JPH03192320A - Projection type display device - Google Patents
Projection type display deviceInfo
- Publication number
- JPH03192320A JPH03192320A JP1333942A JP33394289A JPH03192320A JP H03192320 A JPH03192320 A JP H03192320A JP 1333942 A JP1333942 A JP 1333942A JP 33394289 A JP33394289 A JP 33394289A JP H03192320 A JPH03192320 A JP H03192320A
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarized light
- linearly polarized
- light beam
- liquid crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 68
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 51
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 230000004907 flux Effects 0.000 claims abstract description 11
- 238000000926 separation method Methods 0.000 claims description 18
- 238000005286 illumination Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000005342 prism glass Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Projection Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[1i業上の利用分野]
本発明は、液晶ライトバルブ上に形成された画像をスク
リーン上に拡大投写する投写型表示装置に関し、特に液
晶ライトバルブの照明光源として無偏光の光を出射する
ランプを用いた投写型表示装置に関するものである。Detailed Description of the Invention [1i Field of Industrial Application] The present invention relates to a projection type display device that enlarges and projects an image formed on a liquid crystal light valve onto a screen, and particularly relates to a projection type display device that enlarges and projects an image formed on a liquid crystal light valve onto a screen. The present invention relates to a projection display device using a lamp that emits polarized light.
[従来の技術]
第5図は従来の投写型表示装置の光学系の説明図である
。図において、(1)は光源、(120)はランプ、(
130)は反射鏡、(2)は光源(1)から出射する照
明光束、(3)液晶ライトバルブ、(8)、 (9)は
液晶ライトバルブの前後に配置された偏光板、(4)は
投写レンズ、(5)はスクリーン、(10)はコンデン
サレンズである。[Prior Art] FIG. 5 is an explanatory diagram of an optical system of a conventional projection display device. In the figure, (1) is a light source, (120) is a lamp, (
130) is a reflecting mirror, (2) is an illumination beam emitted from the light source (1), (3) is a liquid crystal light valve, (8) and (9) are polarizing plates placed before and after the liquid crystal light valve, (4) is a projection lens, (5) is a screen, and (10) is a condenser lens.
次に動作について説明する。光源(1)はランプ(12
0)と反射鏡(130)から成り、液晶ライトバルブ(
3)に照明光束(2)を照射する。ランプとしては、例
えばメタルハライドランプ、キセノンランプ等の放電ラ
ンプ及びハロゲンランプ等が用いられる。液晶ライトバ
ルブ(3)の面上には、後述するように画像が表示され
、画像の濃淡及び色に応じて面内の透過率が変化する。Next, the operation will be explained. The light source (1) is a lamp (12
It consists of a liquid crystal light valve (
3) is irradiated with the illumination light beam (2). As the lamp, for example, a metal halide lamp, a discharge lamp such as a xenon lamp, a halogen lamp, etc. are used. An image is displayed on the surface of the liquid crystal light valve (3) as described later, and the in-plane transmittance changes depending on the shading and color of the image.
液晶ライトバルブ(3)を透過した光束はさらに投写レ
ンズ(4)を透過して投写光(110)となり、スクリ
ーン(5)上に拡大結像され鑑賞に供される。なお、コ
ンデンサレンズ(lO)は、照明光束を高効率で投写レ
ンズに入射し高輝度の投写画像を得るために設けられて
いる。The light flux that has passed through the liquid crystal light valve (3) further passes through a projection lens (4) and becomes projection light (110), which is enlarged and imaged on a screen (5) for viewing. Note that the condenser lens (lO) is provided to make the illumination light flux enter the projection lens with high efficiency to obtain a high-brightness projected image.
次に、液晶ライトバルブ(3)の構成と動作について、
第6図により説明する。液晶(6)は2枚のガラス基板
(7)に挟まれ、さらに両側に偏光板(8)、 (9)
を配している。電圧無印加V=O(第6図(a))にお
いては、入射側偏光板(8)を透過した直線偏光(2a
)は、液晶(6)を透過する際に液晶の旋光性によって
偏光方向が90″回転し、入射側偏光板(8)と偏光軸
が直交するように配された出射側偏光板(9)を透過す
る。一方、しきい値電圧vth以上の電圧Vを印加する
(第6図(b))と液晶の旋光性が小さくなって、透過
側偏光板(9)を透過する光量が電圧の増加に伴って減
少する。この様な透過率の制御作用を利用し、さらに2
次元アレイ状に電極を構成することにより、2次元の画
像表示素子が形成できる。尚、上記液晶は旋光角が90
″のT N (Twisted Nematic)液晶
をノーマリ−ホワイトモードで使用した例について説明
した。液晶相の種類、旋光角の大きさ等については公知
のごと(、上記の他にも変形例が知られているが、本発
明の主題と直接的に関係しないので説明を省略する。Next, regarding the configuration and operation of the liquid crystal light valve (3),
This will be explained with reference to FIG. The liquid crystal (6) is sandwiched between two glass substrates (7), and polarizing plates (8) and (9) are placed on both sides.
are arranged. When no voltage is applied V=O (Fig. 6(a)), linearly polarized light (2a
) is an output side polarizing plate (9) arranged so that the polarization direction is rotated by 90'' due to the optical rotation of the liquid crystal when transmitted through the liquid crystal (6), and the polarization axis is orthogonal to the input side polarizing plate (8). On the other hand, when a voltage V higher than the threshold voltage vth is applied (Fig. 6(b)), the optical rotation of the liquid crystal decreases, and the amount of light transmitted through the transmission side polarizing plate (9) becomes smaller than the voltage. It decreases as the transmittance increases.Using this kind of transmittance control effect,
By configuring electrodes in a dimensional array, a two-dimensional image display element can be formed. The above liquid crystal has an optical rotation angle of 90
We have explained an example of using a T However, since it is not directly related to the subject matter of the present invention, the explanation will be omitted.
さらに、第2の従来装置として、第7図に3枚の液晶ラ
イトバルブを用いた装置の光学系を示す。図において、
(1)は光源であり、具体的にはメタルハライドランプ
、キセノンランプ、ハロゲンランプ等の白色光を発生す
るランプ(120)と、反射鏡(130)から成る。(
2)は光源(1)を出射する照明光束、(14R)、
(14B)は色分離用ダイクロイックミラー、(15B
)、(15G)は色合成用グイクロイックミラー、(1
1)、 (12)はミラー、(3R) 、 (3G)
。Furthermore, as a second conventional device, FIG. 7 shows an optical system of a device using three liquid crystal light valves. In the figure,
(1) is a light source, which specifically includes a lamp (120) that generates white light, such as a metal halide lamp, xenon lamp, or halogen lamp, and a reflecting mirror (130). (
2) is the illumination light flux emitted from the light source (1), (14R),
(14B) is a dichroic mirror for color separation, (15B)
), (15G) is a guichroic mirror for color synthesis, (1
1), (12) are mirrors, (3R), (3G)
.
(3B)は液晶ライトバルブ、(8R) 、 (8G)
、 (8B)は入射側偏光板、(9R)、 (9G)
、 (9B)は出射側偏光板、(IOR)、 (IOG
)、 (10B)はコンデンサレンズである。(3B) is a liquid crystal light valve, (8R), (8G)
, (8B) is the incident side polarizing plate, (9R), (9G)
, (9B) are output side polarizing plates, (IOR), (IOG
), (10B) are condenser lenses.
次に第2の従来装置の動作について説明する。Next, the operation of the second conventional device will be explained.
照明光束(2)は白色光源ランプ(120)を出射後、
反射鏡(130)で反射され光源(1)を出射する。ダ
イクロイックミラー(14R)は赤色光を反射し青・緑
色光を透過する。また、ダイクロイックミラー(14B
)は青色光を反射し、緑色光を透過させる。従って、液
晶ライトバルブ(3G)、 (3B)、 (3R)には
、各々緑・青・赤の照明光束が照射される。After the illumination light flux (2) is emitted from the white light source lamp (120),
The light is reflected by a reflecting mirror (130) and is emitted from a light source (1). The dichroic mirror (14R) reflects red light and transmits blue and green light. In addition, dichroic mirror (14B
) reflects blue light and transmits green light. Therefore, the liquid crystal light valves (3G), (3B), and (3R) are irradiated with green, blue, and red illumination light beams, respectively.
液晶ライトバルブ(3G)、 (3B)、 (3R)に
は、特に図示しない外部回路によって緑・青・赤の色光
に相当する画像が形成され、照射光をライトバルブ面内
で透過変調する。液晶ライトバルブ(3G)、 (3B
) 。Images corresponding to green, blue, and red color light are formed on the liquid crystal light valves (3G), (3B), and (3R) by an external circuit (not particularly shown), and the irradiated light is transmitted and modulated within the light valve surface. LCD light bulb (3G), (3B
).
(3R)の出射光は、青色光を反射するダイクロイック
ミラー(15B) 、緑色光を反射するダイクロイック
ミラー(15G)及び反射ミラー(12)によって合成
光束(100)として投写レンズ(4)に入射し、投写
光束(110)としてスクリーン(5)上に結像され、
拡大されたカラー画像が鑑賞に供される。なおコンデン
サレンズ(IOR)、 (IOC)、 (IOB)は、
各々赤・緑・青色光を高効率で投写レンズ(4)に入射
させるために用いられる。また、各液晶ライトバルブ(
3R)、 (3G)、 (3B)の構成及び動作は、先
に第6図で説明したものと同様である。The emitted light (3R) enters the projection lens (4) as a composite light beam (100) by a dichroic mirror (15B) that reflects blue light, a dichroic mirror (15G) that reflects green light, and a reflection mirror (12). , is imaged on the screen (5) as a projected light beam (110),
The enlarged color image is presented for viewing. In addition, condenser lenses (IOR), (IOC), (IOB) are
They are used to make red, green, and blue light enter the projection lens (4) with high efficiency. In addition, each LCD light valve (
The configuration and operation of 3R), (3G), and (3B) are the same as those described above with reference to FIG.
[発明が解決しようとする課題]
従来の投写型表示装置は、以上のように構成されている
ので、液晶ライトバルブで画像表示に利用される光束は
、前記入射側偏光板(8)または(8R) 、 (8G
) 、 (8B)によって選択される直線偏光成分のみ
である。一方、従来の装置において使用されるランプ(
120)は、メタルハライドランプ、キセノンランプ、
ハロゲンランプ等の無偏光(自然偏光)光源であり、照
明光(2)も無偏光であった。[Problems to be Solved by the Invention] Since the conventional projection display device is configured as described above, the light flux used for image display by the liquid crystal light valve is transmitted through the incident side polarizing plate (8) or ( 8R), (8G
), (8B). On the other hand, the lamps used in conventional equipment (
120) are metal halide lamps, xenon lamps,
It was a non-polarized (naturally polarized) light source such as a halogen lamp, and the illumination light (2) was also non-polarized.
この結果、入射側偏光板(8)または(8R)、 (s
G)。As a result, the incident side polarizing plate (8) or (8R), (s
G).
(8B)を透過する際、照明光束(2)の約半分しか液
晶層内に入射していなかった。残り半分の光エネルギー
は主に入射側偏光板(8)または(8R)、 (8G)
。(8B), only about half of the illumination light flux (2) entered the liquid crystal layer. The remaining half of the light energy is mainly transmitted through the polarizing plate (8) or (8R) or (8G) on the incident side.
