JPH03216557A - Method for precise calibration of accelerometer - Google Patents
Method for precise calibration of accelerometerInfo
- Publication number
- JPH03216557A JPH03216557A JP1296790A JP1296790A JPH03216557A JP H03216557 A JPH03216557 A JP H03216557A JP 1296790 A JP1296790 A JP 1296790A JP 1296790 A JP1296790 A JP 1296790A JP H03216557 A JPH03216557 A JP H03216557A
- Authority
- JP
- Japan
- Prior art keywords
- accelerometer
- acceleration
- gravity
- measuring
- stepping motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- 230000001133 acceleration Effects 0.000 claims abstract description 20
- 230000005484 gravity Effects 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000762 glandular Effects 0.000 description 1
- 230000005486 microgravity Effects 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はサーゲ加速度計やサー?傾斜計の校正方法K関
する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to Sage accelerometers and accelerometers. This article relates to a method for calibrating an inclinometer.
加速度計の静的特性を校正する方法としては従来第4図
に示すようK,地球の重力加速度IGを利用していた。Conventionally, as a method of calibrating the static characteristics of an accelerometer, K and the earth's gravitational acceleration IG have been used, as shown in Figure 4.
即ち,水準器1ノで十分平面度が取られた水平面上に対
象の加速度計8を重力方向と測定方向とを逆K設置し測
定方向に−IGの重力加速度を加える。次K加速度計8
を90c@転させ測定方向を水平方向に設置し重力加速
度を零とする。That is, the target accelerometer 8 is placed on a horizontal plane whose flatness has been sufficiently determined using a spirit level 1 so that the gravity direction and the measurement direction are inverted, and a gravitational acceleration of -IG is applied to the measurement direction. Next K accelerometer 8
Rotate 90c@ and set the measurement direction horizontally to make the gravitational acceleration zero.
しかしながら,最近では宇宙空間の無重力状態を利用し
た各種の実験が計画されている。これらの実験では重力
と各種物理現象の相関を調査するが,特に10−3〜1
0””5G程度の微小な重力環境での実験がil要視
されている。このため. 10 〜1 0−9G程度が
測定可能な加速度計が必要であると共に,その校正方法
も必要である。However, recently, various experiments are being planned that take advantage of the weightless conditions of outer space. In these experiments, we investigate the correlation between gravity and various physical phenomena, especially 10-3 to 1
Experiments in a microgravity environment of about 0""5G are considered important. For this reason. An accelerometer capable of measuring about 10 to 10-9 G is required, and a method for calibrating it is also required.
通常の加速度計であれば、前述の従来の方法で校正が可
能であるが,前記の宇宙実験用のサーが加速度計のよう
に10−3〜10−5G程度の非常に微少な加速度を測
定する必要がある場合従来の方法では十分な精度が確保
できないという問題があった。If it is a normal accelerometer, it is possible to calibrate it using the conventional method described above, but the sensor used for space experiments can measure very small accelerations of about 10-3 to 10-5G like the accelerometer. When it is necessary to do so, there is a problem in that the conventional methods cannot ensure sufficient accuracy.
すなわち,第3図に示すように加速度計の取付角度が1
0秒だけ偏っただけで10 〜10 Gの加速度偏差
が生じるため水準器等での平面度では不十分であり,所
望の精度の校正が不可能である。In other words, as shown in Figure 3, the mounting angle of the accelerometer is 1
Since even a deviation of 0 seconds causes an acceleration deviation of 10 to 10 G, flatness using a spirit level or the like is insufficient, and calibration with the desired accuracy is impossible.
本発明は前述した従来の問題点を解決するため罠なされ
たものであって、高精度なステッピングモータに直結さ
れた取付円板上K加速度計を取付け,ステッビングモー
タKより加速度計の取付角度を精密に制御することKよ
り加速度計に正確な重力加速度IGと無重力状態(OG
)を印加する構造としたものである。The present invention has been made in order to solve the above-mentioned conventional problems, and includes a mounting disk K accelerometer directly connected to a high-precision stepping motor. To precisely control the gravitational acceleration IG and zero gravity state (OG) to the accelerometer
) is applied.
高精度なステッビングモータにより加速度計の取付け角
度は2秒程度の精度で制御可能となり,重力加速度を1
0”−5Gの精度で変化させることができる。A high-precision stepping motor allows the installation angle of the accelerometer to be controlled with an accuracy of about 2 seconds, reducing the gravitational acceleration to 1
It can be changed with an accuracy of 0"-5G.
本発明の実施例を第1図および第2図により説明する。 Embodiments of the present invention will be described with reference to FIGS. 1 and 2.
第1図は校正装置の構成図であり,ノ臂ルス設定器1に
よシ設定されたパルス数K応じたノ9ルスがパルス発生
器2から発生され,サーデ増幅器3を介してステッピン
ダモータ4が駆動される。FIG. 1 is a configuration diagram of the calibration device, in which a pulse generator 2 generates pulses corresponding to the number of pulses K set by the arm pulse setter 1, and the pulse generator 2 generates pulses that are transmitted to the stepper motor via the Sade amplifier 3. 4 is driven.
ステッビングモータ4の回転は継手5を介して軸受6K
よシ支持された取付円板2K伝えられる。The rotation of the stepping motor 4 is controlled by the bearing 6K via the joint 5.
A well-supported mounting disc 2K is conveyed.
取付円板7KFi加速度計8が取付けられておシその出
力電圧を増幅器9を介して電圧計10により測定できる
。A mounting disk 7KFi accelerometer 8 is attached and its output voltage can be measured by a voltmeter 10 via an amplifier 9.
具体的な校正方法は,まず第2図(al K示すように
加速度計8の測定方向を重力加速度の方向に合せる。こ
のとき,電圧計10の指示が最大となるようパルス設定
器1を調整する。The specific calibration method is to first align the measurement direction of the accelerometer 8 with the direction of gravitational acceleration as shown in Figure 2 (al K). At this time, adjust the pulse setter 1 so that the indication of the voltmeter 10 is maximum do.
高精度ステッピングモータ4は100万・母ルスで36
0度一回転程度であるため,1/4′ルス当り1.3秒
毎に回転角を制御可能である。電圧計10の指示が最大
となる位置が決まれば,そのとき加速度計には正確にI
Gの重力加速度が加わっている。次にパルス設定器によ
りステッデモータイを90°回転させると,加速度計8
の測定方向が地球の重心と測定点を結ぶ直線に角度1.
3秒の精度で直角となるため加速度計8の測定方向に加
わる重力加速度が零となる。最後に,ステッピングモー
タをさらに90°回転させると加速度計8の測定方向が
重力加速度方向と1800異った方向となり−IGの重
力加速度が加速度計8に加わる.以上の3つの角度位置
における加速度計8の出力電圧を電圧計10により測定
しておけば,各々IG,OG,−IG時の加速度計8の
出力電圧であるから、加速度計8の電圧感度と零点が1
0−5Gの精度で決定できる。High precision stepping motor 4 is 36 in 1 million mother pulses
Since the rotation angle is about one rotation at 0 degrees, the rotation angle can be controlled every 1.3 seconds per 1/4' lus. Once the position where the voltmeter 10 indicates the maximum is determined, the accelerometer will have an accurate I
The gravitational acceleration of G is added. Next, when the steady motor tie is rotated 90 degrees using the pulse setting device, the accelerometer 8
The measuring direction of is at an angle of 1.
Since it is a right angle with an accuracy of 3 seconds, the gravitational acceleration applied to the measurement direction of the accelerometer 8 becomes zero. Finally, when the stepping motor is further rotated by 90 degrees, the measurement direction of the accelerometer 8 becomes 1800 degrees different from the gravitational acceleration direction, and the gravitational acceleration of -IG is applied to the accelerometer 8. If the output voltages of the accelerometer 8 at the above three angular positions are measured by the voltmeter 10, the output voltages of the accelerometer 8 at IG, OG, and -IG are measured, so the voltage sensitivity of the accelerometer 8 and Zero point is 1
It can be determined with an accuracy of 0-5G.
ステッピングモータKよシ加速度計の取付角度を1.3
秒程度の精度で位置決め可flP8なため.10−5G
程度の精度で校正が可能となる。The mounting angle of the accelerometer from the stepping motor K is 1.3
Because the flP8 allows positioning with accuracy on the order of seconds. 10-5G
Calibration becomes possible with a degree of accuracy.
第1図は,本発明の一実施例による校正装置の構成図で
ある。
第2図は,本発明の校正装置による校正方法の説明図で
ある。
第3図は,加速度計取付誤差Kよる加速度偏差を示す図
である。
第4図は,従来の校正方法の説明図である。
1・・・ノ4ルス設定器.2・・・パルス発生a.3・
・・サー?増幅器,4・・・ステッビングモータ,5・
・・継手,6・・・軸受,7・・・取付円板,8・・・
加速度計,9・・・増幅器,10・・・電圧計、11・
・・水準器。
第
3
図FIG. 1 is a block diagram of a calibration device according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of a calibration method using the calibration apparatus of the present invention. FIG. 3 is a diagram showing acceleration deviation due to accelerometer installation error K. FIG. 4 is an explanatory diagram of a conventional calibration method. 1...No4 Luss setting device. 2... Pulse generation a. 3.
...Sir? Amplifier, 4...Stepping motor, 5...
...Joint, 6...Bearing, 7...Mounting disk, 8...
Accelerometer, 9...Amplifier, 10...Voltmeter, 11.
