【発明の詳細な説明】
[産業上の利用分野]
本発明は、電力ケーブルの内部あるいは外部半導電層と
して成形が容易であり、しかも水トリー発生の抑止効果
の大きい新規な半尋電性#14脂組成物に関するもので
ある,
[従来の技術1
架橋ポリエチレン絶縁ケーブルを湿潤な環境下で使用す
ると、いわゆる水トリーと呼ばれる電気化学的劣化が発
生し、その抑止については架橋ポリエチレン絶縁ケーブ
ルが本格的な実用化をみるに到って以来長年の課題とな
ってきた.水トリ一発生は内部又は外部半導電層上の異
物や突起を起点として発生ずる.このため、これらの異
物や突起の混入を防ぐために、半導電層を絶縁体と同一
のクロスヘッドで押出すコモン押出方式が採用されるよ
うになった.
[発明が解決しようとず課題]
一般的に、半導電層はボリマと1s電性カーボンブラッ
クを混和した組成物からなり、水トリーの発生し易さは
、前記突起や異物ばかりではなく半導電層の材質にち依
存ずる.ずなわち、ボリマとしてエチレン・酢酸ビニル
共重合体のようなグラスチックスを用いたものよりも、
エチレン1ロビレンゴムのようなゴム系材料を用いた半
iI#電層の方が水トリーの発生が少ない.
しかしながら、エチレンプロピレンゴムを用いた半導電
性tsmen或物は、極めて粘度が高いために、コモン
押出方式に適用できないという不都合があった,
本発明の目的は、上記したような従来技術の問題点を解
消し、コモンヘッドによって同時押出しすることができ
る耐水トリー性の大きなゴム系半導電性樹脂組成物を提
供しようとするものである,[a題を解決するための手
段]
本発明は、エチレン−αオレフィンーボリエン共重合体
ゴムを主体とする樹脂成分toogLm部に対し、液状
エチレン−αオレフィン共重合体5〜50虚量部と導電
性カーボンブラックを配合してなる半導電性4111脂
組成物をもって特徴とするものである,
本発明に用いられるエチレン−αオレフィンーボリエン
共重合体ゴムにおけるαオレフィンとしては、炭素数に
おいて3〜10の間にあるものが適当であり,またボリ
エンとしては、一般に常用されている1.4−ヘキサジ
エン、ジシクロペンタジエン、エチリデンノルボルネン
等の非共役ジエンが適当である.
上記成分よりなるゴムにエチレン系・重合体を混和する
ことは差支えない.この場合のエチレン系重合体として
は、ポリエチレン、エチレン酢酸ビニル共重合体、エチ
レンエチルアクリレート共重合体、エナレンブテン−1
共重合体等を挙げることができる.これらエチレン系重
合体を混和させるに当っては、前記エチレン−αオレフ
ィンーボリエン共重合体ゴム55〜toofL量部に対
し45〜0重量部となるように混合比率を選ぶことが必
要であり、耐水トリー性の見地からすればゴム成分がプ
ラスチック成分よりも必ず多いことが必要条件となる.
本発明において添加される液状エチレン−αオレフィン
共重合体は一般式
−H−CH!一CH一■叶CHt −CI;1←iゴR
(R:CnH2o,,でnは整数、x.y.z:IE数
}によって示されるものであり、数平均分子量として1
.000以上のものが用いられる.これは前記した半導
電性樹脂組成物の粘度を低下させるために添加されるも
のであり、従来よりゴムの低粘度化すなわち軟化させる
ために用いられていた鉱油などと比較して耐熱性に優れ
ており、しかも主成分であるエチレン−αオレフィンー
ボリエン共重合体ゴムと比較して非常に酷似した化学#
I造を有しているために、相溶性がよく、表面への滲み
出しといった問題がほとんどないという特徴がある,と
はいえ、添加量が土戚分であるゴム系組成物100重量
部に対し50重量部を越えるほどに多量に添加されれば
表面への滲み出しが生じ好ましくない.一方、51f1
量部未満といった余りにも少量の添加では、主成分ゴム
を低粘度化させる効果がないのである,
上記樹脂に導電性を付与するために配合する導電性カー
ボンブラックとしては、アセチレンブラック、ファーネ
スブラックあるいはケッチェンブラック等を挙げること
ができる.
さらに必要とあれば、架橋剤、酸化防止剤、加工助削等
を添加しても差支えないことはいうまでもない,
[実株例]
以下に、本発明について実株例をおよび比較例を参照し
説明する,
it表の実飽S1〜3および比較例1および2に示す配
合成分よりなる半導電性#Mll’l組成物を混練調整
し、それぞれの組成物を半導電層としてなる架橋ポリエ
チレン絶縁電力ケーブルを押出法により製造した.
