JPH03206613A - Low temperature dry etching apparatus - Google Patents
Low temperature dry etching apparatusInfo
- Publication number
- JPH03206613A JPH03206613A JP192190A JP192190A JPH03206613A JP H03206613 A JPH03206613 A JP H03206613A JP 192190 A JP192190 A JP 192190A JP 192190 A JP192190 A JP 192190A JP H03206613 A JPH03206613 A JP H03206613A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- temperature
- etching
- wafer
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001312 dry etching Methods 0.000 title claims abstract description 12
- 238000012546 transfer Methods 0.000 claims abstract description 22
- 239000004020 conductor Substances 0.000 claims description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 40
- 238000005530 etching Methods 0.000 abstract description 39
- 239000007789 gas Substances 0.000 abstract description 39
- 239000007788 liquid Substances 0.000 abstract description 23
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 20
- 238000003860 storage Methods 0.000 abstract description 12
- 239000002470 thermal conductor Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000110 cooling liquid Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体装置の製造工程等に用いる低温ドライエッチング
装置に関し,
温度の制御範囲が広く1制御精度が高く,熱効率の良い
電極温度制御機構を備えた実用的な低温ドライエッチン
グ装置を得ることを目的とし.ウェハを載置する電極と
冷却された蓄冷体との間に伝熱体を有し,該伝熱体は相
互に熱的に絶縁され且つ間隙を持つ複数の導熱体からな
り,少なくとも2個の導熱体はそれぞれ電極と蓄冷体に
熱的に接続され,該間隙の中にガスを満たし,ガス圧力
を変化させることにより電極と蓄冷体間の熱伝導特性を
制御できるように構戒する。[Detailed Description of the Invention] [Summary] Regarding low-temperature dry etching equipment used in semiconductor device manufacturing processes, we have developed a practical low-temperature dry etching system that has a wide temperature control range, high control accuracy, and a thermally efficient electrode temperature control mechanism. The purpose is to obtain a dry etching device. A heat transfer body is provided between the electrode on which the wafer is placed and the cooled regenerator, and the heat transfer body is composed of a plurality of heat conductors that are thermally insulated from each other and have a gap, and includes at least two heat conductors. The heat conductors are thermally connected to the electrodes and the regenerator, respectively, and the gaps are filled with gas so that the heat transfer characteristics between the electrodes and the regenerator can be controlled by changing the gas pressure.
本発明は半導体装置の製造工程等に用いる低温ドライエ
ッチング装置に関する。The present invention relates to a low temperature dry etching apparatus used in the manufacturing process of semiconductor devices.
半導体装置の高集積化.高速化にともない,デバイスの
パターンが微細化するとともに,デバイス構造を3次元
化するために,エッチング精度に対する要求は厳しくな
ってきている。High integration of semiconductor devices. As speeds increase, device patterns become finer and device structures become three-dimensional, making requirements for etching accuracy more stringent.
例えば,ゲートの導電性材料のエッチングにおいては,
異方性エッチングによるパターン幅の精密な制御と,下
地酸化膜に対する高い選択比との両者を同時に満たす必
要が生じた。For example, in etching the conductive material of the gate,
It became necessary to simultaneously satisfy both precise control of pattern width through anisotropic etching and high selectivity to the underlying oxide film.
この理由は次のようである。The reason for this is as follows.
(1) 下地のゲート酸化膜が薄くなっている。(1) The underlying gate oxide film is thinner.
(2) スタックキャパシタ構造等のように大きな段
差を持つ基板上でパターニングするため,場所によって
は膜厚差が大きく長時間のオーバエッチングが必要にな
る。(2) Since patterning is performed on a substrate with large steps such as a stacked capacitor structure, the difference in film thickness is large depending on the location, necessitating long over-etching.
又,珪素(Si)基板のトレンチエッチングでは,アス
ペクト比(エッチング深さ/エッチング幅)が10以上
と大きくなるため,より方向性のよいエッチング方法が
求められている。Furthermore, in trench etching of a silicon (Si) substrate, the aspect ratio (etching depth/etching width) is as large as 10 or more, so an etching method with better directionality is required.
エッチングの断面形状についても,寸法シフトのないマ
スクパターン幅とおりの完全垂直エッチングや,テーパ
角度の制御性の高いテーバエッチングが要求されている
。Regarding the etching cross-sectional shape, there is a demand for completely vertical etching that follows the width of the mask pattern without any dimensional shift, and for Taber etching that allows for highly controllable taper angles.
このような,異方性と選択性を併せ持つドライエッチン
グ方法として反応性イオンエッチング(Reactiv
e ton Etching, RIE)やECR (
ElectronCyclotron Resonan
ce)プラズマエッチングにおいて,ウェハ温度を低温
に冷却することにより異方性エッチングを実現する,い
わゆる低温ドライエッチング法がある。Reactive ion etching is a dry etching method that combines anisotropy and selectivity.