.
(8B)に吸収されて熱となり、入射側偏光板(8)ま
たは(8R)、 (8G)、 (8B)の温度上昇によ
る偏光特性劣化、隣接する液晶層の温度上昇による液晶
動作特性の変動等の原因となっていた。It is absorbed by (8B) and becomes heat, and the polarization characteristics deteriorate due to the temperature increase of the incident side polarizing plate (8) or (8R), (8G), (8B), and the liquid crystal operating characteristics change due to the temperature increase of the adjacent liquid crystal layer. etc., was the cause.
本発明は上記のような問題点を解消するためになされた
もので、照明光束のエネルギーを有効に利用し、かつ入
射側偏光板(8)の温度上昇を防止でき、結果として高
輝度な画像表示が実現できる投写型表示装置をうろこと
を目的とする。The present invention has been made to solve the above-mentioned problems, and it is possible to effectively utilize the energy of the illumination light flux and prevent the temperature rise of the incident side polarizing plate (8), resulting in a high-brightness image. The purpose is to develop a projection display device that can display images.
[課題を解決するための手段]
本発明に係る投写型表示装置は、無偏光光束を第1及び
第2の直線偏光光束に分離する偏光分離手段と、 2つ
の互いに直交する第1及び第2の全反射面と斜面を有す
る全反射プリズムより成り、該全反射面の交線が、前記
第2の直線偏光光束の偏光方向と45@をなす基準角の
方向とし、前記斜面の前記交線を境界とする半面に反射
ミラーを形成した構成で、前記反射ミラーを形成してい
ない前記斜面の半面から入射した前記第2の直線偏光光
束を、前記第1の全反射面、第2の全反射面の順に反射
して前記反射ミラーに導き、該反射ミラーで反射された
光束を、前記第2の全反射面、第1の全反射面の順に反
射し、前記第2の直線偏光光束に対して偏光方向が90
″回転された第3の直線偏光光束を前記偏光分離手段に
再入射させる偏光回転手段と、 前記第3の直線偏光光
束が前記偏光分離手段に再入射した後出射して得られる
光束を、前記第1の直線偏光光束と同じ進行方向及び偏
光方向を有する第4の直線偏光光束とする光路変換手段
とを具備し、前記第1の直線偏光光束及び前記第4の直
線偏光光束により前記液晶ライトバルブを照明するもの
である。[Means for Solving the Problems] A projection type display device according to the present invention includes a polarization separation means for separating an unpolarized light beam into a first and a second linearly polarized light beam, and two first and second linearly polarized light beams that are orthogonal to each other. a total reflection prism having a total reflection surface and an inclined surface, the intersection line of the total reflection surface is the direction of a reference angle that forms 45@ with the polarization direction of the second linearly polarized light beam, and the intersection line of the inclined surface A reflection mirror is formed on a half surface with a boundary of The light beam is reflected in the order of the reflecting surface and guided to the reflecting mirror, and the light beam reflected by the reflecting mirror is reflected in the order of the second total reflection surface and the first total reflection surface to become the second linearly polarized light beam. On the other hand, the polarization direction is 90
``polarization rotation means for making the rotated third linearly polarized light beam re-enter the polarization separation means; an optical path converting means for converting the liquid crystal light beam into a fourth linearly polarized beam having the same traveling direction and polarization direction as the first linearly polarized beam; It illuminates the bulb.
いわば、光源から出射する無偏光である照明光束を直線
偏光に変換する光学手段を有し、液晶ライトバルブの入
射側偏光板の偏光軸と照明光束の直線偏光の方向を一致
するように構成したものである。In other words, it has an optical means for converting the unpolarized illumination light beam emitted from the light source into linearly polarized light, and is configured so that the direction of the linearly polarized light of the illumination light beam matches the polarization axis of the polarizing plate on the input side of the liquid crystal light valve. It is something.
[作用]
上記のように照明光束を直線偏光化することにより、入
射側偏光板を透過する光量が倍増し、偏光板による吸収
も小さくできる。[Function] By linearly polarizing the illumination light beam as described above, the amount of light transmitted through the incident-side polarizing plate can be doubled, and absorption by the polarizing plate can also be reduced.
さらに、前記光学手段によって直線偏光化された照明光
束の消光比が良好な場合には、入射側偏光板なしで装置
を構成できる。Furthermore, if the extinction ratio of the illumination light beam linearly polarized by the optical means is good, the apparatus can be configured without a polarizing plate on the incident side.
[実施例]
第1図は本発明の実施例1における投写型表示装置の光
学系を示す説明図である。[Example] FIG. 1 is an explanatory diagram showing an optical system of a projection type display device in Example 1 of the present invention.
図において、(20)は偏光分離手段(偏光ビームスプ
リッタ) 、(21)は偏光回転手段であり、2枚の互
いに直交する全反射ミラー面(21a)、 (21b)
と斜面より成る全反射プリズムより構成されている。(
21C)は偏光回転手段(21)の斜面の1部に形成さ
れた反射ミラー、(23)は光路変換手段(ミラー)で
ある。In the figure, (20) is a polarization separation means (polarization beam splitter), (21) is a polarization rotation means, and two total reflection mirror surfaces (21a) and (21b) are orthogonal to each other.
It consists of a total reflection prism consisting of a slope and a slope. (
21C) is a reflection mirror formed on a part of the slope of the polarization rotation means (21), and (23) is an optical path conversion means (mirror).
次に実施例の動作について説明する。Next, the operation of the embodiment will be explained.
光源(1)出射した照明光束(2)は従来例と同様に無
偏光状態であり、偏光分離手段の接合面(20a)よっ
て反射S偏光(30)、透過P偏光(33a)に分離さ
れる。反射S偏光は偏光回転手段(21)に入射する。The illumination light beam (2) emitted from the light source (1) is in a non-polarized state as in the conventional example, and is separated into reflected S-polarized light (30) and transmitted P-polarized light (33a) by the joint surface (20a) of the polarization separation means. . The reflected S-polarized light enters the polarization rotation means (21).
該偏光回転手段(21)は、交線(22)が図のX方向
から2軸回りに基準角として45@回転した方向となる
よう配置さており、後述するように入射光の偏光方向を
90@回転して出射させる作用をする。従って、前記偏
光回転手段に入射したS偏光(30)は、P偏光(31
)となって出射し、偏光分離手段(20)をP偏光のま
ま透過し、光路変換手段(23)によって反射され、前
述の透過P偏光(33a)と同じ偏光方向・進行方向の
直線偏光(33b)としてコンデンサレンズ(lO)を
通して液晶ライトバルブ(3)に入射する。液晶ライト
バルブ(3)の入射側偏光板(8)偏光軸は前記入射直
線偏光(33a)、 (33b)の方向と揃えて配置し
ている。この結果、従来の無偏光光束が入射する場合に
比べて約2倍の光エネルギーが液晶層に入射し、画像表
示に寄与する。液晶ライトバルブ(3)を出射した光は
従来例と同様に、投写レンズ(4)によって投写光(1
10)となり、スクリーン(5)上に拡大投写される。The polarization rotation means (21) is arranged so that the intersection line (22) is rotated by 45@ as a reference angle around two axes from the X direction in the figure, and the polarization direction of the incident light is changed by 90 degrees as described later. @Rotates and emits light. Therefore, the S-polarized light (30) incident on the polarization rotation means becomes the P-polarized light (31
), passes through the polarization separation means (20) as P-polarized light, is reflected by the optical path conversion means (23), and becomes linearly polarized light (with the same polarization direction and traveling direction as the transmitted P-polarized light (33a)). 33b), the light enters the liquid crystal light valve (3) through the condenser lens (lO). The polarization axis of the incident-side polarizing plate (8) of the liquid crystal light valve (3) is aligned with the direction of the incident linearly polarized light (33a) and (33b). As a result, approximately twice as much light energy enters the liquid crystal layer as compared to the case where a conventional non-polarized light beam enters, contributing to image display. The light emitted from the liquid crystal light valve (3) is projected by the projection lens (4) as in the conventional example.
10) and is enlarged and projected onto the screen (5).
次に本発明において特徴的な偏光回転手段(21)の動
作について、第2図により詳述する。Next, the operation of the polarization rotation means (21), which is characteristic of the present invention, will be explained in detail with reference to FIG.
第2図(a)は偏光回転機能の説明図、第2図(b)は
偏光分離手段と偏光回転手段の平面図、第2図(C)は
正面図を示している。FIG. 2(a) is an explanatory diagram of the polarization rotation function, FIG. 2(b) is a plan view of the polarization separation means and polarization rotation means, and FIG. 2(C) is a front view.
偏光回転手段(21)は、互いに直交する全反射面(2
1a)、 (21b)と斜面(21c)、 (21d)
より構成された全反射プリズムの形態である。前記斜面
のうち、交線(22)の位置を境界とする右半分(21
c)には斜線で示すように反射光路変換手段が形成され
ている。偏光回転手段(21)に、前記斜面のうち光路
変換手段が形成されていない半面(21d)から入射す
る光線(30)は、図のように交線(22)に対して4
5″をなす直線偏光(振幅E、)であり、図の左下の円
内に示したように、等振幅の直交成分Xy、に分けられ
る。但し、y、の方向は交線(22)と平行にしている
。図のように入射光線(30)は全反射面(21a)、
(21b)で反射されて反射光路変換手段部(21C
)にいたる。光路変換手段(21c)で反射された光線
は、全反射面(21b)、 (21a)で順次反射され
て、斜面の左半面(21d)より出射し、光線(31)
となる。ここで、全反射の条件として、■x、y偏光の
反射率がほぼ等しいこと■x、y方向の偏光を全反射す
る際の位相差が全反射面(21a)、 (21b)によ
る往復計4回の反射により180@となること。The polarization rotation means (21) includes total reflection surfaces (2
1a), (21b) and slopes (21c), (21d)
It is in the form of a total reflection prism composed of Of the slope, the right half (21
In c), a reflective optical path conversion means is formed as shown by diagonal lines. The light ray (30) that enters the polarization rotation means (21) from the half surface (21d) on which the optical path conversion means is not formed of the slope is 4
5'' linearly polarized light (amplitude E,), and is divided into equal amplitude orthogonal components Xy, as shown in the circle at the bottom left of the figure.However, the direction of y is The incident light beam (30) is parallel to the total reflection surface (21a), as shown in the figure.
(21b) and reflected light path converting means (21C).
). The light beam reflected by the optical path conversion means (21c) is sequentially reflected by the total reflection surface (21b) and (21a), and exits from the left half surface (21d) of the slope, and becomes the light beam (31).
becomes. Here, the conditions for total reflection are: ■ The reflectance of x and y polarized light is almost equal. ■ The phase difference when total reflection of polarized light in x and y directions is determined by the total reflection surface (21a) and (21b). It becomes 180@ by 4 reflections.
という2つの条件を満たす場合に、出射光線(31)の
偏光E2は図示したようにElと直交する直線偏光とな
る。上記■は面(21a)、 (21b)で全反射が生
じれば必然的に満たされる。第2図(a)のように光線
(30)が面(21a)に対して45″で入射し、面(
21b)に対しても同様に4511で入射する場合、全
反射が生じる条件は、プリズムの屈折率をnとして(1
)式で与えられる。When these two conditions are satisfied, the polarized light E2 of the emitted light beam (31) becomes linearly polarized light orthogonal to El as shown. The above condition (2) is necessarily satisfied if total reflection occurs at the surfaces (21a) and (21b). As shown in Fig. 2(a), the light ray (30) is incident on the surface (21a) at an angle of 45'', and the surface (21a) is
21b), the conditions for total reflection are (1) where the refractive index of the prism is n.
) is given by the formula.
n>r丁 ・・・・・・(I) 但し、プリズムの外側の媒買は空気と仮定した。n>r d ・・・・・・(I) However, it was assumed that the medium outside the prism was air.
次に、上記■の条件について説明する。Next, the above condition (2) will be explained.
45″入射の1回の全反射によって生じるX。X caused by a single total internal reflection at 45″ incidence.
y偏光間の位相差Δはnをプリズム硝材の屈折率として
、
Δ□2 (tan −’ (n 丁))−tan−’
(n−’ 1−7]))・・・・・・・(n)
となる。前述のように、光路変換手段(21C)による
反射のために計4回の全反射が生じるので、出射光線(
31)に付与されるx、y偏光間の位相差は4Δとなる
。 (■)式にn−1,55378を代入して4Δを計
算すると、
4Δ=A ・・・・・・・(m)
となる。従って、n−1,55378近傍では第2図(
a)に示した反射光の(31)のx、y成分の間には入
射光(30)の状態と比較して180@の位相差が生じ
る。従って、第2図(a)の右下の円内に示したように
出射光(3I)の偏光方向(E、)はE、に対して90
″回転する。尚、偏光回転手段(21)の斜面(ま第2
図(b) 、 (C)に平面図及び正面図を示したよ
ウニ、交線(22)を境にして偏光分離手段(20)上
の半面が透過面、他の半面が反射光路変換手段面(斜線
を施して示した)となっている。The phase difference Δ between y-polarized light is expressed as Δ□2 (tan −' (n digits)) −tan−' where n is the refractive index of the prism glass material.
(n-' 1-7]))...(n). As mentioned above, total reflection occurs a total of four times due to reflection by the optical path converting means (21C), so the output light beam (
31), the phase difference between the x and y polarized light is 4Δ. When calculating 4Δ by substituting n-1,55378 into equation (■), it becomes 4Δ=A (m). Therefore, in the vicinity of n-1,55378, Figure 2 (
A phase difference of 180 @ occurs between the x and y components of the reflected light (31) shown in a) compared to the state of the incident light (30). Therefore, as shown in the lower right circle of Fig. 2(a), the polarization direction (E,) of the emitted light (3I) is 90° with respect to E.
"rotates. Note that the slope of the polarization rotation means (21) (or the second
As shown in Figures (b) and (C), one half of the surface above the polarization separation means (20) is the transmitting surface, and the other half is the reflective optical path conversion means surface, with the intersection line (22) as the boundary. (shown with diagonal lines).
第1図において、偏光分離手段(20)で反射されたS
偏光(30)は交線(22)に対して45°をなす直線
偏光であるため、偏光回転手段(21)によって偏光方
向が90@回転した状態で入射光と逆の進行方向に反射
され、P偏光(31)として偏光分離手段(20)に再
入射し、そのまま透過P偏光(32)となって偏光分離
手段(20)を出射する。なお、偏光回転手段(21)
を構成するプリズム硝材の屈折率nが1゜55378近
傍の硝材としては、HOYA社製のP CD 3 (n
a”1.55232 ) 、 Sb F l (n
n=1.55115 )や、5CHOTT社製のBaL
F8(na=1.55361 ) 、 P S K’
3 (n 、=1.55232等が好適である。In FIG. 1, S reflected by the polarization separation means (20)
Since the polarized light (30) is linearly polarized light making an angle of 45° with respect to the intersection line (22), it is reflected in the direction of travel opposite to the incident light with the polarization direction rotated by 90@ by the polarization rotation means (21). The light enters the polarization separation means (20) again as P-polarized light (31), and exits the polarization separation means (20) as transmitted P-polarized light (32). In addition, the polarization rotation means (21)
As a prism glass material whose refractive index n is around 1°55378, P CD 3 (n
a”1.55232), Sb F l (n
n=1.55115), BaL manufactured by 5CHOTT
F8 (na=1.55361), P S K'
3 (n, = 1.55232, etc.) is suitable.
しかし、これ以外の硝材、例えば、HOY A社または
S Cl−10T T社製のB K 7 (n n=1
.5168)でも上記硝材よりは改善度合が低いものの
本発明に使用することができる。これは、付与された位
相差が180’でないためにやや楕円偏光となった光線
(31)が、偏光ビームスプリッタ(20)を透過して
P偏光(32)に変換され、光線(33a)、(33b
) 0)偏光方向が同じになるためである。However, other glass materials such as HOY A or S Cl-10TT BK7 (n n=1
.. 5168) can also be used in the present invention, although the degree of improvement is lower than that of the above-mentioned glass materials. This is because the light ray (31), which is slightly elliptically polarized because the given phase difference is not 180', passes through the polarizing beam splitter (20) and is converted into P-polarized light (32), and the light ray (33a), (33b
) 0) This is because the polarization directions are the same.
[他の実施例]
次に、本発明の第2の実施例について、第3図により説
明する。図において、(23a)、(23b)は反射光
路変換手段である。光源(1)を出射した無偏光照明光
(2)は、偏光分離手段(20)によりて、反射S偏光
(33a)と透過P偏光(30)に分離される。[Other Embodiments] Next, a second embodiment of the present invention will be described with reference to FIG. 3. In the figure, (23a) and (23b) are reflective optical path changing means. The unpolarized illumination light (2) emitted from the light source (1) is separated into reflected S-polarized light (33a) and transmitted P-polarized light (30) by the polarization separation means (20).
透過P偏光は偏光回転手段(21)に入射する。偏光回
転手段(21)は第1の実施例と同様に、X軸の方向か
ら2軸回りに45°回転した方向の交線(22)を有す
る直交全反射面(21a)、 (21b)及び斜面の半
面に反射光路変換手段(21C)を設けた全反射プリズ
ムにより構成されている。透過P偏光(30)は交線(
22)と45°をなすので、偏光回転手段(21)によ
って偏光方向が90″回転され光線(30)と逆方向に
進行するS偏光(31)となる。S偏光(31)は偏光
分離手段(20)によって反射S偏光(32)となり、
光路変換手段(23a)、 (23b)によって反射さ
れて前述の反射S偏光(33a)と同一の偏光方向・進
行方向を有する直線偏光(33b)となって、コンデン
サレンズ(10)を通して液晶ライトバルブ(3)に入
射する。入射側偏光板(8)の偏光軸は、前記入射直線
偏光(33a)、 (33b)の方向と揃えて配置して
あり、従来のように無偏光の照明光が入射する場合に比
べて、約2倍の光エネルギーが液晶層に入射し、画像表
示に寄与する。液晶ライトバルブを出射した光は従来例
と同様に、投写レンズ(4)によって投写光(110)
となり、スクリーン(5)上に拡大投写される。The transmitted P-polarized light enters the polarization rotation means (21). Similar to the first embodiment, the polarization rotation means (21) includes orthogonal total reflection surfaces (21a), (21b) and It is constituted by a total reflection prism with reflective optical path conversion means (21C) provided on one half of the slope. The transmitted P-polarized light (30) is the intersection line (
22), the polarization direction is rotated by 90'' by the polarization rotation means (21), resulting in S-polarized light (31) traveling in the opposite direction to the light beam (30). (20) becomes reflected S-polarized light (32),
It is reflected by the optical path conversion means (23a) and (23b) to become linearly polarized light (33b) having the same polarization direction and traveling direction as the above-mentioned reflected S-polarized light (33a), and passes through the condenser lens (10) to the liquid crystal light valve. (3). The polarization axis of the incident-side polarizing plate (8) is aligned with the direction of the incident linearly polarized light (33a), (33b), and compared to the conventional case where non-polarized illumination light is incident, Approximately twice as much light energy enters the liquid crystal layer and contributes to image display. As in the conventional example, the light emitted from the liquid crystal light valve is converted into a projection light (110) by a projection lens (4).
The image is enlarged and projected onto the screen (5).
次に、本発明の第3の実施例を第4図により説明する。Next, a third embodiment of the present invention will be described with reference to FIG.
本実施例は、第1の実施例を示す第1図と同様の偏光分
離手段(20) 、偏光回転手段(21)。This embodiment uses the same polarization separation means (20) and polarization rotation means (21) as in FIG. 1 showing the first embodiment.
光路変換手段(23)を、第2の従来例を示す第7図の
光学系に適用した例である。第1の実施例同様に光線(
33a)、 (33b)は同一の偏光方向・進行方向を
有する直線偏光となっている。また、入射側偏光板(8
R)、 (8G)、 (8B)の偏光軸は光線(33a
)、 (33b)の偏光方向と同一の向きに配置されて
いる。以上の構成により、第1の実施例と同様に、液晶
ライトバルブの入射側偏光板による光エネルギー損失を
低減できる。This is an example in which the optical path conversion means (23) is applied to the optical system shown in FIG. 7, which shows the second conventional example. Similarly to the first embodiment, the light beam (
33a) and (33b) are linearly polarized lights having the same polarization direction and traveling direction. In addition, the incident side polarizing plate (8
The polarization axes of R), (8G), and (8B) are rays (33a
), (33b) are arranged in the same direction as the polarization direction. With the above configuration, as in the first embodiment, it is possible to reduce optical energy loss due to the polarizing plate on the incident side of the liquid crystal light valve.
以上の各実施例では直交反射面の交線が45″をなす基
準角の方向とした場合について述べたが、この角度に自
由度があることは言うまでもない。また、いずれも液晶
ライトバルブ(3)または(3R)、 (3G)、 (
3B)の入射側偏光板(8)または(8R) 。In each of the above embodiments, the direction of the reference angle in which the intersection line of the orthogonal reflecting surfaces forms 45'' has been described, but it goes without saying that this angle has a degree of freedom. ) or (3R), (3G), (
3B) entrance side polarizing plate (8) or (8R).
(8G>、 (8B)を従来構成と同様に使用する場合
について説明した。しかし、光束(2)から生成される
光線(33a) 、(33b)は直線偏光であるため、
液晶ライトバルブ(3)または(3R)、 (3G)、
(3B)は、入射側偏光板(8)または(8R)、
(8G)、 (8B)を用いなくても画像形成が可能で
ある。偏光板は、偏光選択特性による光損失のほか、材
料自身の吸収損失があるが、上記のように入射側偏光板
(8)または(8R) 。We have explained the case where (8G>, (8B) is used in the same way as in the conventional configuration. However, since the light beams (33a) and (33b) generated from the light beam (2) are linearly polarized,
LCD light valve (3) or (3R), (3G),
(3B) is the incident side polarizing plate (8) or (8R),
Image formation is possible without using (8G) and (8B). In addition to optical loss due to polarization selection characteristics, the polarizing plate has absorption loss due to the material itself, but as described above, the incident side polarizing plate (8) or (8R).
(8G)、 (8B)を省略すれば、材料の吸収損失が
な(せるので、より高輝度な投写型表示装置が実現でき
る。また、本発明の各実施例は液晶ライトバルブとして
透過型のものを使用しているが、反射型液晶ライトバル
ブを使用した投写型表示装置も公知である。本発明の核
心をなす偏光分離手段(20) 、偏光回転手段(21
)、光路変換手段(23)または(23a)、 (23
b)からなる直線偏光化光学系は反射型液晶う、イトバ
ルブを使用した装置にも問題なく適用できる。さらに、
以上の実施例では液晶ライトバルブとして、液晶の旋光
性を利用した方式を例にとって説明したが、このほかに
も液晶の複屈折を電気的に制御する方式、例えばE C
B (electrically controlle
d birefringence)形等も公知であり、
これら入射側偏光板を必要とする液晶ライトバルブを使
用する投写型表示装置にも、本発明が適用出来ることも
ちろんである。また、ライトバルブの枚数も3枚に限ら
ず3枚以上、あるいは1〜2枚でも問題な(適用できる
。If (8G) and (8B) are omitted, absorption loss of the material is eliminated, so a projection display device with higher brightness can be realized.In addition, each embodiment of the present invention can be used as a transmissive type liquid crystal light valve. However, projection type display devices using reflective liquid crystal light valves are also known.Polarization separation means (20) and polarization rotation means (21), which are the core of the present invention, are
), optical path conversion means (23) or (23a), (23
The linearly polarized optical system consisting of b) can be applied without problems to devices using reflective liquid crystal or light valves. moreover,
In the above embodiments, the liquid crystal light valve has been explained using a method that utilizes the optical rotation of the liquid crystal as an example, but there are also methods that electrically control the birefringence of the liquid crystal, such as E C
B (electrically control
d birefringence) form etc. are also known,
It goes without saying that the present invention can also be applied to projection display devices that use liquid crystal light valves that require these incident-side polarizing plates. Further, the number of light valves is not limited to three, but three or more, or even one or two light valves may be used (applicable).
[発明の効果]
以上に詳述したように、本発明の投写型表示装置によれ
ば、光源から出射する無偏光(自然偏光)の照明光束を
液晶ライトバルブに入射すべき偏光方向を有する直線偏
光に変換する光学手段を具備しているので、液晶ライト
バルブの入射側偏光板を透過する光量が倍増し、高輝度
な投写画像を実現できる。また、従来問題であった入射
側偏光板の発熱による偏光特性の劣化、液晶の動作特性
変動を低減できる。さらに、従来必要であった液晶ライ
トバルブの入射側偏光板を省略すれば、偏光板の材料自
身の吸収損失が無(なるので、より高輝度でかつ簡素な
投写型表示装置が実現できる。[Effects of the Invention] As detailed above, according to the projection display device of the present invention, the unpolarized (naturally polarized) illumination light beam emitted from the light source is directed into a straight line having a polarization direction in which it should be incident on the liquid crystal light valve. Since it is equipped with an optical means for converting into polarized light, the amount of light that passes through the polarizing plate on the incident side of the liquid crystal light valve is doubled, making it possible to realize a high-brightness projected image. Furthermore, it is possible to reduce deterioration of polarization characteristics due to heat generation of the polarizing plate on the incident side and fluctuations in operating characteristics of the liquid crystal, which have been problems in the past. Furthermore, by omitting the polarizing plate on the incident side of the liquid crystal light valve, which was conventionally necessary, there is no absorption loss in the material of the polarizing plate itself, so a simpler projection display device with higher brightness can be realized.
第1.3.4図はそれぞれ本発明の実施例1,2.3に
おける投写型表示装置の光学系を示す説明図、第2図は
本発明の投写型表示装置に用いられる偏光回転手段の動
作原理と構成の説明図1.第5.7図はそれぞれ従来の
投写型表示装置の光学系の説明図、第6図は液晶ライト
バルブの′動作原理の説明図である。図において、<3
)、 (3R)、 (3G)、 (3B)は液晶ライト
バルブ、(4)は投写レンズ、(1)は光源手段、(2
0)は偏光分離手段、(21)は偏光回転手段、(21
a)、 (21b)は偏光回転手段中の全反射面、(2
1C)は偏光回転手段(21)中の反射光路変換手段、
(23)、 (23a)、 (23b)は光路変換手段
である。
なお、各図中、同一符号は同一または相当部分を示す。1.3.4 are explanatory diagrams showing the optical system of the projection type display device in Examples 1 and 2.3 of the present invention, respectively, and FIG. 2 is an illustration of the polarization rotation means used in the projection type display device of the present invention. Explanatory diagram of operating principle and configuration 1. 5.7 is an explanatory diagram of the optical system of a conventional projection display device, and FIG. 6 is an explanatory diagram of the operating principle of a liquid crystal light valve. In the figure, <3
), (3R), (3G), (3B) are liquid crystal light valves, (4) are projection lenses, (1) are light source means, (2
0) is a polarization separation means, (21) is a polarization rotation means, (21
a), (21b) are total reflection surfaces in the polarization rotation means, (2
1C) is a reflective optical path conversion means in the polarization rotation means (21);
(23), (23a), and (23b) are optical path changing means. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (1)
ブに形成された画像を拡大投写する投写レンズと、該ラ
イトバルブを照明する無偏光光束を出射する光源手段よ
りなる光学系を有する投写型表示装置において、 前記無偏光光束を第1及び第2の直線偏光光束に分離す
る偏光分離手段と、2つの互いに直交する第1及び第2
の全反射面と斜面を有する全反射プリズムより成り、該
全反射面の交線を、前記第2の直線偏光光束の偏光方向
と45°をなす基準角の方向とし、前記斜面の前記交線
を境界とする半面に反射ミラーを形成した構成で、前記
反射ミラーを形成していない前記斜面の半面から入射し
た前記第2の直線偏光光束を、前記第1の全反射面、第
2の全反射面の順に反射して前記反射ミラーに導き、該
反射ミラーで反射された光束を、前記第2の全反射面、
第1の全反射面の順に反射し、前記第2の直線偏光光束
に対して偏光方向が90°回転された第3の直線偏光光
束を前記偏光分離手段に再入射させる偏光回転手段と、
前記第3の直線偏光光束が前記偏光分離手段に再入射し
た後出射して得られる光束を、前記第1の直線偏光光束
と同じ進行方向及び偏光方向を有する第4の直線偏光光
束とする光路変換手段とを具備し、前記第1の直線偏光
光束及び前記第4の直線偏光光束により前記液晶ライト
バルブを照明することを特徴とする投写型表示装置。[Scope of Claims] An optical system comprising a liquid crystal light valve for forming an image, a projection lens for enlarging and projecting the image formed on the liquid crystal light valve, and a light source means for emitting a non-polarized light flux to illuminate the light valve. a projection type display device having a polarization separation means for separating the unpolarized light beam into first and second linearly polarized light beams;
a total reflection prism having a total reflection surface and an inclined surface, the intersection line of the total reflection surface is the direction of a reference angle that forms 45 degrees with the polarization direction of the second linearly polarized light beam, and the intersection line of the inclined surface A reflection mirror is formed on a half surface with a boundary of The light beam is reflected in the order of the reflecting surfaces and guided to the reflecting mirror, and the light beam reflected by the reflecting mirror is guided to the second total reflecting surface,
Polarization rotation means for causing a third linearly polarized light beam, which is reflected in the order of the first total reflection surface and whose polarization direction has been rotated by 90 degrees with respect to the second linearly polarized light beam, to be re-injected into the polarization separation means;
an optical path in which a light beam obtained by the third linearly polarized light beam re-entering the polarization separation means and then exiting is a fourth linearly polarized light beam having the same traveling direction and polarization direction as the first linearly polarized light beam; A projection type display device, comprising: a conversion means, and illuminates the liquid crystal light valve with the first linearly polarized light beam and the fourth linearly polarized light beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1333942A JP2691785B2 (en) | 1989-12-22 | 1989-12-22 | Projection display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1333942A JP2691785B2 (en) | 1989-12-22 | 1989-12-22 | Projection display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03192320A true JPH03192320A (en) | 1991-08-22 |
JP2691785B2 JP2691785B2 (en) | 1997-12-17 |
Family
ID=18271701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1333942A Expired - Fee Related JP2691785B2 (en) | 1989-12-22 | 1989-12-22 | Projection display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2691785B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297337A (en) * | 1992-04-17 | 1993-11-12 | Kodo Eizo Gijutsu Kenkyusho:Kk | Polarized light converting element and projection type liquid crystal display device |
US5512967A (en) * | 1993-09-28 | 1996-04-30 | Proxima Corporation | Projector |
WO1998043225A3 (en) * | 1997-03-25 | 1999-02-25 | Sharp Kk | Optical device for polarization conversion and projection display using said device |
-
1989
- 1989-12-22 JP JP1333942A patent/JP2691785B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05297337A (en) * | 1992-04-17 | 1993-11-12 | Kodo Eizo Gijutsu Kenkyusho:Kk | Polarized light converting element and projection type liquid crystal display device |
US5512967A (en) * | 1993-09-28 | 1996-04-30 | Proxima Corporation | Projector |
WO1998043225A3 (en) * | 1997-03-25 | 1999-02-25 | Sharp Kk | Optical device for polarization conversion and projection display using said device |
Also Published As
Publication number | Publication date |
---|---|
JP2691785B2 (en) | 1997-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3635867B2 (en) | Projection type liquid crystal display device | |
JPH03217814A (en) | Liquid crystal projector | |
JP2951858B2 (en) | Projection type color liquid crystal display | |
JPH03122631A (en) | Projection type liquid crystal display device | |
JPH06138413A (en) | Plate type polarized light separating device and polarized light illuminating device using the same | |
JPH02250026A (en) | Polarization beam splitter device and light valve optical device using same | |
JPH09159983A (en) | Projection type display device and multivision projection type display device | |
WO2002001289A1 (en) | Projector | |
US6746123B2 (en) | Projector for preventing light loss | |
JPH0672987B2 (en) | Projection type color display device | |
JPH1031425A (en) | Projection type display device | |
JP3654798B2 (en) | Image display device and lighting device | |
JP2003195223A (en) | Prism, projection device and optical component | |
US6992833B2 (en) | Color combining optical system, projection-type display optical system, projection-type image display apparatus, and image display system | |
JPH03192320A (en) | Projection type display device | |
JP2011059461A (en) | Projection display device | |
JP3915712B2 (en) | Polarization separating element and projection display device using the same | |
JP2003121811A (en) | Liquid crystal rear projection television | |
JP2004309751A (en) | Color separating and synthesizing optical system and picture display device | |
JP2691784B2 (en) | Projection display device | |
JPH06202063A (en) | Polarized light converting element and projection type liquid crystal display device | |
JP2003337375A (en) | Projector | |
JPH05232433A (en) | Polarized light converting element and projection type liquid crystal display device | |
JP2800812B2 (en) | Color image generation unit | |
JPH1097012A (en) | Color resultant optical device and projection display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |