heat necessary for the reaction. Hydrogen separation membrane 2
A plurality of are installed in the reaction tube 1. Furthermore, inert gas (sweep gas) can be passed through the hydrogen separation membrane 2 in order to increase the hydrogen permeation rate.

〔実施例1〕 平均粒子径1μのSUS 304の金属微粉末を用い、
平均細孔径が0.5μの多孔質金属パイプ(10°”X
8”X5 0 0Lmm)を成型した。このバイブの外
側の面にパラジウムのみを蒸着したサンプル1、パラジ
ウムと銀の合金(Pd : Ag=85:15重量比)
を蒸着したサンプル2またパラジウムと銅の合金(Pd
:Cu=9 0 : 1 0重量比)を蒸着したサンプ
ル3を調製した。
[Example 1] Using fine SUS 304 metal powder with an average particle size of 1μ,
Porous metal pipe with an average pore diameter of 0.5μ (10°”
Sample 1, in which only palladium was deposited on the outer surface of the vibrator, was an alloy of palladium and silver (Pd:Ag=85:15 weight ratio).
Sample 2 was also deposited with palladium and copper alloy (Pd
:Cu=90:10 weight ratio) was prepared.

パラジウム又はパラジウム合金をコーティングした多孔
質金属パイプ(サンプル1〜3)を水素分離膜として使
用し、第2図に示す装置で試験を行った。水素分離膜1
1を0リング12でステンレス鋼製外管l3に同定し、
その外側を電気炉で加熱する。温度はサーモカップル1
8を使用し内管の中心部で測定した。触媒は外管13と
内管である水素分離膜11の間19に充填した。
Porous metal pipes coated with palladium or palladium alloy (samples 1 to 3) were used as hydrogen separation membranes, and tests were conducted using the apparatus shown in FIG. 2. Hydrogen separation membrane 1
1 to the stainless steel outer tube l3 with an O ring 12,
The outside is heated in an electric furnace. Temperature is thermocouple 1
8 was used to measure the center of the inner tube. The catalyst was filled in the space 19 between the outer tube 13 and the hydrogen separation membrane 11, which is the inner tube.

Ni020wt%、Al2a38 0wt%の組成を有
する触媒(平均粒径1mm>5gを充填した後、500
℃で水素還元した。
After filling the catalyst with the composition of Ni020wt% and Al2a380wt% (average particle size 1mm>5g, 500wt%
Hydrogen reduction was carried out at ℃.

メタンと水蒸気の混合ガスを供給孔14から連続的に供
給し、排出孔15から透過水素以外の生成ガスを排出し
た。また上部の供給孔17からスイーブガスとしてアル
ゴンを供給し、水素分離膜1lを透過した水素と一緒に
取出孔16から水素含有ガスを得た。
A mixed gas of methane and water vapor was continuously supplied from the supply hole 14, and generated gas other than permeated hydrogen was discharged from the discharge hole 15. Further, argon was supplied as a sweep gas from the upper supply hole 17, and a hydrogen-containing gas was obtained from the take-out hole 16 together with the hydrogen that had permeated through 1 liter of the hydrogen separation membrane.

反応条件は次のとおりである。The reaction conditions are as follows.

試験結果を表2に示す。The test results are shown in Table 2.

表 2 〔比較例1〕 水素分離膜を用いない(スイープガスも流さない)こと
以外は、実施例1と同じ方法でメタン改質反応の実験を
行った結果メタン転化率は24%であった。
Table 2 [Comparative Example 1] A methane reforming reaction experiment was conducted in the same manner as in Example 1, except that a hydrogen separation membrane was not used (no sweep gas was flowed), and the methane conversion rate was 24%. .

〔実施例2〕 実施例1における多孔質金属パイプ(サンプル3)を用
いた試験において反応圧力、温度を変えて試験を行った
結果、以下の通りであった。
[Example 2] In the test using the porous metal pipe (sample 3) in Example 1, the reaction pressure and temperature were changed and the results were as follows.

〔実施例3〕 平均細孔径が2μの多孔質金属パイプ(ニチダイ■製積
層焼結金網フィルタ:10°D X 8 20X500
L[[lffl)を用いて、無電解メッキ後、電気メッ
キし、Pdを20μコーティングし、実施例1と同じ装
置、方法でプロパン,ブタン及びエチルベンゼンの脱水
素反応を行った。
[Example 3] Porous metal pipe with an average pore diameter of 2μ (laminated sintered wire mesh filter manufactured by Nichidai ■: 10°D x 8 20X500
After electroless plating using L[[lffl], electroplating was performed to coat with 20μ of Pd, and a dehydrogenation reaction of propane, butane and ethylbenzene was performed using the same apparatus and method as in Example 1.