E ton Etching, RIE) and ECR (
Electron Cyclotron Resonan
ce) In plasma etching, there is a so-called low-temperature dry etching method that realizes anisotropic etching by cooling the wafer temperature to a low temperature.
低温により異方性エッチングが得られる理由は次のよう
である。The reason why anisotropic etching can be obtained at low temperatures is as follows.
(1)側壁での中性反応種の反応確率が下がる。(1) The reaction probability of neutral reactive species on the side wall decreases.
(2)反応生戒物の側壁への堆積により側壁が保護され
る。(2) The side wall is protected by the deposition of reactive substances on the side wall.
低温エッチング法では,従来のRHのように異方性を得
るために,パターンの側壁にカーボンポリマを堆積させ
て側壁を保護する必要がないので,カーボン不純物を減
らしカーボンによる下地酸化膜のエッチング支援効果を
な《シ,高い選択比と異方性を同時に実現することがで
きる。With the low-temperature etching method, unlike conventional RH, there is no need to deposit carbon polymer on the sidewalls of the pattern to protect the sidewalls in order to obtain anisotropy, so carbon impurities are reduced and carbon supports etching of the underlying oxide film. It is possible to achieve high selectivity and anisotropy at the same time without any effect.
この際,低温エッチング法ではエッチング中のウェハ温
度を精密に制御することが重要である。At this time, in the low-temperature etching method, it is important to precisely control the wafer temperature during etching.
これは,温度が高いと十分な異方性が得られず,又低す
ぎても十分なエッチングレートが得られないためである
。This is because if the temperature is too high, sufficient anisotropy cannot be obtained, and if the temperature is too low, a sufficient etching rate cannot be obtained.
なお.最適なウェハ温度は,被エッチング材料,エッチ
ングガス種によって異なるが,高いエッチングレートを
得ることができるSF.等の弗素系ガスを単結晶Siや
多結晶Siのエッチングを行う場合は, −100 ’
C以下に被エッチング材料を冷却する必要がある。In addition. The optimal wafer temperature varies depending on the material to be etched and the type of etching gas, but SF. When etching monocrystalline Si or polycrystalline Si using a fluorine-based gas such as -100'
It is necessary to cool the material to be etched to below C.
この場合の冷却方法及び低温エッチング装置については
特開昭60−158627 (田地他),特開昭63−
115338(辻本他),特開昭63−291423
(金友他)等が開示されている。Regarding the cooling method and low-temperature etching equipment in this case, JP-A-60-158627 (Tachi et al.), JP-A-63-
115338 (Tsujimoto et al.), JP-A-63-291423
(Kintomo et al.) etc. have been disclosed.
(1)特開昭60−158627 (田地他)では,冷
却装置としてヒートパイプを用いている。(1) In JP-A-60-158627 (Tachi et al.), a heat pipe is used as a cooling device.
(2)特開昭63−115338(辻本他)では,液体
窒素による冷却と,電熱ヒータによる加熱を併用するこ
とにより,電極温度(被エッチング基板温度)を0〜−
150 ’Cに制御している。(2) In JP-A-63-115338 (Tsujimoto et al.), the electrode temperature (the temperature of the substrate to be etched) can be adjusted from 0 to - by using both cooling with liquid nitrogen and heating with an electric heater.
The temperature is controlled at 150'C.
(3)特開昭63−291423 (金友他)では.液
体窒素の液面の高さを変化させることにより,冷却特性
を変えて電極温度を制御している。(3) In JP-A-63-291423 (Kanatomo et al.). By changing the height of the liquid nitrogen level, the cooling characteristics are changed and the electrode temperature is controlled.
上記の公報に開示された技術は次のような問題があった
。The technique disclosed in the above publication had the following problems.
(1)については温度制御範囲が狭いという欠点があっ
た。例えば,液体窒素を用いたヒートパイプの場合の温
度制御範囲は−203〜−160゜Cと低過ぎて実用的
でなかった。Regarding (1), there was a drawback that the temperature control range was narrow. For example, in the case of a heat pipe using liquid nitrogen, the temperature control range is -203 to -160°C, which is too low to be practical.
(2)については,冷却と加熱を同時に行うため熱効率
が悪く,液体窒素の消費量が非常に大きいという欠点が
あった。Regarding (2), there were drawbacks such as poor thermal efficiency and extremely large consumption of liquid nitrogen because cooling and heating were performed at the same time.
(3)については.熱効率は(2)より若干良いが,液
面の高さ変化による冷却特性の変化範囲が狭いため,広
い温度範囲で高精度の温度制御をするにはヒータ加熱を
併用する必要があり,やはり液体窒素の消費量が大きく
なった。Regarding (3). Thermal efficiency is slightly better than (2), but since the range of change in cooling characteristics due to changes in liquid level is narrow, it is necessary to use a heater in combination to achieve high-precision temperature control over a wide temperature range. Nitrogen consumption increased.