··Level. Figure 3
Claims (1)
を精度良く回転させながら加速度を測定することを特徴
とする加速度計の校正方法。A method for calibrating an accelerometer characterized by measuring acceleration while accurately rotating an accelerometer mounting base using a high-precision stepping motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296790A JPH03216557A (en) | 1990-01-23 | 1990-01-23 | Method for precise calibration of accelerometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1296790A JPH03216557A (en) | 1990-01-23 | 1990-01-23 | Method for precise calibration of accelerometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03216557A true JPH03216557A (en) | 1991-09-24 |
Family
ID=11820015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1296790A Pending JPH03216557A (en) | 1990-01-23 | 1990-01-23 | Method for precise calibration of accelerometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03216557A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862249A (en) * | 1994-08-22 | 1996-03-08 | Hino Motors Ltd | Operation circuit of acceleration information |
JP2006226680A (en) * | 2005-02-15 | 2006-08-31 | Nippon Telegr & Teleph Corp <Ntt> | Calibration method of acceleration sensor and acceleration measuring device |
US8256265B2 (en) | 2007-12-25 | 2012-09-04 | Denso Corporation | Apparatus and method for inspecting sensor module |
JP2016211905A (en) * | 2015-05-01 | 2016-12-15 | セイコーエプソン株式会社 | Gradient measurement method and apparatus, electronic apparatus and program |
JP2016211907A (en) * | 2015-05-01 | 2016-12-15 | セイコーエプソン株式会社 | Gradient measurement method and apparatus, electronic apparatus and program |
CN109712157A (en) * | 2018-12-29 | 2019-05-03 | 中国计量科学研究院 | A kind of gravitational field method accelerometer calibration method based on monocular vision |
CN113156167A (en) * | 2021-04-08 | 2021-07-23 | 北京航天发射技术研究所 | Calibration method and device of triaxial accelerometer |
-
1990
- 1990-01-23 JP JP1296790A patent/JPH03216557A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0862249A (en) * | 1994-08-22 | 1996-03-08 | Hino Motors Ltd | Operation circuit of acceleration information |
JP2006226680A (en) * | 2005-02-15 | 2006-08-31 | Nippon Telegr & Teleph Corp <Ntt> | Calibration method of acceleration sensor and acceleration measuring device |
US8256265B2 (en) | 2007-12-25 | 2012-09-04 | Denso Corporation | Apparatus and method for inspecting sensor module |
JP2016211905A (en) * | 2015-05-01 | 2016-12-15 | セイコーエプソン株式会社 | Gradient measurement method and apparatus, electronic apparatus and program |
JP2016211907A (en) * | 2015-05-01 | 2016-12-15 | セイコーエプソン株式会社 | Gradient measurement method and apparatus, electronic apparatus and program |
CN109712157A (en) * | 2018-12-29 | 2019-05-03 | 中国计量科学研究院 | A kind of gravitational field method accelerometer calibration method based on monocular vision |
CN109712157B (en) * | 2018-12-29 | 2020-11-13 | 中国计量科学研究院 | Gravity field method accelerometer calibration method based on monocular vision |
CN113156167A (en) * | 2021-04-08 | 2021-07-23 | 北京航天发射技术研究所 | Calibration method and device of triaxial accelerometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100565115C (en) | The scaling method of multi-position strapping north-seeking system direction effect | |
CN102221372B (en) | Method for calibrating error of inertia measurement unit by using centrifugal machine and turntable | |
US3584513A (en) | Self-calibrating system for navigational instruments | |
CN109459585B (en) | Accelerometer zero offset correction method | |
CN109631940B (en) | Four-ring inertially stabilized platform frame zero position calibration method | |
CN103616035B (en) | A kind of performance parameter calibration method of laser strapdown inertial navigation system | |
WO2016165295A1 (en) | Zero-shift value measurement method during satellite-antenna tilt-angle calibration process in satellite communications on-the-move system | |
CN111351507A (en) | Method for simultaneously calibrating multiple triaxial gyroscopes by using single-axis incubator turntable | |
CN107121151B (en) | Stable platform testing device and testing method for experimental teaching | |
WO2020164206A1 (en) | Calibration method for gravity gradiometer of rotating accelerometer | |
CN114415261B (en) | Rapid calibration method of portable relative gravimeter | |
CN107490809A (en) | A kind of used group of level scaling method of gravimeter | |
CN106855419A (en) | Demarcation method of testing based on accelerometer coordinate system right-angle prism | |
CN115979311B (en) | PIGA cross quadratic term coefficient calibration method, system, equipment and medium | |
JPH03216557A (en) | Method for precise calibration of accelerometer | |
US3164978A (en) | Apparatus for testing gyroscopes | |
CN109974750A (en) | A kind of ring laser Temperature Modeling and compensation method based on fuzzy logic system | |
CN114509580B (en) | High-precision temperature modeling method for small-range accelerometer | |
CN109813296B (en) | Angle measuring device and method for eliminating scale factor error of fiber-optic gyroscope | |
CN108803373B (en) | Ground speed eliminating method of three-axis turntable | |
CN113899324B (en) | Multi-axis turntable perpendicularity error detection method based on single-axis laser gyro goniometer | |
CN114324977B (en) | Method for calibrating accelerometer of inertial navigation on centrifugal machine based on full-error analysis | |
Shun-qing et al. | Impacts of installation errors on the calibration accuracy of gyro accelerometer tested on centrifuge | |
CN104655095B (en) | A kind of method that utilization optical fibre gyro determines geographic latitude | |
CN112595341B (en) | High-precision mounting and adjusting method for hexahedral tool bottom plate |