共通の反応条件は次の通りである。Common reaction conditions are as follows.

試験結果11表3のとおりである。Test results 11 are as shown in Table 3.

表 3 〔比較例2〕 水素分離膜を用いない (スイーブガスも流さ ない) こと以外は、 実施例3と同じ方法でプロ バン,ブタン及びエチルベンゼンの脱水素反応を行った
結果を表4に示す。
Table 3 [Comparative Example 2] Table 4 shows the results of a dehydrogenation reaction of propane, butane, and ethylbenzene performed in the same manner as in Example 3, except that a hydrogen separation membrane was not used (no sweep gas was flowed).

表  4 〔発明の効果〕 本発明は脱水素反応において、多孔質金属体にPdを含
有する薄膜を形成せしめた水素分離膜を反応管内に設置
し、反応生成物中の水素の一部を反応系から除外するこ
とにより、従来法より低い温度で高い転化率を得ること
ができた。
Table 4 [Effects of the Invention] In the dehydrogenation reaction of the present invention, a hydrogen separation membrane in which a thin film containing Pd is formed on a porous metal body is installed in a reaction tube, and a part of the hydrogen in the reaction product is removed by the reaction. By excluding it from the system, a high conversion rate could be obtained at a lower temperature than in the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の概要を説明する概
略図、第2図は本発明方法の実施例において使用した試
験反応装置の概略図である。 轍・1図
FIG. 1 is a schematic diagram illustrating the outline of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic diagram of a test reaction apparatus used in an example of the method of the present invention. Rut・1 diagram

Claims (1)

【特許請求の範囲】[Claims] 原料供給口、生成物取出口を有し、内部に触媒が充填さ
れ、外部に加熱手段を備えた反応器、該反応器の触媒充
填層に設けられた0.1〜20μの細孔を有する多孔質
金属体の少なくとも一表面に50μ以下の膜厚のPd含
有薄膜を形成された水素分離膜で構成された水素除去手
段よりなることを特徴とする脱水素反応用メンブレンリ
アクタ。
A reactor having a raw material supply inlet and a product outlet, filled with a catalyst inside and equipped with heating means on the outside, and having pores of 0.1 to 20μ provided in the catalyst packed bed of the reactor. 1. A membrane reactor for dehydrogenation reaction comprising a hydrogen removal means constituted by a hydrogen separation membrane in which a Pd-containing thin film with a thickness of 50 μm or less is formed on at least one surface of a porous metal body.
JP2012645A 1990-01-24 1990-01-24 Membrane reactor for dehydrogenation reaction Pending JPH03217227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012645A JPH03217227A (en) 1990-01-24 1990-01-24 Membrane reactor for dehydrogenation reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012645A JPH03217227A (en) 1990-01-24 1990-01-24 Membrane reactor for dehydrogenation reaction

Publications (1)

Publication Number Publication Date
JPH03217227A true JPH03217227A (en) 1991-09-25

Family

ID=11811104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012645A Pending JPH03217227A (en) 1990-01-24 1990-01-24 Membrane reactor for dehydrogenation reaction

Country Status (1)

Country Link
JP (1) JPH03217227A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019960A1 (en) * 1996-11-07 1998-05-14 Toyota Jidosha Kabushiki Kaisha Hydrogen manufacturing and supplying apparatus and electric motorcar
JP2007076992A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same
JP2007084378A (en) * 2005-09-21 2007-04-05 Nippon Oil Corp Method for producing hydrogen and apparatus used in the same
WO2011083653A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石エネルギー株式会社 Reactor for dehydrogenation of organic compound, hydrogen production apparatus, and hydrogen production process
JP2011140411A (en) * 2010-01-06 2011-07-21 Jx Nippon Oil & Energy Corp Organic compound dehydrogenation reactor and hydrogen production method
JP2011195418A (en) * 2010-03-23 2011-10-06 Jx Nippon Oil & Energy Corp Apparatus for producing hydrogen, and method for producing hydrogen
KR20120039508A (en) * 2009-02-17 2012-04-25 아셈블론, 인크. Hydrogen release and recovery from aliphatic primary amines or di-amines
JP2017043552A (en) * 2015-08-25 2017-03-02 株式会社東芝 Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055965A (en) * 1973-09-19 1975-05-16
JPS51131472A (en) * 1975-05-12 1976-11-15 Masao Okubo A pure hydrogen producing apparatus
JPS51131473A (en) * 1975-05-12 1976-11-15 Masao Okubo A process for manufacturing hydrogen permeable film
JPS6272502A (en) * 1985-09-25 1987-04-03 Yazaki Corp Hydrogen separator
JPS63154629A (en) * 1986-12-18 1988-06-27 Agency Of Ind Science & Technol Dehydrogenating reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055965A (en) * 1973-09-19 1975-05-16
JPS51131472A (en) * 1975-05-12 1976-11-15 Masao Okubo A pure hydrogen producing apparatus
JPS51131473A (en) * 1975-05-12 1976-11-15 Masao Okubo A process for manufacturing hydrogen permeable film
JPS6272502A (en) * 1985-09-25 1987-04-03 Yazaki Corp Hydrogen separator
JPS63154629A (en) * 1986-12-18 1988-06-27 Agency Of Ind Science & Technol Dehydrogenating reactor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019960A1 (en) * 1996-11-07 1998-05-14 Toyota Jidosha Kabushiki Kaisha Hydrogen manufacturing and supplying apparatus and electric motorcar
US6294276B1 (en) 1996-11-07 2001-09-25 Toyota Jidosha Kabushiki Kaisha Hydrogen manufacturing and supplying apparatus and electric motorcar
JP2007076992A (en) * 2005-09-16 2007-03-29 Nippon Oil Corp Apparatus for producing hydrogen and fuel cell system using the same
JP2007084378A (en) * 2005-09-21 2007-04-05 Nippon Oil Corp Method for producing hydrogen and apparatus used in the same
KR20120039508A (en) * 2009-02-17 2012-04-25 아셈블론, 인크. Hydrogen release and recovery from aliphatic primary amines or di-amines
JP2012519658A (en) * 2009-02-17 2012-08-30 アセンブロン インコーポレイテッド Release and recovery of hydrogen from aliphatic primary amines or diamines
WO2011083653A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石エネルギー株式会社 Reactor for dehydrogenation of organic compound, hydrogen production apparatus, and hydrogen production process
JP2011140411A (en) * 2010-01-06 2011-07-21 Jx Nippon Oil & Energy Corp Organic compound dehydrogenation reactor and hydrogen production method
US9206046B2 (en) 2010-01-06 2015-12-08 Jx Nippon Oil & Energy Corporation Reactor for dehydrogenation of organic compound, hydrogen production apparatus, and hydrogen production process
JP2011195418A (en) * 2010-03-23 2011-10-06 Jx Nippon Oil & Energy Corp Apparatus for producing hydrogen, and method for producing hydrogen
JP2017043552A (en) * 2015-08-25 2017-03-02 株式会社東芝 Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier

Similar Documents

Publication Publication Date Title
Li et al. Characterisation and permeation of palladium/stainless steel composite membranes
Pal et al. A review on types, fabrication and support material of hydrogen separation membrane
Cheng et al. Palladium–silver composite membranes by electroless plating technique
Yun et al. Correlations in palladium membranes for hydrogen separation: A review
Gryaznov et al. Preparation and catalysis over palladium composite membranes
Dittmeyer et al. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium
Yeung et al. Palladium composite membranes by electroless plating technique: relationships between plating kinetics, film microstructure and membrane performance
Cheng et al. Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from Towngas mixture
JPH0541610B2 (en)
JP3217447B2 (en) Membrane reactor for dehydrogenation reaction
EP2156883B1 (en) Method for producing hydrogen separation membrane and selectively permeable membrane reactor
US7700184B2 (en) Pd nanopore and palladium encapsulated membranes
Wang et al. Fabrication of novel Pd–Ag–Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability
EP1042049A1 (en) Hydrogen gas-extraction module
AU2014306355B2 (en) Processes utilising selectively permeable membranes
JPH03217227A (en) Membrane reactor for dehydrogenation reaction
Li et al. Repair of a Pd/α-Al2O3 composite membrane containing defects
CN101785956B (en) Membranous tube complex and high-purity hydrogen generating device using same
JP3117276B2 (en) Hydrogen separation membrane
JP5825465B2 (en) Hydrogen separation membrane, production method thereof, and hydrogen separation method
JPH0444604B2 (en)
Shinoda et al. Development of a H2-permeable Pd60Cu40-based composite membrane using a reverse build-up method
JP6561334B2 (en) Method for producing hydrogen separation membrane
RU2717819C1 (en) Method of producing super-pure hydrogen by steam reforming of ethanol
JPH04326931A (en) Production of hydrogen separation membrane