導体として80−2の銅撚線を使用し、65IIIl押
出機を使用し、第1表に示す各威分の組成よりなる内部
半導ICMとして厚さ0. 7ms、絶縁体として密度
0.920g/aI3、メルトインデックス(Ml)1
.0の低密度ポリエチレン100重J1部にジクミルパ
ーオキサイド2.0重量部、酸化防止剤0.2li量部
を添加してなる樹脂#I成物を厚さ4閣、その上にさら
に前記内部半導電層に使用したものと同じ組成物よりな
る外部半導電層を0.7一厚さとなるように、コモンヘ
ッドを#11いて3層同時押出を行ない、加熱架橋をし
て架橋ポリエチレン絶縁電力ケーブルをl!!!逍した
.コモンヘッド押出機の温度勾配は、
C1=90℃、Ct=105℃、Cs=120℃、ヘッ
ド=125℃であった,
第1表における下欄に示ず押出加工性は、上記温度条件
の元で加工することができるか否かについて判定した結
果である.
また、滲み出しについては、配合した液状エチレン−α
オレフィン共本合体がケーブルの外部半導電層の表面に
目視により簿み出しているのが認められるか否かによっ
て判定した,
さらに、水トリ一発生数の評価については、製造した電
力ケーブルの#l体内に注水すると共にケープル全体を
浸水させ、50HZ、18kvの交fL電圧を導体と水
電極との間に印加し、90’CにOA持した温水中で1
8ケnlma屯した後、課電を終了し、内部半導電層を
起点として絶縁体に発生した水トリーの数を計数m察し
たものである,第1表から明らかなように、本発明に係
る組成物を内・外半導電層として使用した実總@1〜3
はいずれもIF−常に良好な押出加工性を示した.また
、液状配合組成物の滲み出しは一切認められず、水トリ
ーの発生も皆無であった.これに対し、エチレン・プロ
ピレン・ジエン三元共重合体をそのまま使用した比較例
1の場合には、@成物の粘度が高く、コモンヘッドによ
り押出すことは不可能であった.
また、液状エチレン−aオレフィン共重合体の添加が本
発明の規定する範囲よりも多い比較例2では、当該液状
添加物の滲み出しが認められたばかりでなく、水トリー
の発生も認められ、半導電層として使fflすることは
不適当であることが判明した,
[発明の効果J
以上の通り、本発明に係るゴム系半導電性組成物によれ
ば、内・外半導電層として絶縁体た共に同時押出しする
ことができ、水トリーの発生を画期的に抑制することが
可能となるものであり、今後の架橋ポリエチレン絶縁電
力ケーブルの超高圧化ならびにその適用範囲の多様化が
進展されつつある折柄、その産業上に及ばず効I]Iは
まことに大きなものがある.Detailed Description of the Invention [Industrial Field of Application] The present invention provides a novel semi-conducting # that is easy to mold as an internal or external semi-conductive layer of a power cable and has a great effect of inhibiting water tree generation. [Conventional technology 1] When cross-linked polyethylene insulated cables are used in a humid environment, electrochemical deterioration called so-called water tree occurs, and cross-linked polyethylene insulated cables have been developed to prevent this problem. This has been a long-standing issue since its practical application. Water damage occurs starting from foreign objects or protrusions on the internal or external semiconducting layer. Therefore, in order to prevent these foreign objects and protrusions from getting mixed in, a common extrusion method has been adopted in which the semiconducting layer is extruded using the same crosshead as the insulator. [Problems that cannot be solved by the invention] In general, a semiconducting layer is made of a composition in which a bolymer and 1s conductive carbon black are mixed, and the ease with which water tree occurs is not only due to the protrusions and foreign matter but also due to the semiconducting layer. It depends on the material of the layer. In other words, compared to those using glasstics such as ethylene/vinyl acetate copolymer as the polymer,
Half-iI# electrical layers made of rubber-based materials such as ethylene-1-robylene rubber have less water tree formation. However, semiconductive tsmen using ethylene propylene rubber has an extremely high viscosity and cannot be applied to the common extrusion method. [Means for Solving Problem A] The present invention aims to provide a rubber-based semiconductive resin composition with high water resistance that can be coextruded using a common head. - A semiconductive 4111 resin made by blending 5 to 50 imaginary parts of a liquid ethylene-α olefin copolymer and conductive carbon black to toogLm part of a resin component mainly composed of α-olefin-boriene copolymer rubber. The α-olefin in the ethylene-α-olefin-boriene copolymer rubber used in the present invention, which is a feature of the composition, is suitably one having a carbon number between 3 and 10; Suitable examples include commonly used non-conjugated dienes such as 1,4-hexadiene, dicyclopentadiene, and ethylidene norbornene. There is no problem in mixing ethylene-based polymers with the rubber made of the above ingredients. In this case, the ethylene polymers include polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, enalenbutene-1
Examples include copolymers. When mixing these ethylene-based polymers, it is necessary to select a mixing ratio such that the amount is 45 to 0 parts by weight to 55 to 0 parts of the ethylene-α olefin-borien copolymer rubber. From the standpoint of water resistance, it is a necessary condition that the rubber component must be greater than the plastic component. The liquid ethylene-α olefin copolymer added in the present invention has the general formula -H-CH! 1CH1■Koh CHt -CI;1←igoR (R: CnH2o,, n is an integer, x.y.z: IE number}, and the number average molecular weight is 1
.. 000 or more are used. This is added to reduce the viscosity of the above-mentioned semiconductive resin composition, and it has superior heat resistance compared to mineral oil, etc., which has traditionally been used to lower the viscosity of rubber, that is, to soften it. Moreover, it has a chemical composition that is very similar to that of the ethylene-α-olefin-boriene copolymer rubber, which is the main component.
Because it has an I structure, it is characterized by good compatibility and almost no problems such as seepage to the surface. On the other hand, if it is added in a large amount exceeding 50 parts by weight, it may ooze out onto the surface, which is undesirable. On the other hand, 51f1
If added in too small a quantity (less than 1 part), it will not have the effect of lowering the viscosity of the main component rubber.The conductive carbon black that is blended to impart conductivity to the above resin may include acetylene black, furnace black, or Ketjenbrack etc. can be mentioned. If necessary, it goes without saying that crosslinking agents, antioxidants, processing aids, etc. may be added. A semiconductive #Mll'l composition consisting of the compounding components shown in S1 to 3 of the IT table and Comparative Examples 1 and 2, which will be referred to and explained, is kneaded and adjusted, and each composition is crosslinked to form a semiconductive layer. A polyethylene insulated power cable was manufactured using an extrusion method. An 80-2 copper stranded wire was used as a conductor, a 65III extruder was used, and an internal semiconductor ICM with a thickness of 0.5 mm was prepared using the composition shown in Table 1. 7ms, density 0.920g/aI3 as an insulator, melt index (Ml) 1
.. A resin #I composition prepared by adding 2.0 parts by weight of dicumyl peroxide and 0.2 parts by weight of an antioxidant to 1 part by weight of low density polyethylene of An outer semiconductive layer made of the same composition as that used for the semiconductive layer was simultaneously extruded using a #11 common head to a thickness of 0.7 mm, and crosslinked by heating to form a crosslinked polyethylene insulated power layer. Cable! ! ! He passed away. The temperature gradient of the common head extruder was C1 = 90°C, Ct = 105°C, Cs = 120°C, and head = 125°C. This is the result of determining whether or not the original material can be processed. In addition, regarding oozing, the blended liquid ethylene-α
Judgment was made based on whether or not olefin co-consolidation was visually observed on the surface of the external semiconductive layer of the cable. Water was injected into the body and the entire cable was immersed in water, and an alternating current voltage of 50Hz and 18kv was applied between the conductor and the water electrode.
After 8 knlma, the voltage application was terminated and the number of water trees generated in the insulator starting from the internal semiconducting layer was counted.As is clear from Table 1, the present invention Examples 1 to 3 using such compositions as inner and outer semiconductive layers
All of them showed good extrusion processability. Furthermore, no oozing of the liquid compounded composition was observed, and no water tree formation occurred. On the other hand, in the case of Comparative Example 1 in which the ethylene-propylene-diene terpolymer was used as it was, the viscosity of the product was so high that it was impossible to extrude it using a common head. In addition, in Comparative Example 2, in which the amount of liquid ethylene-a olefin copolymer added was greater than the range stipulated by the present invention, not only oozing of the liquid additive was observed, but also the occurrence of water trees, and half of the liquid additive was observed to ooze out. [Effects of the Invention J As described above, according to the rubber-based semiconductive composition of the present invention, it is found that it is inappropriate to use it as a conductive layer. It can be extruded simultaneously, making it possible to dramatically suppress the occurrence of water trees, and this will lead to the development of ultra-high voltage cross-linked polyethylene insulated power cables and the diversification of their application range in the future. However, its effects on the industry are truly significant.