本発明は温度の制御範囲が広く,制御精度が高く,熱効
率の良い電極温度制御機構を備えた実用的な低温ドライ
エッチング装置を得ることを目的とする。An object of the present invention is to obtain a practical low-temperature dry etching apparatus having a wide temperature control range, high control accuracy, and an electrode temperature control mechanism with good thermal efficiency.
上記課題の解決は,ウェハを載置する電極と冷却された
蓄冷体との間に伝熱体を有し.該伝熱体は相互に熱的に
絶縁され且つ間隙を持つ複数の導熱体からなり,少なく
とも2個の導熱体はそれぞれ電極と蓄冷体に熱的に接続
され.該間隙の中にガスを満たし,ガス圧力を変化させ
ることにより電極と蓄冷体間の熱伝導特性を制御できる
ように構成されている低温ドライエッチング装置により
達成される。The solution to the above problem is to use a heat transfer body between the electrode on which the wafer is placed and the cooled regenerator. The heat conductor is composed of a plurality of heat conductors that are thermally insulated from each other and have a gap, and at least two heat conductors are thermally connected to an electrode and a cool storage body, respectively. This is achieved using a low-temperature dry etching device that is configured to fill the gap with gas and control the heat conduction characteristics between the electrode and the regenerator by changing the gas pressure.
本発明はウェハを載置ずる電極と液体窒素等で冷却され
た蓄冷体との間に,熱伝導特性を制御できる伝熱体を挿
入することにより,熱効率の優れた温度制御を行うよう
にしたものである。The present invention achieves temperature control with excellent thermal efficiency by inserting a heat transfer body that can control heat conduction characteristics between the electrode on which the wafer is placed and the cool storage body cooled with liquid nitrogen, etc. It is something.
伝熱体は狭い間隙を持って重ねられた層状の熱の良導体
からなり,間隙の中にガスを満たし,このガス圧力を変
化させることにより,熱伝導特性を大きく変化させるこ
とができる。従ってブラズマからの電極加熱量が変化し
ても,電極内に埋め込まれた温度センサにより電極温度
をモニタしながら,ガス圧力を変化させて蓄冷体と電極
間の熱伝導特性を変化させることにより,加熱と冷却を
平衡させて,精度良く温度制御を行うことができる。A heat transfer body consists of layers of good thermal conductors stacked one on top of the other with a narrow gap between them. By filling the gap with gas and changing the pressure of this gas, the heat conduction characteristics can be changed significantly. Therefore, even if the amount of electrode heating from the plasma changes, by monitoring the electrode temperature with a temperature sensor embedded in the electrode and changing the gas pressure to change the heat conduction characteristics between the regenerator and the electrode. By balancing heating and cooling, temperature control can be performed with high precision.
次に,上記の伝熱体の熱伝導特性を第3図を用いて説明
する。Next, the heat conduction characteristics of the above heat transfer body will be explained using FIG. 3.
2枚の板1,2が間隔Dをおいて固定され,それぞれの
温度がT,,T2とする( T I> T z )。Two plates 1 and 2 are fixed with a distance D between them, and their respective temperatures are T, , T2 (T I > T z ).
板が磨いた金属のように低い放射率を持つ場合は,2枚
の板の間の赤外線放射による熱伝導は無視できる。If the plates have a low emissivity, such as polished metal, the heat transfer between the two plates by infrared radiation can be ignored.
板の間のガス圧をpとし,ガス分子3の平均自由行程を
λとすると,間隔Dが小さくDくくλの場合.即ち一方
の板で跳ね返ったガス分子は他の分子と衝突しないでそ
のまま他方の板に達する場合は,熱伝導はガス分子の数
と速度に依存するので.熱エネルギーの流れQは.
Q=Cp(T+−T2)T−””
と表せる。ここに,Tはガスの温度,Cは比例定数であ
る。If the gas pressure between the plates is p and the mean free path of the gas molecule 3 is λ, then if the distance D is small and D x λ. In other words, if gas molecules that bounce off one plate reach the other plate without colliding with other molecules, heat conduction depends on the number and speed of the gas molecules. The flow of thermal energy Q is. It can be expressed as Q=Cp(T+-T2)T-"". Here, T is the gas temperature and C is the proportionality constant.
即ち,熱伝導は温度勾配や間隔Dには依存しないで,高
温面と低温面の温度差(T.−T.)とガス圧力pに比
例する。That is, heat conduction does not depend on the temperature gradient or the distance D, but is proportional to the temperature difference (T.-T.) between the high temperature surface and the low temperature surface and the gas pressure p.
第4図に高温面と低温面の温度差(T.−TZ)を一定
とした場合の.熱エネルギーの流れQとガス圧力pの関
係を示す。いま,ガス分子の平均自由行程λがDと同程
度になる圧力をPaとすると,p,以下のガス圧力では
,熱伝導する熱量は圧力pに比例する。Figure 4 shows the case where the temperature difference (T.-TZ) between the high-temperature surface and the low-temperature surface is constant. The relationship between thermal energy flow Q and gas pressure p is shown. Now, if Pa is the pressure at which the mean free path λ of gas molecules is comparable to D, then at a gas pressure of p or less, the amount of heat transferred is proportional to the pressure p.
従って.伝熱体の間隙内のガス圧力を変化させることに
より,熱伝導特性を制御できるので,低温エッチングに
おいては.電極にプラズマから流入する熱と,伝熱体を
通して蓄冷体に流出する熱の平衡により、電極温度を制
御できる。Therefore. In low-temperature etching, the heat conduction properties can be controlled by changing the gas pressure in the gap of the heat transfer body. The electrode temperature can be controlled by balancing the heat flowing into the electrode from the plasma and the heat flowing out through the heat transfer body to the cool storage body.
ここで,流入熱量が小さい場合は従来例のようにヒータ
により加熱してもよいが,本発明では実施例に示される
ように,熱伝導の制御範囲が広いので,従来よりはるか
に少ない加熱量で温度制御が可能である。Here, if the amount of heat inflow is small, it may be heated by a heater as in the conventional example, but in the present invention, as shown in the embodiment, the control range of heat conduction is wide, so the amount of heating is much smaller than in the conventional example. Temperature control is possible.
従って,熱効率がよく.液体窒素の消費量が少ない低温
エッチングが可能になる。Therefore, thermal efficiency is good. Low-temperature etching with low consumption of liquid nitrogen becomes possible.
本発明のようにガス圧力を変化させて熱伝導特性を制御
する場合に,熱伝導の制御範囲が広くなる理由は次の通
りである。The reason why the control range of heat conduction becomes wider when the heat conduction characteristics are controlled by changing the gas pressure as in the present invention is as follows.
狭い間隙に希薄気体を満たしたときの圧力変化による熱
伝導の変化幅は2〜3桁あるのに対し,液体窒素の液面
を変えて導体の長さを変える場合は,短くした場合の導
体の長さの精度が液面の高さによることから,せいぜい
1桁しか変化させることができない。When a narrow gap is filled with diluted gas, the range of change in heat conduction due to pressure change is two to three orders of magnitude, but when changing the length of the conductor by changing the liquid level of liquid nitrogen, the length of the conductor is shortened. Since the accuracy of the length depends on the height of the liquid level, it can only be changed by one order of magnitude at most.
第1図は本発明の実施例(1)による低温エッチング装
置の断面図である。FIG. 1 is a sectional view of a low temperature etching apparatus according to Example (1) of the present invention.
低温に冷却できる電極以外は通常のRIE装置と同じで
ある。The device is the same as a normal RIE device except for the electrodes that can be cooled to low temperatures.
被エッチング基板であるウェハ21は電極27の上に置
かれる。電極27は熱的にも電気的にも良導体からなり
,ウェハ載置領域以外は石英ガラス等の金属不純物を含
まない熱伝導の悪い材料からなる電極カバー28で覆わ
れている。A wafer 21, which is a substrate to be etched, is placed on an electrode 27. The electrode 27 is made of a good conductor both thermally and electrically, and the area other than the wafer placement area is covered with an electrode cover 28 made of a material with poor thermal conductivity that does not contain metal impurities, such as quartz glass.
ウェハ21と電極27間の熱伝導をよくするため,ウェ
ハ21は電極27上に設けられた静電チャック29によ
り吸着される。In order to improve heat conduction between the wafer 21 and the electrode 27, the wafer 21 is attracted by an electrostatic chuck 29 provided on the electrode 27.
静電チャック29の構造は,電気的絶縁体の中に2つの
電極が埋め込まれていて,両電極間に直流電圧を印加す
ることにより,静電力によりウェハ21を吸着する。静
電チャック29の絶縁体は,アルミナや窒化硼素を混入
したシリコン樹脂か,アルミナセラミックのように電気
的に絶縁体か又は10’〜1013Ωcfflの電気抵
抗を持つ材料で,熱伝導度の高いものがよい。The electrostatic chuck 29 has a structure in which two electrodes are embedded in an electrical insulator, and by applying a DC voltage between the two electrodes, the wafer 21 is attracted by electrostatic force. The insulator of the electrostatic chuck 29 is a silicone resin mixed with alumina or boron nitride, an electrical insulator such as alumina ceramic, or a material with an electrical resistance of 10' to 1013 Ωcffl and high thermal conductivity. Good.
