[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03215518A - Resin composition for sealing and sealed semiconductor device - Google Patents

Resin composition for sealing and sealed semiconductor device

Info

Publication number
JPH03215518A
JPH03215518A JP1008690A JP1008690A JPH03215518A JP H03215518 A JPH03215518 A JP H03215518A JP 1008690 A JP1008690 A JP 1008690A JP 1008690 A JP1008690 A JP 1008690A JP H03215518 A JPH03215518 A JP H03215518A
Authority
JP
Japan
Prior art keywords
resin
silicon nitride
resin composition
nitride powder
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1008690A
Other languages
Japanese (ja)
Other versions
JP2857441B2 (en
Inventor
Masanori Kokubo
小久保 正典
Naomi Wada
和田 直美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP1008690A priority Critical patent/JP2857441B2/en
Publication of JPH03215518A publication Critical patent/JPH03215518A/en
Application granted granted Critical
Publication of JP2857441B2 publication Critical patent/JP2857441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prepare the title compsn. with a low thermal expansion coefficient, a high thermal conductivity and excellent moisture resistance and moldability by compounding an epoxy resin, a novolao phenol resin, a specific copolymer resin, and a silicon nitride powder surface-treated with a specific silazane compd. CONSTITUTION:The title compsn. is prepd. by compounding 100 pts.wt. resin component comprising an epoxy resin, a novolak phenol resin, and a methyl methacrylate-butadiene-styrene copolymer resin with 25-90 pts.wt. silicon nitride powder having a mean particle diameter of 10-50mum and surface-treated with a silazane compd. of the formula (wherein R is alkyl or phenyl). The compsn. has well-balanced properties, i.e., a low thermal expansion coefficient, a high thermal conductivity, and excellent moisture resistance and moldability, and hence is used for sealing a semiconductor pellet to give a sealed semiconductor device with a high reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野》 本発明は、熱膨脹係数が小さく、熱伝導率が大きく、耐
湿性、成形性に優れた、特性バランスのよいエポキシ系
の封止用樹脂組成物及びその硬化物によって封止された
半導体封止装置に関する.(従来の技術) 従来、ダイオード、トランジスタ、集積回路等の電子部
品を熱硬化性樹脂を用いて封止する方法が行われてきた
. この樹脂封止は、ガラス、金属、セラミックを用い
たハーメチックシール方式に比較して経済的に有利なた
め、広く実用化されている. 封止用樹脂としては、熱
硬化性樹脂の中でも信頼性および価格の点からエポキシ
樹脂が最も一般的に用いられている. エポキシ樹脂に
は、酸無水物、芳香族アミン、ノボラック型フェノール
樹脂等の硬化剤が用いられている. これらの中でもノ
ボラック型フェノール樹脂を硬化剤としたエポキシ樹脂
は、他の硬化剤を使用したものに比べて、成形性、耐湿
性に優れ、毒性がなく、かつ安価であるため半導体封止
用樹脂として広く使用されている. また充填剤として
は、溶融シリカ粉末や結晶性シリカ粉末が前述の硬化剤
と共に最も一般的に使用されている. 近年、半導体部
品の高密度化、大電力化に伴い、熱放散性のよりよい半
導体封止用樹脂が要望されてきた.《発明が解決しよう
とする課題》 しかしながら、ノボラック型フェノール樹脂を硬化剤と
したエポキシ樹脂と、溶融シリカ粉末とからなる樹脂組
成物は、熱膨脹係数が小さく耐湿性がよく、温寒サイク
ル試験によるボンディングワイヤのオープン、樹脂クラ
ック、ペレットクラック等に優れているという特徴を有
するものの、熱伝導率が小さいなめ熱放散が悪く、消費
電力の大きいパワー半導体では、その機能が果たせなく
なる欠点がある. 一方、ノボラック型フェノール樹脂
を硬化剤としたエポキシ樹脂と、結晶性シリカ粉末とか
らなる樹脂組成物は、結晶性シリカ粉末の配合割合を上
げると熱伝導率が大きくなって、熱放散も良好となるが
、熱膨脹係数が大きく、また耐湿性に対する信頼性が悪
くなる欠点がある.更に、この樹脂組成物から得られる
封止品は機械的特性や成形性が低下する欠点があった.