さらに,熱伝導をよくするには,ウェハ21と静電チャ
ック29の間に2〜20 TorrのHe等のガスを満
たしてもよい。Further, in order to improve heat conduction, a gas such as He or the like may be filled between the wafer 21 and the electrostatic chuck 29 at a pressure of 2 to 20 Torr.
又,静電チャック29でウェハを吸着する代わりに,機
械的にウェハを電極に押しつける機構を用いてもよい。Furthermore, instead of adsorbing the wafer with the electrostatic chuck 29, a mechanism for mechanically pressing the wafer against the electrode may be used.
電極部26は伝熱体部30を介して,液体窒素で冷却さ
れた蓄冷体部35に熱的に接続されている。The electrode section 26 is thermally connected via a heat transfer body section 30 to a cool storage body section 35 cooled with liquid nitrogen.
伝熱体部30は,テフロンのような熱の不良導体からな
るスペーサ34により間隙33を持って重ねられた熱導
体32からなる。The heat conductor portion 30 consists of thermal conductors 32 stacked with a gap 33 between them by a spacer 34 made of a poor thermal conductor such as Teflon.
熱導体32は表面を研磨したアルξニウム合金のような
熱伝導のよい金属を用いる。The thermal conductor 32 is made of a metal with good thermal conductivity, such as aluminum alloy with a polished surface.
間隙33は図示しないがガスの供給及び排気装置に接続
され,間隙33内のガス圧力を測定しながら制御できる
ようになっている。Although not shown, the gap 33 is connected to a gas supply and exhaust device so that the gas pressure within the gap 33 can be controlled while being measured.
実測の結果,間隙33の間隔Dを5〜100μm,ガス
をHe,ガス圧力をO〜200 Torrに制御するこ
とにより,熱伝導度を1つの間隙につき,0.OO1〜
0.5 W cm−”゜c−1の範囲で制御することが
できた。As a result of actual measurements, by controlling the distance D of the gaps 33 from 5 to 100 μm, using He as the gas, and controlling the gas pressure to 0 to 200 Torr, the thermal conductivity could be reduced to 0.0 for each gap. OO1~
It was possible to control within a range of 0.5 W cm-"°c-1.
上記の値は間隔,ガス圧を変化させ, rf電極に印加
した電力を変えたときのウェハ温度,蓄冷体部温度の実
測から求めた。The above values were obtained from actual measurements of the wafer temperature and temperature of the cool storage body when the spacing and gas pressure were varied and the power applied to the RF electrode was varied.
電極を加熱するプラズマのパワーが小さい場合は,間隙
の数を増やすことでさらに熱伝導度制御範囲を小さい方
にずらすことができる。If the power of the plasma that heats the electrode is low, the thermal conductivity control range can be further shifted to a smaller value by increasing the number of gaps.
即ち,同じ条件で
間隙が2つでは0.OO050〜0.25 W cm−
”゜C一1間隙が3つでは0.OO033〜0.17
W cm−”゜c−1の範囲で制御することができる。That is, under the same conditions, if there are two gaps, the gap is 0. OO050~0.25 W cm-
”゜C-1 If there are three gaps, 0.OO033 to 0.17
It can be controlled within the range of W cm-"°c-1.
蓄冷体部35は,内部に液体窒素37等の冷却液体を溜
めることができる構造で,金属等の熱導体からなり,内
部の液体との熱伝導をよくするために複数のフィン36
が設けられている。図示していないが.冷却液体の供給
口と熱により気化したガスの排出口が設けられている。The cool storage unit 35 has a structure in which a cooling liquid such as liquid nitrogen 37 can be stored inside, and is made of a thermal conductor such as metal, and has a plurality of fins 36 to improve heat conduction with the internal liquid.
is provided. Although not shown. A supply port for cooling liquid and a discharge port for gas vaporized by heat are provided.
伝熱体部30と蓄冷体部35は,熱絶縁のためグラスウ
ール等からなる熱シールド31で覆われる。さらに,全
体にカバー39を設けて,パージガス人口40から乾燥
空気または乾燥窒素を入れバージガス排気口41より排
出することにより結露を防いでいる。The heat transfer body part 30 and the cool storage body part 35 are covered with a heat shield 31 made of glass wool or the like for thermal insulation. Further, a cover 39 is provided over the entire structure, and dry air or dry nitrogen is introduced from a purge gas port 40 and discharged from a barge gas exhaust port 41 to prevent dew condensation.
なお,図中23は平行平板型エッチング装置の対向電極
,24は反応ガス入口,25は反応ガス排気口.38は
高周波(rf)電源である。In the figure, 23 is a counter electrode of the parallel plate type etching apparatus, 24 is a reactive gas inlet, and 25 is a reactive gas exhaust port. 38 is a radio frequency (RF) power source.
ここで, rf電源38の出力は.通常行われるように
電極27に直接接続しても,又は図示のように蓄冷体部
35に接続してもよい。後者の場合は伝熱体部30の狭
い間隔33が大きい静電容量を持つので,rf電力は間
隔33を経て電極27に伝達される。Here, the output of the RF power supply 38 is . It may be connected directly to the electrode 27 as is normally done, or it may be connected to the regenerator section 35 as shown. In the latter case, the narrow spacing 33 of the heat transfer body portion 30 has a large capacitance, so that the rf power is transferred to the electrode 27 through the spacing 33.
次に,実施例の装置を用いて実際のエッチングを行った
際の,ウェハ温度の制御について説明する。Next, control of the wafer temperature when actual etching is performed using the apparatus of the embodiment will be explained.
冷却液体として液体窒素を用い.ウェハ21を電極27
上に載置し,エッチングチャンバ22にSF.を50
SCCM導入し,圧力を0.08 Torr, RFパ
ワー0.66 W/c−の条件でエッチングした。Liquid nitrogen is used as the cooling liquid. The wafer 21 is connected to the electrode 27
SF. 50
SCCM was introduced and etching was performed under the conditions of a pressure of 0.08 Torr and an RF power of 0.66 W/c-.
温度の安定するエッチング開始2分後のウェハ温度を図
示しない螢光光ファイバ温度計で測定したところ.第5
図に示すように,間隙のHe圧力pを1〜100 To
rrに変化させることにより,ウェハ温度は−30〜−
150℃の範囲に制御することができた。The wafer temperature was measured using a fluorescent optical fiber thermometer (not shown) two minutes after the start of etching, when the temperature stabilized. Fifth
As shown in the figure, the He pressure p in the gap is varied from 1 to 100 To
By changing to rr, the wafer temperature can be changed from -30 to -
It was possible to control the temperature within the range of 150°C.
又,液体窒素の消費量は温度に依存しないで一定でlo
p.7時間であった。In addition, the amount of liquid nitrogen consumed is constant and independent of temperature.
p. It was 7 hours.
第2図は本発明の実施例(2)による低温エッチング装
置の断面図である。FIG. 2 is a sectional view of a low temperature etching apparatus according to Example (2) of the present invention.
伝熱体部30以外は実施例(1)と同じ構造である。The structure other than the heat transfer body portion 30 is the same as that of Example (1).
この構造は間隙33が1つしかなく.熱導体32と間隙
33が伝熱方向に平行で間隙の面積が大きいので実施例
(1)より熱伝導がよい。This structure has only one gap 33. Since the thermal conductor 32 and the gap 33 are parallel to the heat transfer direction and the area of the gap is large, heat conduction is better than in Example (1).
実施例(1)と同じ条件でエッチングして,ウェハ温度
を測定したところ,第5図に示すように.間隙のlie
圧力pを1〜100 Torrに変化させることにより
,ウェハ温度は−100〜−160 ’Cの範囲に制御
することができた。When etching was performed under the same conditions as in Example (1) and the wafer temperature was measured, the results were as shown in Figure 5. gap lie
By varying the pressure p from 1 to 100 Torr, the wafer temperature could be controlled within the range of -100 to -160'C.
又,液体窒素の消費量は実施例(1)と同様に温度に依
存しないで一定でlOI./時間であった。In addition, the consumption amount of liquid nitrogen is constant regardless of temperature as in Example (1), and is constant at lOI. / It was time.
次に,比較例として従来の冷却液面の調整による制御例
を第6図を用いて説明する。Next, as a comparative example, a conventional control example by adjusting the coolant level will be explained using FIG. 6.
第6図は比較例の低温エッチング装置の断面図である。FIG. 6 is a sectional view of a low temperature etching apparatus of a comparative example.
O
実施例(1)から伝熱体部算を除いた構造で,蓄冷体部
35の高さを高くしている。O This is a structure in which the heat transfer body part is removed from Example (1), and the height of the cool storage body part 35 is increased.
蓄冷体部35の中の液体窒素の液面の高さHを増滅する
ことにより,フィン36に接続する電極と液体窒素間の
熱伝導特性を変化させて電極の温度を変えるものである
。By increasing or decreasing the height H of the liquid nitrogen in the cool storage body 35, the heat conduction characteristics between the electrodes connected to the fins 36 and the liquid nitrogen are changed to change the temperature of the electrodes.
さらに,電極27内には加熱ヒータ50が埋め込まれて
いる。Furthermore, a heater 50 is embedded within the electrode 27.
実施例(1)と同じ条件でエッチングして,ウェハ温度
を測定したところ,第5図に示すように,液面の高さを
1〜20 cmに変化させることにより,ウェハ温度は
−150〜−170゜Cの範囲に制御することができた
。Etching was performed under the same conditions as in Example (1), and the wafer temperature was measured. As shown in Figure 5, by changing the liquid level height from 1 to 20 cm, the wafer temperature varied from -150 to -150 cm. It was possible to control the temperature within the range of -170°C.
しかし,これでは温度の変化幅が小さいので,電極に内
臓した加熱しータ50に電流を流してウェハ温度を−2
0〜−170゜Cの範囲に制御することができた。However, since the range of temperature change is small, a current is passed through the heating heater 50 built into the electrode to lower the wafer temperature by -2.
It was possible to control the temperature within the range of 0 to -170°C.
この場合,液体窒素の消費量は温度に依存し,100″
Cで301!./時間,−50゜Cで501/時間と実
施例(1), (2)に比して大きい。In this case, the consumption of liquid nitrogen depends on the temperature and
301 in C! .. /hour at -50°C, which is 501/hour, which is larger than Examples (1) and (2).
〔発明の効果]
以上説明したように本発明によれば,温度の制御範囲が
広く,制御精度が高く.熱効率の良い電極温度制御機構
を備えた実用的な低温ドライエッチング装置を得ること
ができた。[Effects of the Invention] As explained above, according to the present invention, the temperature control range is wide and the control accuracy is high. We were able to obtain a practical low-temperature dry etching device equipped with a thermally efficient electrode temperature control mechanism.
即ち,本発明により熱伝導特性を大きく変化させること
ができ,この結果,従来のようにヒータで加熱しなくて
も.加熱と冷却を平衡させて広い温度範囲にわたって精
度よく温度制御を行うことができる。In other words, the present invention makes it possible to greatly change the thermal conductivity characteristics, and as a result, heating can be achieved without using a heater as in the conventional method. It is possible to accurately control temperature over a wide temperature range by balancing heating and cooling.
又,ヒータにより加熱する場合でも,熱伝導の制御範囲
が広いので,従来より遥かに少ない加熱量で温度制御が
可能である。従って熱効率がよく,液体窒素の消費量が
少ない低温エッチングが可能になった。Furthermore, even when heating is performed using a heater, the control range of heat conduction is wide, so the temperature can be controlled with a much smaller amount of heating than conventional methods. Therefore, low-temperature etching with high thermal efficiency and low consumption of liquid nitrogen has become possible.
第1図は本発明の実施例(1)による低温エッチング装
置の断面図,
第2図は本発明の実施例(2)による低温エッチング装
置の断面図,
第3図は熱伝導特性のガス圧力依存の原理を説明する図
,
第4図は熱伝導特性のガス圧力依存を示す図.第5図は
実施例(1), (2)及び比較例の温度制御特性を示
す図,
第6図は比較例の低温エッチング装置の断面図である。
図において,
21はウェハ,
22はエッチングチャンバ,
23は対向電極,24は反応ガス入口,25は反応ガス
排気口,26は電極部,27は電極,28は電極カバー
29は静電チャック,30は伝熱体部,31は熱シール
ド,32は熱導体,
33は間隙,34はスペーサ,
35は蓄冷体部,36はフィン,
37は液体窒素,38はrf電源,
39はカバー,40はパージガス人口,41はパージガ
ス排気口,
50は加熱ヒータ
3g
実施例
(1)
oUr面
図
第
1
図
実
施
例
(2)
の
断
面
図
第
2
囚
原埋説明凶
′J!PJS 図
熱伝導特性のガス圧力依存
第 4 図
圧力p (to叶)O
●
3
10
30
+00
300
Hも石高目(cm)Δ
↓
8
12
16
20
益崖制御特性を7rXす図
舅 5 図
..56
L 較イ32り の 断 面
凶Fig. 1 is a cross-sectional view of a low-temperature etching apparatus according to an embodiment (1) of the present invention, Fig. 2 is a cross-sectional view of a low-temperature etching apparatus according to an embodiment (2) of the present invention, and Fig. 3 is a gas pressure characteristic of thermal conduction. A diagram explaining the principle of dependence. Figure 4 is a diagram showing the dependence of heat conduction characteristics on gas pressure. FIG. 5 is a diagram showing the temperature control characteristics of Examples (1), (2) and a comparative example, and FIG. 6 is a cross-sectional view of a low-temperature etching apparatus of the comparative example. In the figure, 21 is a wafer, 22 is an etching chamber, 23 is a counter electrode, 24 is a reaction gas inlet, 25 is a reaction gas exhaust port, 26 is an electrode section, 27 is an electrode, 28 is an electrode cover 29 is an electrostatic chuck, 30 31 is a heat conductor, 31 is a heat shield, 32 is a heat conductor, 33 is a gap, 34 is a spacer, 35 is a cool storage body, 36 is a fin, 37 is liquid nitrogen, 38 is an RF power source, 39 is a cover, 40 is Purge gas population, 41 is the purge gas exhaust port, 50 is the heating heater 3g Example (1) oUr side view Figure 1 Cross-sectional view of Example (2) No. 2 Explanation of how to bury the prisoner! PJS Diagram Gas pressure dependence of heat conduction characteristics Figure 4 Pressure p (to leaf) O ● 3 10 30 +00 300 H also stone height (cm) Δ ↓ 8 12 16 20 Figure 5 .. .. 56 L comparison I 32 ri cross section
Claims (1)
体を有し、 該伝熱体は相互に熱的に絶縁され且つ間隙を持つ複数の
導熱体からなり、少なくとも2個の導熱体はそれぞれ電
極と蓄冷体に熱的に接続され、該間隙の中にガスを満た
し、ガス圧力を変化させることにより電極と蓄冷体間の
熱伝導特性を制御できるように構成されていることを特
徴とする低温ドライエッチング装置。[Claims] A heat transfer body is provided between an electrode on which a wafer is placed and a cooled regenerator, and the heat transfer body is made up of a plurality of heat conductors that are thermally insulated from each other and have gaps. The at least two heat conductors are thermally connected to the electrode and the regenerator, respectively, and the gap is filled with gas so that the heat conduction characteristics between the electrode and the regenerator can be controlled by changing the gas pressure. A low-temperature dry etching device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP192190A JPH03206613A (en) | 1990-01-09 | 1990-01-09 | Low temperature dry etching apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP192190A JPH03206613A (en) | 1990-01-09 | 1990-01-09 | Low temperature dry etching apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03206613A true JPH03206613A (en) | 1991-09-10 |
Family
ID=11515060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP192190A Pending JPH03206613A (en) | 1990-01-09 | 1990-01-09 | Low temperature dry etching apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03206613A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6172337B1 (en) * | 1995-07-10 | 2001-01-09 | Mattson Technology, Inc. | System and method for thermal processing of a semiconductor substrate |
WO2004073054A1 (en) * | 2003-02-17 | 2004-08-26 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Cooling device for vacuum treatment device |
US7153387B1 (en) | 1999-08-20 | 2006-12-26 | Tokyo Electron Limited | Plasma processing apparatus and method of plasma processing |
-
1990
- 1990-01-09 JP JP192190A patent/JPH03206613A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6172337B1 (en) * | 1995-07-10 | 2001-01-09 | Mattson Technology, Inc. | System and method for thermal processing of a semiconductor substrate |
US6403925B1 (en) | 1995-07-10 | 2002-06-11 | Mattson Technology, Inc. | System and method for thermal processing of a semiconductor substrate |
US7153387B1 (en) | 1999-08-20 | 2006-12-26 | Tokyo Electron Limited | Plasma processing apparatus and method of plasma processing |
WO2004073054A1 (en) * | 2003-02-17 | 2004-08-26 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Cooling device for vacuum treatment device |
US7913752B2 (en) | 2003-02-17 | 2011-03-29 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Cooling device for vacuum treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5082542A (en) | Distributed-array magnetron-plasma processing module and method | |
EP0179665B1 (en) | Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition | |
US6946403B2 (en) | Method of making a MEMS electrostatic chuck | |
US5079481A (en) | Plasma-assisted processing magneton with magnetic field adjustment | |
CN100474521C (en) | Temperature controlled hot edge ring assembly, and device comprising the same and the use thereof | |
US6905984B2 (en) | MEMS based contact conductivity electrostatic chuck | |
US20050041364A1 (en) | Mems based multi-polar electrostatic chuck | |
JPH09260474A (en) | Electrostatic chuck and wafer stage | |
CN105659366A (en) | Low temperature silicon nitride films using remote plasma CVD technology | |
JP2011176365A (en) | Chemical oxide removal processing system and method | |
JP2001501379A (en) | Particle control method and plasma processing chamber | |
CN102270561B (en) | Plasma processing chamber component having adaptive thermal conductor | |
JPH0428791B2 (en) | ||
TWI458013B (en) | Selective etch process for silicon nitride | |
JP2022534885A (en) | substrate processing chamber | |
JP2008509560A (en) | Heated gas box for PECVD applications | |
TWI772851B (en) | Temperature control method of stage and substrate | |
US12069789B2 (en) | Tool for annealing of magnetic stacks | |
JPH03206613A (en) | Low temperature dry etching apparatus | |
JPH0945756A (en) | Semiconductor manufacturing device and manufacturing method | |
JP2007531280A (en) | Minimum scallop substrate processing method | |
US11270905B2 (en) | Modulating film properties by optimizing plasma coupling materials | |
US20220044926A1 (en) | Deposition of low-stress carbon-containing layers | |
JP3438496B2 (en) | Wafer stage, manufacturing method thereof and dry etching apparatus | |
JPH0586477B2 (en) |