 従って、シリカ粉末を用いる封止樹脂組成物の高熱伝
導化にはおのずから限界があった. 本発明は、上記の欠点を解消するためになされたもので
熱伝導率、耐湿性、成形性に優れ、熱膨脹係数が小さく
、熱放散性が良く、弾性率の低い、特性バランスのよい
、信頼性の高い封止用樹脂組成物及び半導体封止装置を
提供することを目的としている. [発明の構成] (1s!lIを解決するための手段) 本発明者は、上記の目的を達成しようと鋭意研究を重ね
た結果、メチルメタクリレート・プタジエン・スチレン
共重合樹脂、特定のシラザン化合物で表面処理した窒化
ケイ素粉末を配合することによって上記目的を達成でき
ることを見いだし、本発明を完成したものである. すなわち、本発明は、 (A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 <C)メチルメタクリレート・ブタジエン・スチレン共
重合樹脂、及び <D)次の一般式を有するシラザン化合物R3Si −
NH−Si R, (但し、式中Rはアルキル基又はフェニル基を表す》 で表面処理した平均粒径10〜50μmの窒化ケイ素粉
末を必須成分とし、樹脂組成物に対して前記(D)窒化
ケイ素粉末を25〜90重量%含有してなることを特徴
とする封止用樹脂組成物、およびその硬化物によって半
導体ペレットが封止されていることを特徴とする半導体
封止装置である.本発明に用いる(A)エポキシ樹脂と
しては、その分子中にエポキシ基を少なくとも2個有す
る化合物であるかぎり、分子楕造、分子量等に特に制限
はなく、一般に使用されているものを広く包含すること
ができる. 例えばビスフェノール型の芳香族系、シク
ロヘキサン誘導体等の脂環族系、さらに次の一般式で示
されるエポキシノボラック系のエポキシ樹脂が挙げられ
る. (但し、式中R1は水素原子、ハロゲン原子又はアルキ
ル基を、R2は水素原子又はアルキル基を、nは1以上
の整数を表す.)これらのエポキシ樹脂は単独又は2種
以上混合して用いる.本発明に用いる(B)ノボラック
型フェノール樹脂としては、フェノール、アルキルフェ
ノール等のフェノール類とホルムアルデヒドあるいはパ
ラホルムアルデヒドを反応させて得られるノボラック型
フェノール樹脂およびこれらの変性樹脂、例えばエポキ
シ化もしくはブチル化ノボラック型フェノール樹脂等が
挙げられ、これらは単独又は2種以上混合して用いる.
 ノボラック型フェノール樹脂の配合割合は、前記<A
)エポキシ樹脂のエポキシ基(a )と(B)ノボラッ
ク型フェノール樹脂のフェノール性水酸基(b )との
モル比[(a)/(b)]が0.1〜10ノ範囲内であ
ることが望ましい. モル比が0.1未満もしくは10
を超えると耐湿性、成形作業性及び硬化物の電気特性が
悪くなり、いずれの場合も好ましくない.本発明に用い
る(C)メチルメタクリレート・ブタジエン・スチレン
共重合樹脂としては、メチルメタクリレートとブタジエ
ンとスチレンとの共重合体であればよく、各モノマーの
組成比率に限定されるものではない. メチルメタクリ
レート・ブタジエン・スチレン共重合樹脂の配合割合は
、樹脂組成物に対して、0.1〜10重量%の割合で含
有することが望ましい. その割合が0.1重量%未満
では、低弾性化の効果はなく、また10重量%を超える
と成形性が悪く好ましくない. 好ましくは1、θ〜5
.0重量%の範囲内である. メチルメタクリレート・
ブタジエン・スチレン共重合樹脂の配合方法は、特に制
限されることはないが、ノボラック型フェノール樹脂中
均一に分散しておくと好ましい. 本発明に用いる(D)平均粒径10〜50μIの窒化ケ
イ素粉末は、次の一般式を有するシラザン化合物で表面
処理したものである. R, Si −NH−Si Ftz (但し、式中Rはアルキル基又はフェニル基を表す) これは窒化ケイ素粉砕時にシラザン化合物を定量的に供
給しながら粉砕、粒度調整して得られる.ここで用いる
窒化ケイ素としは、三方晶形《α一Si ,N.)或い
は六方晶形(β−si,N,)等が挙げられ、これらは
単独又は2種以上混合して使用することができる. ま
た、シラザン化合物の具体的なものとしては、ヘキサメ
チルシラザン、テトラメチルジフェニルシラザン等が挙
げられ、これらは単独又は2種以上混合して使用するこ
とができる. 表面処理に使用する量は特に制限はない
が、窒化ケイ素粉末の表面層が単分子層に処理される量
であればよい. 表面処理された窒化ケイ素粉末は15
Gメッシュバスのものであり、平均粒径10〜50μm
のものが望ましい. 平均粒径10μ一未満或いは50
μ曙を超えると、流動性、作業性に問題が生じ、特に1
04μm以上の粗粒径があると成形時にワイヤー流れ、
ゲート詰りを生じ、流動性が損なわれ好ましくない. 
窒化ケイ素表面をシラザン化合物で処理することによっ
て、窒化ケイ素表面を碗水化させ、窒化ケイ素の加水分
解を防止するとともに、マトリックス樹脂との相溶性を
高めるものである. 窒化ケイ素粉末の配合割合は、樹
脂組成物に対して25〜90重量%の割合である. そ
の割合が25重量%未満では熱膨脹係数が大きく、熱伝
導率が小さくて好ましくない. また、90重量%を超
えるとかさぼりが大きく、かつ成形性が悪く実用に適さ
ず好ましくない.本発明の封止用樹脂組成物は、エポキ
シ樹脂、ノボラック型フェノール樹脂、メチルメタクリ
レート・ブタジエン・スチレン共重合樹脂、及びシラザ
ン化合物で表面処理した窒化ケイ素粉末を必須成分とす
るが、本発明の目的に反しない限度において、また必要
に応じて、天然ワックス類、合成ワックス類、直鎖脂肪
酸の金属塩、酸アミド類、エステル類、パラフィン類等
の離型剤、塩素化バラフィン、ブロムトルエン、ヘキサ
ブロムベンゼン、二酸化アンチモン等の難燃剤、カーボ
ンブラック、ベンガラ等の着色刑、種々の硬化剤等を適
宜添加配合することができる. 本発明の封止用樹脂組成物を成形材料として調製する場
合の一般的な方法としては、エポキシ樹脂、ノボラック
型フェノール樹脂、メチルメタクリレート・プタジエン
・スチレン共重合樹脂、シラザン化合物で表面処理した
窒化ケイ素粉末、その他を所定の組成比に選択した原料
をミキサー等によって十分均一に混合した後、更に熱ロ
ールによる溶融混合処理、又は二−ダ等による混合処理
を行い、次いで冷却固化させ、適当な大きさに粉砕して
成形材料とすることができる. こうして得られた成形
材料は、半導体装置をはじめとする電子部品或いは電気
部品の封止、被覆、絶縁等に適用すれば優れた特性と信
頼性を付与させることができる. 本発明の半導体封止装置は、上記の封止用樹脂組成物を
用いて、半導体ペレッI一を封止することにより容易に
製造することができる. 封止を行う半導体ペレットと
しては、例えば集積回路、大規模集積回路、トランジス
タ、サイリスタ、ダイオード等で特に限定されるもので
はない. 封止の最も一般的な方法としては、低圧トラ
ンスファー成形法があるが、射出成形、圧縮成形、注型
等による封止も可能である. 封止用樹脂組成物は成形
の後にさらに加熱して後硬化させ、最終的には組成物の
硬化物によって封止された半導体封止装置が得られる.
 加熱による後硬化は15(1℃以上加熱し硬化させる
ことが望ましい. 《実施例》 本発明を実施例によって具体的に説明するが、本発明は
以下の実施例に限定されるものではない.実施例および
比較例において、「%」とあるのは「重量%」を意味す
る. 実施例 1 クレゾールノボラックエポキシ樹脂(エポキシ当! 2
15> 16%に、ノボラック型フェノール樹脂(フェ
ノール当量107)  8%、ヘキサメチルシラザンに
処理した窒化ケイ素粉末(150メッシュカットの平均
粒径30μm ) 71.5%、メチルメタクリレート
・ブタジエン・スチレン共重合樹脂2%および離型剤等
2.5%を、常温で混合し、更に90〜95℃で混練し
てこれを冷却粉砕して成形材料を製造した. 実施例 2 実施例1において、ヘキサメチルシラザンに処理した窒
化ケイ素粉末71.5%の代わりに、ヘキサメチルシラ
ザンに処理した窒化ケイ素粉末(150メッシュカット
の平均粒径30μrg ) 31.5%と結晶性シリカ
粉末《平均粒径38μ曙》40%の混合系を用いた以外
はすべて実施例lと同一にして成形材料を製造した. 比較例 1 クレゾールノボラックエポキシ樹脂(エポキシ当量21
5) 16%に、ノボラック型フェノール樹脂(フェノ
ーノレ当量107)  8%、メチルメタクリレート・
ブタジエン・スチレン共重合樹脂2.0%、ヘキサメチ
ルシラザンで表面処理した溶融シリカ粉末71.5%、
そのfI!IN型剤等2.5%を実施例1と同様にして
成形材料を製造した. 比較例 2 比較例1において、ヘキサメチルシラザンで表面処理し
た溶融シリカ粉末の代わりに結晶性シリ力粉末(平均粒
径28μm》を用いた以外はすべて比較例1と同一にし
て成形材料を製造した,比較例 3 クレゾールノボラックエポキシ樹脂(エポキシ当量21
5) 18%に、ノボラック型フェノール樹脂(フェノ
ール当量107)  9%、窒化ケイ素粉末(60メッ
シュバスの平均粒径60μm)70%、その他3%を加
えて比較例1と同様にして成形材料を製造しな. 実施例1〜2及び比較例1〜3で製造した成形材料を用
いて半導体ペレットを封止し170℃で加熱硬化させて
半導体封止装置を製造した. 成形材料及び半導体封止
装置について諸試験を行ったので、その結果を第1表に
示した. 本発明は熱的特性がよく、耐湿性、成形性に
潰れており、本発明の効果が確認された. 第 ■ 表 (単位) $1  : J IS一K−69 1 1により測定し
た.*2 二半導体封止装置を用いて迅速熱伝導計(昭
和電工社製、商品名QTM−MD)を用いて室温で測定
した. 本3 :成形材料を用いて、120−1rヤビティ取り
16ピンDIP金型を用いて、170℃で3分間トラン
スファー成形し充填性を試験した.○印・・・良好、 
X印・・・不良. *4:成形材料を用いて、2本のアルミニウム配線を有
する半導体装置を170℃3分間の条件でトランスファ
ー成形をした後、8時間硬化させた. この半導体封止
装置100個について 120℃の高圧水蒸気中で耐湿
試験を行い、アルミニウム腐食による50%の断線(不
良発生)の起こる時間を評価した.[発明の効果] 以上の説明および第1表から明らかなように、本発明の
封止用樹脂組成物及び半導体封止装置は、熱的特性、耐
湿性、成形性に優れるとともに弾性率が低く、しかもそ
れら特性のバランスがよく、信頼性の高いものである.
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is directed to an epoxy resin with a good balance of properties, which has a small coefficient of thermal expansion, high thermal conductivity, excellent moisture resistance, and moldability. Related to a semiconductor sealing device sealed with a sealing resin composition and its cured product. (Prior art) Conventionally, there is a method of sealing electronic components such as diodes, transistors, integrated circuits, etc. using a thermosetting resin. This resin sealing has been widely put into practical use because it is economically advantageous compared to hermetic sealing methods using glass, metal, and ceramics.Thermosetting resins are used as sealing resins. Among these resins, epoxy resins are the most commonly used due to their reliability and cost.Epoxy resins use hardening agents such as acid anhydrides, aromatic amines, and novolac-type phenolic resins. Among these, epoxy resins that use novolac type phenolic resin as a curing agent are preferred as resins for semiconductor encapsulation because they have superior moldability and moisture resistance, are nontoxic, and are inexpensive compared to those that use other curing agents. In addition, as fillers, fused silica powder and crystalline silica powder are most commonly used together with the hardening agent mentioned above.In recent years, with the increasing density and power consumption of semiconductor components, There has been a demand for a resin for semiconductor encapsulation with better heat dissipation properties.《Problem to be solved by the invention》 However, a resin composition consisting of an epoxy resin using a novolac type phenol resin as a hardening agent and fused silica powder has been developed. Although these materials have the characteristics of a small thermal expansion coefficient, good moisture resistance, and excellent resistance to bonding wire opens, resin cracks, pellet cracks, etc. in hot and cold cycle tests, they have low thermal conductivity, poor heat dissipation, and low consumption. Power semiconductors with large electric power have the disadvantage that they cannot fulfill their functions.On the other hand, a resin composition consisting of an epoxy resin using a novolak type phenol resin as a hardening agent and crystalline silica powder has a disadvantage that the mixing ratio of the crystalline silica powder is When the resin composition is increased, the thermal conductivity increases and heat dissipation becomes better, but the disadvantage is that the coefficient of thermal expansion is large and the reliability of moisture resistance is poor.Furthermore, the sealed products obtained from this resin composition are The drawback was that mechanical properties and formability deteriorated.
Therefore, there was a natural limit to increasing the thermal conductivity of sealing resin compositions using silica powder. The present invention was made to eliminate the above-mentioned drawbacks, and has excellent thermal conductivity, moisture resistance, and moldability, a small coefficient of thermal expansion, good heat dissipation, a low modulus of elasticity, a good balance of properties, and reliability. The purpose is to provide a encapsulating resin composition and a semiconductor encapsulating device with high properties. [Structure of the Invention] (Means for Solving 1s!lI) As a result of intensive research to achieve the above object, the present inventor has developed a method using methyl methacrylate/ptadiene/styrene copolymer resin and a specific silazane compound. The present invention was completed by discovering that the above object can be achieved by blending surface-treated silicon nitride powder. That is, the present invention comprises (A) an epoxy resin, (B) a novolac type phenol resin, <C) a methyl methacrylate/butadiene/styrene copolymer resin, and <D) a silazane compound R3Si - having the following general formula.
NH-Si R, (wherein R represents an alkyl group or a phenyl group) Silicon nitride powder with an average particle size of 10 to 50 μm is an essential component, and the above (D) nitridation is applied to the resin composition. A semiconductor encapsulation device characterized in that a semiconductor pellet is encapsulated with a encapsulation resin composition characterized by containing 25 to 90% by weight of silicon powder, and a cured product of the encapsulation resin composition. As long as the epoxy resin (A) used in the invention is a compound having at least two epoxy groups in its molecule, there are no particular restrictions on molecular elliptical structure, molecular weight, etc., and a wide range of commonly used epoxy resins may be included. Examples include aromatic resins such as bisphenol type, alicyclic resins such as cyclohexane derivatives, and epoxy novolac type epoxy resins represented by the following general formula. (However, in the formula, R1 is a hydrogen atom or a halogen atom. or an alkyl group, R2 represents a hydrogen atom or an alkyl group, and n represents an integer of 1 or more.) These epoxy resins are used alone or in a mixture of two or more. (B) Novolac type phenol resin used in the present invention Examples include novolak phenolic resins obtained by reacting phenols such as phenol and alkylphenols with formaldehyde or paraformaldehyde, and modified resins thereof, such as epoxidized or butylated novolak phenolic resins, which may be used alone or in combination. Use a mixture of two or more.
The blending ratio of the novolac type phenolic resin is
) The molar ratio [(a)/(b)] between the epoxy group (a) of the epoxy resin and the phenolic hydroxyl group (b) of the novolac type phenolic resin (B) is within the range of 0.1 to 10. desirable. Molar ratio is less than 0.1 or 10
Exceeding this value deteriorates the moisture resistance, molding workability, and electrical properties of the cured product, which is undesirable in either case. The methyl methacrylate/butadiene/styrene copolymer resin (C) used in the present invention may be a copolymer of methyl methacrylate, butadiene, and styrene, and is not limited to the composition ratio of each monomer. The blending ratio of the methyl methacrylate-butadiene-styrene copolymer resin is preferably 0.1 to 10% by weight based on the resin composition. If the proportion is less than 0.1% by weight, there is no effect of lowering elasticity, and if it exceeds 10% by weight, moldability is poor and undesirable. Preferably 1, θ~5
.. It is within the range of 0% by weight. Methyl methacrylate
The method of blending the butadiene-styrene copolymer resin is not particularly limited, but it is preferable to uniformly disperse it in the novolac type phenol resin. The silicon nitride powder (D) having an average particle size of 10 to 50 μI used in the present invention is surface-treated with a silazane compound having the following general formula. R, Si -NH-Si Ftz (wherein R represents an alkyl group or a phenyl group) This is obtained by grinding and adjusting the particle size while quantitatively feeding a silazane compound during grinding of silicon nitride. The silicon nitride used here is trigonal (α-Si, N. ) or hexagonal crystal form (β-si, N,), etc., and these can be used alone or in a mixture of two or more types. Further, specific examples of the silazane compound include hexamethylsilazane, tetramethyldiphenylsilazane, etc., and these can be used alone or in a mixture of two or more. There is no particular limit to the amount used for surface treatment, but it may be an amount that can treat the surface layer of silicon nitride powder into a monomolecular layer. Surface-treated silicon nitride powder is 15
G-mesh bath, average particle size 10-50μm
Preferably. Average particle size less than 10μ or 50μ
If the temperature exceeds μAkebono, problems will occur in fluidity and workability, especially in 1
If there is a coarse particle size of 0.04 μm or more, wire flow may occur during molding.
This is undesirable as it causes gate clogging and impairs fluidity.
By treating the silicon nitride surface with a silazane compound, the silicon nitride surface is made into a bowl, thereby preventing hydrolysis of the silicon nitride and increasing its compatibility with the matrix resin. The blending ratio of silicon nitride powder is 25 to 90% by weight based on the resin composition. If the proportion is less than 25% by weight, the coefficient of thermal expansion will be large and the thermal conductivity will be low, which is not preferable. Moreover, if it exceeds 90% by weight, bulk is large and moldability is poor, making it unsuitable for practical use. The sealing resin composition of the present invention has as essential components an epoxy resin, a novolac type phenolic resin, a methyl methacrylate-butadiene-styrene copolymer resin, and a silicon nitride powder surface-treated with a silazane compound. Natural waxes, synthetic waxes, metal salts of straight chain fatty acids, acid amides, esters, release agents such as paraffins, chlorinated baraffin, bromotoluene, hexa Flame retardants such as bromobenzene and antimony dioxide, colorants such as carbon black and red iron oxide, various hardening agents, etc. can be added and blended as appropriate. A general method for preparing the sealing resin composition of the present invention as a molding material is to use epoxy resin, novolac type phenol resin, methyl methacrylate/ptadiene/styrene copolymer resin, or silicon nitride surface-treated with a silazane compound. After sufficiently uniformly mixing the powder and other raw materials selected in a predetermined composition ratio using a mixer, etc., the mixture is further melted and mixed using heated rolls or mixed using a secondary roller, etc., and then cooled and solidified to form a material of an appropriate size. It can be crushed into molding materials. The molding material thus obtained can provide excellent properties and reliability when applied to the sealing, coating, insulation, etc. of electronic or electrical components such as semiconductor devices. The semiconductor encapsulation device of the present invention can be easily manufactured by encapsulating a semiconductor pellet I using the above-mentioned encapsulation resin composition. Semiconductor pellets to be encapsulated include, but are not particularly limited to, integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, and the like. The most common method for sealing is low-pressure transfer molding, but sealing by injection molding, compression molding, casting, etc. is also possible. After molding, the encapsulating resin composition is further heated to post-cure, and a semiconductor encapsulating device encapsulated by the cured product of the composition is finally obtained.
Post-curing by heating is preferably carried out by heating at 15° C. or higher. (Example) The present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples. In Examples and Comparative Examples, "%" means "% by weight". Example 1 Cresol novolac epoxy resin (epoxy content! 2)
15> 16%, novolac type phenolic resin (phenol equivalent: 107) 8%, silicon nitride powder treated with hexamethylsilazane (average particle size of 150 mesh cut 30 μm) 71.5%, methyl methacrylate-butadiene-styrene copolymerization 2% of the resin and 2.5% of the mold release agent etc. were mixed at room temperature, further kneaded at 90-95°C, cooled and pulverized to produce a molding material. Example 2 In Example 1, instead of 71.5% silicon nitride powder treated with hexamethylsilazane, 31.5% silicon nitride powder (average particle size of 150 mesh cut 30 μrg) treated with hexamethylsilazane and crystals were used. A molding material was produced in the same manner as in Example 1 except that a 40% mixture of silica powder (average particle size: 38 μm) was used. Comparative Example 1 Cresol novolak epoxy resin (epoxy equivalent: 21
5) 16%, novolak type phenolic resin (phenol equivalent weight 107) 8%, methyl methacrylate.
2.0% butadiene-styrene copolymer resin, 71.5% fused silica powder surface treated with hexamethylsilazane,
That fI! A molding material was produced in the same manner as in Example 1 except that 2.5% of the IN type agent and the like were added. Comparative Example 2 A molding material was produced in the same manner as in Comparative Example 1 except that crystalline silicate powder (average particle size 28 μm) was used instead of the fused silica powder surface-treated with hexamethylsilazane. , Comparative Example 3 Cresol novolac epoxy resin (epoxy equivalent: 21
5) To 18%, 9% of novolak type phenolic resin (phenol equivalent: 107), 70% of silicon nitride powder (average particle size of 60 mesh bath 60 μm), and 3% of other ingredients were added, and a molding material was prepared in the same manner as in Comparative Example 1. Don't manufacture it. Semiconductor pellets were sealed using the molding materials produced in Examples 1 to 2 and Comparative Examples 1 to 3, and the semiconductor pellets were heated and cured at 170°C to produce semiconductor sealing devices. Various tests were conducted on the molding material and semiconductor encapsulation device, and the results are shown in Table 1. The present invention has good thermal properties, moisture resistance, and moldability, confirming the effects of the present invention. Table ■ (Units) $1: Measured according to JIS-K-69 1 1. *2 Measured at room temperature using a rapid thermal conductivity meter (manufactured by Showa Denko Co., Ltd., trade name: QTM-MD) using a two-semiconductor sealing device. Book 3: Using the molding material, transfer molding was carried out at 170°C for 3 minutes using a 120-1r grooved 16-pin DIP mold to test the filling properties. ○ mark...Good,
X mark: Defective. *4: Using the molding material, a semiconductor device having two aluminum wirings was transfer molded at 170°C for 3 minutes, and then cured for 8 hours. A moisture resistance test was conducted on 100 of these semiconductor encapsulation devices in high-pressure steam at 120°C, and the time required for 50% wire breakage (defect occurrence) due to aluminum corrosion was evaluated. [Effects of the Invention] As is clear from the above explanation and Table 1, the encapsulating resin composition and semiconductor encapsulating device of the present invention have excellent thermal properties, moisture resistance, and moldability, and have a low elastic modulus. Moreover, these characteristics are well balanced and highly reliable.

Claims (1)

【特許請求の範囲】 1(A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)メチルメタクリレート・ブタジエン ・スチレン共重合樹脂、及び (D)次の一般式を有するシラザン化合物 R_3Si−NH−SiR_3 (但し、式中Rはアルキル基又はフェニ ル基を表す) で表面処理した平均粒径10〜50μmの窒化ケイ素粉
末 を必須成分とし、樹脂組成物に対して前記 (D)の窒化ケイ素粉末を25〜90重量%含有してな
ることを特徴とする封止用樹脂組成物。 2(A)エポキシ樹脂、 (B)ノボラック型フェノール樹脂、 (C)メチルメタクリレート・ブタジエン ・スチレン共重合樹脂、及び (D)次の一般式を有するシラザン化合物 R_3Si−NH−SiR_3 (但し、式中Rはアルキル基又はフェニ ル基を表す) で表面処理した平均粒径10〜50μmの窒化ケイ素粉
末 を必須成分とし、樹脂組成物に対して前記 (D)の窒化ケイ素粉末を25〜90重量%含有してな
る封止用樹脂組成物の硬化物によつて、半導体ペレット
が封止されていることを特徴とする半導体封止装置。
[Scope of Claims] 1 (A) an epoxy resin, (B) a novolac type phenol resin, (C) a methyl methacrylate-butadiene-styrene copolymer resin, and (D) a silazane compound R_3Si-NH- having the following general formula: SiR_3 (wherein R represents an alkyl group or a phenyl group) is an essential component of silicon nitride powder with an average particle size of 10 to 50 μm, and the silicon nitride powder of (D) is added to the resin composition. A sealing resin composition characterized by containing 25 to 90% by weight. 2 (A) epoxy resin, (B) novolac type phenolic resin, (C) methyl methacrylate-butadiene-styrene copolymer resin, and (D) silazane compound R_3Si-NH-SiR_3 having the following general formula (However, in the formula R represents an alkyl group or a phenyl group) Silicon nitride powder with an average particle size of 10 to 50 μm surface-treated with is an essential component, and the silicon nitride powder of the above (D) is contained in an amount of 25 to 90% by weight based on the resin composition. 1. A semiconductor encapsulating device, characterized in that a semiconductor pellet is encapsulated with a cured product of a encapsulating resin composition.
JP1008690A 1990-01-19 1990-01-19 Sealing resin composition and semiconductor sealing device Expired - Fee Related JP2857441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008690A JP2857441B2 (en) 1990-01-19 1990-01-19 Sealing resin composition and semiconductor sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008690A JP2857441B2 (en) 1990-01-19 1990-01-19 Sealing resin composition and semiconductor sealing device

Publications (2)

Publication Number Publication Date
JPH03215518A true JPH03215518A (en) 1991-09-20
JP2857441B2 JP2857441B2 (en) 1999-02-17

Family

ID=11740531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008690A Expired - Fee Related JP2857441B2 (en) 1990-01-19 1990-01-19 Sealing resin composition and semiconductor sealing device

Country Status (1)

Country Link
JP (1) JP2857441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894113B2 (en) * 2000-05-31 2005-05-17 Atofina Thermoset materials with improved impact resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894113B2 (en) * 2000-05-31 2005-05-17 Atofina Thermoset materials with improved impact resistance

Also Published As

Publication number Publication date
JP2857441B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JPH05239321A (en) Epoxy resin composition and semiconductor-sealing arrangement
JPS6222825A (en) Sealing resin composition
JPH03215518A (en) Resin composition for sealing and sealed semiconductor device
JPH0249329B2 (en)
JPH0343445A (en) Sealing resin composition and its sealed semiconductor device
JPS61101523A (en) Sealing resin composition
JPH03205443A (en) Sealing resin composition and semiconductor sealing apparatus
JPS6222822A (en) Sealing resin composition
JPH03205444A (en) Sealing resin composition and semiconductor sealing apparatus
JPS60152522A (en) Sealing resin composition
JPS61101524A (en) Sealing resin composition
JPH03142956A (en) Resin sealed type semiconductor device
JPH0258525A (en) Resin composition for sealing use
JPS6143621A (en) Sealing resin composition
JPH01146948A (en) Sealing resin composition
JPS6296522A (en) Sealing resin composition
JP3874566B2 (en) Epoxy resin composition for sealing and semiconductor sealing device
JPH0753671A (en) Epoxy resin composition and sealed semiconductor device
JPH04283220A (en) Sealing resin composition and semiconductor device sealed therewith
JPH11323088A (en) Epoxy resin composition and sealed semiconductor therewith
JPS6333416A (en) Sealing resin composition
JPH0739471B2 (en) Sealing resin composition
JPH0343444A (en) Sealing resin composition and its sealed semiconductor device
JPH0468329B2 (en)
JPH0220547A (en) Sealing resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees