JPH03191835A - Infrared-ray optical apparatus - Google Patents
Infrared-ray optical apparatusInfo
- Publication number
- JPH03191835A JPH03191835A JP63314694A JP31469488A JPH03191835A JP H03191835 A JPH03191835 A JP H03191835A JP 63314694 A JP63314694 A JP 63314694A JP 31469488 A JP31469488 A JP 31469488A JP H03191835 A JPH03191835 A JP H03191835A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- optical system
- cold shield
- cooling
- shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 62
- 238000001816 cooling Methods 0.000 claims abstract description 49
- 239000007787 solid Substances 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 46
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000009977 dual effect Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/061—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、例えば赤外線画像を得る赤外線光学装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an infrared optical device that obtains, for example, an infrared image.
[従来の技術]
第2図は、例えばR,D、Hudson、Jr、“In
fraredSystem Engineering”
、John Vilcy & 5ons、 1969
年、 p、354に示された従来の赤外線光学装置を示
す断面図であり1図において、1は赤外線を結像する赤
外光学系、2は上記赤外光学系1に入射する赤外線、:
3は上記赤外光学系1を保持する鏡筒、4は真空、低温
状態を得るためのデユア(Dewar)瓶、5は上記デ
ユア瓶4の赤外光学系側開口に設けられたデユア窓、6
はデユア瓶4の凸状底面に設けられた4例えば微小な素
子を2次元アレイ状に並べた赤外固体撮像素子などの赤
外線検出素子、7は上記赤外線検出素子6への雑音光の
入射を遮るためのコールドシールド、8は」二記デユア
瓶4を覆うとともに鏡筒3を保持する筐体、9は筺体8
に取り付けられ冷却部がデユア瓶4の四部に挿入された
冷却装置である。[Prior Art] FIG. 2 shows, for example, R.D. Hudson, Jr., “In
fraredSystem Engineering”
, John Vilcy & 5ons, 1969
This is a cross-sectional view showing a conventional infrared optical device shown in 1999, p. 354. In figure 1, 1 is an infrared optical system that images infrared rays, 2 is an infrared ray that is incident on the infrared optical system 1, and:
3 is a lens barrel that holds the infrared optical system 1; 4 is a Dewar bottle for obtaining a vacuum and low temperature state; 5 is a Dewar window provided at the opening on the infrared optical system side of the Dewar bottle 4; 6
4 is an infrared detection element such as an infrared solid-state image sensor in which minute elements are arranged in a two-dimensional array, and 7 is provided on the convex bottom of the Dua bottle 4, and 7 is an infrared detection element that prevents noise light from entering the infrared detection element 6. A cold shield for shielding, 8 is a housing that covers the dual bottle 4 and holds the lens barrel 3, 9 is a housing 8
This is a cooling device that is attached to the holder and has a cooling section inserted into four parts of the Dua bottle 4.
次に動作について説明する。Next, the operation will be explained.
赤外光学系1に入射した赤外線2は、デユア窓5及びコ
ールドシールド7の開[」7aを通って赤外線検出素子
6上に結像する。赤外線検出素子6は、感度を得るため
に冷却装置9によって冷却される。デユア瓶4とデユア
窓5で囲まれた空間は、効率良く赤外線検出素子6を冷
却するために真空にしである。コールドシールド7はデ
ユア瓶4に取付けられ、赤外線検出素子6と同程度に冷
却されており、コールドシールド7から放射される赤外
線は検出すべき赤外線2に比べ無視できる程小さい。コ
ールドシールド7の開ロアaは、赤外線検出素子6の下
端6aに結像する赤外線2a及び赤外線検出素子6の上
端6bに結像する赤外線2bがそれぞれコールドシール
ド7に妨げられることなく赤外線検出素子6に到達する
ために必要な径である。従って、コールドシールド7を
設置することにより、赤外光学系1を透過した赤外線2
以外に、鏡wJ3等の常温の背景から放射され赤外線検
出素子6に入射する不要な雑音光を極力少なくする構成
となっている。コールドシールド7の雑音光低減の効率
ηは、第1式に示すように、赤外線検出素子6からコー
ルドシールド7の開ロアaを見込む立体角Ω6と、赤外
線検出素子6に結像する赤外線2の光束の立体角Ω。の
比η=Ω。/Ω。 +11で表さ
れる。ηく1.すなわちΩ。〈Ω。では、第2図に斜線
で示した立体角内で鏡筒3から放射された雑音光が赤外
線検出素子6の下端6aに入射する。赤外線検出素子6
の他の点においても同様に雑音光が入射する。従ってη
く]では、検出信号のS/Nの低下だけでなく、赤外線
光学装置の環境温度が変化して鏡筒3の温度が上昇した
ときには、最悪の場合、赤外線検出素子6の出力が雑音
光で飽和してしまい信号が検出できなくなる恐れがある
。The infrared rays 2 incident on the infrared optical system 1 pass through the dual window 5 and the opening 7a of the cold shield 7, and form an image on the infrared detection element 6. The infrared detection element 6 is cooled by a cooling device 9 in order to obtain sensitivity. The space surrounded by the dure bottle 4 and dure window 5 is evacuated to efficiently cool the infrared detection element 6. The cold shield 7 is attached to the Dua bottle 4 and is cooled to the same extent as the infrared detection element 6, and the infrared rays emitted from the cold shield 7 are negligibly small compared to the infrared rays 2 to be detected. The opening lower a of the cold shield 7 allows the infrared rays 2a focused on the lower end 6a of the infrared detection element 6 and the infrared rays 2b focused on the upper end 6b of the infrared detection element 6 to be transmitted to the infrared detection element 6 without being obstructed by the cold shield 7. This is the diameter required to reach . Therefore, by installing the cold shield 7, the infrared rays transmitted through the infrared optical system 1 can be
In addition, the configuration is such that unnecessary noise light emitted from the room temperature background such as the mirror wJ3 and incident on the infrared detection element 6 is minimized. The noise light reduction efficiency η of the cold shield 7 is determined by the solid angle Ω6 looking into the open lower a of the cold shield 7 from the infrared detection element 6, and the infrared 2 imaged on the infrared detection element 6, as shown in the first equation. Solid angle Ω of the luminous flux. The ratio η=Ω. /Ω. It is expressed as +11. ηku1. In other words, Ω. 〈Ω. 2, noise light emitted from the lens barrel 3 enters the lower end 6a of the infrared detection element 6 within the solid angle indicated by hatching in FIG. Infrared detection element 6
Noise light is similarly incident at other points. Therefore η
] In addition to a decrease in the S/N of the detection signal, when the environmental temperature of the infrared optical device changes and the temperature of the lens barrel 3 increases, in the worst case, the output of the infrared detection element 6 may be caused by noise light. There is a risk that the signal will become undetectable due to saturation.
一方、η〉1.すなわちΩ。〉Ω。のときは、鏡筒3か
ら放射される雑音光が直接赤外線検出素子6に入射する
ことはないが、赤外光学系1を透過して赤外線検出素子
6に結像する赤外線2がコールドシールド7の開ロアa
で制限され、信号光が減少する。従って、信号光を減少
させることなく最も雑音光を低減できるのは、コールド
シールド7の効率η=1.すなわちΩ。=Ω0のときで
ある。On the other hand, η〉1. In other words, Ω. 〉Ω. In this case, the noise light emitted from the lens barrel 3 does not directly enter the infrared detecting element 6, but the infrared 2 that passes through the infrared optical system 1 and forms an image on the infrared detecting element 6 passes through the cold shield 7. opening lower a
, and the signal light decreases. Therefore, the cold shield 7 with efficiency η=1 can reduce noise light most without reducing signal light. In other words, Ω. =Ω0.
η=1である赤外線光学装置は、コールドシールド7の
開ロアaを赤外光学系1の開口絞りと一致させることに
より得られる。第3図は、例えばR,E、Fische
r、 Photonics 5pectra、 p、5
3〜60(198B)に示されたコールドシールド7の
効率η=1である従来の赤外線光学装置を示す断面図で
あり、図において、1〜9は第2図に示した従来例と同
様なものである。10は赤外光学系1の開口絞り、11
は赤外光学系1の光軸である。An infrared optical device in which η=1 is obtained by matching the opening lower a of the cold shield 7 with the aperture stop of the infrared optical system 1. FIG. 3 shows, for example, R, E, Fische
r, Photonics 5pectra, p, 5
3-60 (198B) is a cross-sectional view showing a conventional infrared optical device in which the efficiency η of the cold shield 7 is 1, and in the figure, 1-9 are similar to the conventional example shown in FIG. It is something. 10 is an aperture stop of the infrared optical system 1, 11
is the optical axis of the infrared optical system 1.
第3図に示した赤外線光学装置において、赤外線検出素
子6の中心から見込むコールドシールド7の開ロアaの
立体角Ω。は、赤外光学系1のF数で決まり。In the infrared optical device shown in FIG. 3, the solid angle Ω of the open lower a of the cold shield 7 seen from the center of the infrared detection element 6. is determined by the F number of the infrared optical system 1.
Ω。=−Lゴ (sr) (21F
である。これにより、赤外線検出素子6に入射する雑音
光は、赤外光学系1自身の放射光と、冷却されたコール
ドシールド7から放射される微かな放射光に低減される
。Ω. =-Lgo (sr) (21F) Therefore, the noise light incident on the infrared detection element 6 is composed of the emitted light of the infrared optical system 1 itself and the faint radiation emitted from the cooled cold shield 7. Reduced to light.
[発明が解決しようとする課題]
第3図に示した従来の赤外線光学装置において、赤外線
検出素子6の中心に対する上端6bでの赤外線2の相対
的な照度Sは、赤外光学系1に歪曲がなければ、第3式
%式%(3)
で与えられる。第3式においてθは、赤外線検出素子6
の上端6bと開口絞り10の中心を結ぶ直線と、赤外光
学系1の光軸11とが成す角度である。[Problems to be Solved by the Invention] In the conventional infrared optical device shown in FIG. If not, it is given by the third formula (3). In the third equation, θ is the infrared detection element 6
This is the angle formed by the straight line connecting the upper end 6b of the aperture stop 10 and the center of the aperture stop 10, and the optical axis 11 of the infrared optical system 1.
第3式から、赤外線検出素子6上の赤外線2の照度分布
は、θが小、すなわち開口絞り10と赤外線検出素子6
間の距離が赤外線検出素子6の寸法に比して大である程
、−様となることがわかる。From the third equation, the illuminance distribution of the infrared rays 2 on the infrared detection element 6 is such that θ is small, that is, the aperture diaphragm 10 and the infrared detection element 6
It can be seen that the larger the distance between them is compared to the size of the infrared detecting element 6, the more negative the difference becomes.
鏡筒3から放射される雑音光が赤外線検出素子6に入射
しない低雑音な赤外線光学装置とするためには、上記で
説明したようにコールドシールド7の開[」7 aを赤
外光学系1の開l二]絞り10と一致させる必要がある
。従って、赤外線検出素子6−■−の赤外線2の照度を
一様に近くするためには、」−ルドシールド′7の開r
j 7 aと赤外線検出素子6間の距離(以トコールド
シールドの高さと呼ぶ)を大きくとらねばならず、コー
ルドシールド7が長くなる。また、赤外線2が制限、す
、れることなく赤外線検出素子6に入射するために必要
なコールドシールド7の開「17aを見込む立体角は、
第2式で示したように赤外光学系1のF数で決まるので
、コールドシールドの高さが増大するにつれ開[1も増
大し、大形のコールドシールド7が必要となる2
特に、赤外線画像を得るために赤外線検出素子6として
微小な素子を2次元アレイ状に並べた赤外固体撮像素子
を用いる場合、広視野、高分解能な画像をネ:)るため
に多数の素子を用いた人形の赤外固体撮像素子が開発さ
れつつあり、かなり大形のコール[くシールド7が必要
となる。In order to obtain a low-noise infrared optical device in which the noise light emitted from the lens barrel 3 does not enter the infrared detection element 6, as explained above, the opening [7a] of the cold shield 7 must be connected to the infrared optical system 1. It is necessary to match the aperture 10 with the aperture 10. Therefore, in order to make the illuminance of the infrared rays 2 of the infrared detection element 6-■- nearly uniform, it is necessary to open the shield '7.
j 7 a and the infrared detection element 6 (hereinafter referred to as the height of the cold shield) must be made large, and the cold shield 7 becomes long. In addition, the solid angle looking into the opening 17a of the cold shield 7 necessary for the infrared rays 2 to enter the infrared detection element 6 without being restricted or blocked is as follows:
As shown in the second equation, it is determined by the F number of the infrared optical system 1, so as the height of the cold shield increases, the opening [1] also increases, and a large cold shield 7 is required2. When using an infrared solid-state image sensor in which minute elements are arranged in a two-dimensional array as the infrared detection element 6 to obtain an image, a large number of elements are used to obtain a wide-field, high-resolution image. Infrared solid-state imaging devices for dolls are being developed, and a fairly large coal shield 7 is required.
このようにコールドシールド7が人形化すると、コール
ドシールド7はデユア瓶4に取付けlly。When the cold shield 7 is turned into a doll in this way, the cold shield 7 is attached to the Dua bottle 4.
れ赤外線検出素子6とともに冷却されるのe、冷却装置
9は、大形の赤外線検出素子〇に加えて大形のコールド
シールド7を冷却しなければならず、熱負荷が増大する
という課題があった。The cooling device 9 has to cool the large cold shield 7 in addition to the large infrared detecting element 6, which poses the problem of increased heat load. Ta.
更に、冷却装置9の熱負荷が増大4ると、赤外線2以外
(−6を所定の温度2例えば液体窒素411度まで冷却
するのに要する時間が増し17.赤外線ソロ学装置が動
作するまでに時間を要するという課題があった。Furthermore, as the heat load on the cooling device 9 increases, the time required to cool the infrared light 2 (-6) to a predetermined temperature 2, for example, liquid nitrogen 411 degrees increases17. The problem was that it took time.
この発明は−1−記のような課題を解消するためになさ
れたもので、コールドシールドを大形化することなく低
雑音化が図れる赤外線光学装置を得ることを目的とする
。This invention has been made to solve the problems mentioned in -1-, and aims to provide an infrared optical device that can reduce noise without increasing the size of the cold shield.
L課題を解決するための手段」
この発明に係る赤外線光学装置は、赤外線検出素子・と
コールドシールドを冷却する冷却装置とは別の第2の冷
却装置により冷却される冷却絞りを赤外光学系とコール
ドシールドの間に、設置して。An infrared optical device according to the present invention includes a cooling aperture that is cooled by a second cooling device that is separate from a cooling device that cools an infrared detection element and a cold shield. Install it between the and cold shield.
赤外線検出素子からコールドシールドの11旧−1を見
込む立体角と赤外光学系の開口絞りを見込む立体角間を
覆うようにしたものである。It is designed to cover the solid angle between the infrared detection element and the 11-1 of the cold shield and the solid angle that looks into the aperture stop of the infrared optical system.
[作用]
この発明における冷却絞りは、第2の冷却装置によって
冷却され、赤外光学系とコールドシールド間の背景から
赤外線検出素子へ入射する雑音光を低減するので、雑音
光を低減するためにコールドシールドの開[」を赤外光
学系の開]コ絞りと一致させる必要がなく、小形のコー
ルドシールドを用いることにより、赤外線検出素子及び
コールドシールドを冷却する冷却装置の熱負荷を増大さ
せることなく、赤外線検出素子の周辺光量の低下の少な
い、低雑音な赤外線光学装置を構成することができる。[Function] The cooling aperture in the present invention is cooled by the second cooling device and reduces the noise light that enters the infrared detection element from the background between the infrared optical system and the cold shield. There is no need to match the aperture of the cold shield with the aperture of the infrared optical system, and by using a small cold shield, the thermal load on the cooling device that cools the infrared detection element and the cold shield can be increased. Therefore, it is possible to construct a low-noise infrared optical device in which the amount of light around the infrared detection element is less reduced.
[実施例] 以下、この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.
第1図は、この発明の一実施例を示す断面図であり1図
において、1〜11は上記従来例と同様のものである。FIG. 1 is a sectional view showing one embodiment of the present invention, and in FIG. 1, numerals 1 to 11 are the same as those in the conventional example.
】−2は赤外光学系1の開口絞り10の位置にその赤外
光学系側聞[コ12aが一致するように設置した冷却絞
り、13は上記冷却絞り12に取付けられた第2の冷却
装置であり、J−記冷却絞り1−2は冷却装置1−:3
を介して筐体8の内壁に取付けられ、この筐体8に断熱
材14を介して鏡筒3が取付けられている。。]-2 is a cooling diaphragm installed so that the aperture diaphragm 10 of the infrared optical system 1 coincides with the side aperture 12a of the infrared optical system, and 13 is a second cooling diaphragm attached to the cooling diaphragm 12. The cooling aperture 1-2 in J- is a cooling device 1-:3.
The lens barrel 3 is attached to the inner wall of the housing 8 via a heat insulating material 14 . .
冷却絞り12は、第1図に斜線で示したように、赤外線
検出素子6−Lの点から=]−ルドシールド7の開ロア
aを見込む立体角Ω。と赤外光学系1の開口絞り10を
見込む立体角Ω。の差であるΩ。−Ω0の立体角内の部
分を覆うように設置する。冷却絞り12の内壁はベルベ
ットコーティング等を塗布して反射率を低減することに
より、赤外光学系1及び鏡筒3から放射された不要な赤
外線が冷却絞り12の内壁で反射して赤外線検出素子6
に入射するのを防ぐ。As indicated by diagonal lines in FIG. 1, the cooling aperture 12 has a solid angle Ω from the point of the infrared detection element 6-L to the open lower a of the shield 7. and the solid angle Ω looking into the aperture stop 10 of the infrared optical system 1. Ω, which is the difference between - Install so as to cover the area within the solid angle of Ω0. The inner wall of the cooling aperture 12 is coated with a velvet coating or the like to reduce the reflectance, so that unnecessary infrared rays emitted from the infrared optical system 1 and the lens barrel 3 are reflected on the inner wall of the cooling aperture 12 and detected by the infrared detection element. 6
prevent it from entering.
このように冷却絞り12が設置されているので、検出す
べき信号光である赤外線2以外に赤外線検出素子6に入
射する不要な雑音光は、赤外光学系1白身、冷却絞り1
2及びコールドシールド7からの放射光に限られる。Since the cooling diaphragm 12 is installed in this way, unnecessary noise light that enters the infrared detection element 6 in addition to the infrared ray 2 that is the signal light to be detected is transmitted through the infrared optical system 1 and the cooling diaphragm 1.
2 and the cold shield 7.
絶対温度Tである黒体の分光放射輝度W(λ。The spectral radiance W(λ) of a blackbody whose absolute temperature is T.
T)は、第4式
%式%)
(4)
で与えられる。ここで、λは放射光の波長、hはブラン
ク定数、にはボルツマン定数、Cは光速塵である。第4
式から、例えば放射光の波長λを4μmとした場合、2
0℃のときの放射輝度は60℃のときの放射輝度の1/
4以下となることがわかる。従って、冷却絞り12は必
ずしも赤外線検出素子6と同程度の温度まで冷却される
必要はなく、第2の冷却袋M13を例えばペルチェ素子
などで構成し、冷却絞り12を常温以下に保つことで鏡
筒3の温度が上昇しても雑音光の増大を防ぐことができ
る。T) is given by the fourth formula (%) (4). Here, λ is the wavelength of the emitted light, h is Blank's constant, is Boltzmann's constant, and C is the velocity of light dust. Fourth
From the formula, for example, when the wavelength λ of the radiation light is 4 μm, 2
The radiance at 0°C is 1/ of the radiance at 60°C.
It can be seen that the value is 4 or less. Therefore, the cooling diaphragm 12 does not necessarily need to be cooled to the same temperature as the infrared detection element 6, and by configuring the second cooling bag M13 with, for example, a Peltier element, and keeping the cooling diaphragm 12 at room temperature or below, the mirror Even if the temperature of the tube 3 rises, it is possible to prevent an increase in noise light.
第2の冷却装置13としてペルチェ素子を用いた場合、
冷却絞り12の冷却に伴う放熱は筐体8を介して行うこ
とができる。この場合、第2の冷却装置13の放熱によ
り鏡筒3及び赤外光学系1の温度が上昇するのを防ぐた
めに、!lI筒3は断熱材14を介して筐体8に取付け
られる。When a Peltier element is used as the second cooling device 13,
Heat dissipation accompanying cooling of the cooling aperture 12 can be performed via the housing 8. In this case, in order to prevent the temperature of the lens barrel 3 and the infrared optical system 1 from rising due to heat radiation of the second cooling device 13! The lI cylinder 3 is attached to the housing 8 via a heat insulating material 14.
また、鏡筒3.デユア瓶4及び筐体8で囲まれた空間に
窒素ガス等の乾燥ガスを封入しておくことにより、冷却
絞り12を常温以下の低温に冷却しても結露を防ぐこと
ができる。Also, lens barrel 3. By filling the space surrounded by the Dua bottle 4 and the housing 8 with dry gas such as nitrogen gas, dew condensation can be prevented even if the cooling aperture 12 is cooled to a low temperature below room temperature.
以上のように、この赤外線光学装置によれば、コールド
シールド7の開ロアaは赤外光学系1の開口絞り10と
一致する必要がないので、赤外線検出素子6上における
赤外線2の照度分布を一様にするために開口絞り10を
赤外線検出素子6から離した構成としても、コールドシ
ールド7の高さを高くして大形にする必要がなく、赤外
線検出素子6及びコールドシールド7を冷却する冷却装
置9の負荷が増大することはない。As described above, according to this infrared optical device, the opening lower a of the cold shield 7 does not need to coincide with the aperture stop 10 of the infrared optical system 1, so that the illuminance distribution of the infrared rays 2 on the infrared detection element 6 can be controlled. Even if the aperture diaphragm 10 is separated from the infrared detection element 6 for uniformity, there is no need to increase the height and size of the cold shield 7, and the infrared detection element 6 and the cold shield 7 can be cooled. The load on the cooling device 9 does not increase.
なお、上記実施例では、赤外光学系1とコールドシール
ド7の間に開口絞り10があり、開口絞り10と冷却絞
り12の赤外光学系側間【]7aが一致している場合に
ついて説明したが、開口絞り10が赤外光学系1の内部
にある場合についても、冷却絞り12を赤外光学系1と
コールドシールド7の間に設置することにより、鏡筒3
から放射され赤外線検出素子6に入射する雑音光を低減
でき、同様の効果が得られる。In the above embodiment, the aperture diaphragm 10 is provided between the infrared optical system 1 and the cold shield 7, and the case where []7a between the aperture diaphragm 10 and the cooling diaphragm 12 on the infrared optical system sides coincide is explained. However, even when the aperture stop 10 is located inside the infrared optical system 1, by installing the cooling stop 12 between the infrared optical system 1 and the cold shield 7, the lens barrel 3
It is possible to reduce the noise light emitted from the infrared light detecting element 6 and enter the infrared detecting element 6, and a similar effect can be obtained.
[発明の効果コ
以上のように、この発明によれば、赤外光学系とコール
ドシールドとの間に、赤外線検出素子からコールドシー
ルドの開口を見込む立体角と赤外光学系の開口絞りを見
込む立体角間を覆い第2の冷却装置によって冷却される
冷却絞りを備え、赤外光学系とコールドシールド間の背
景から赤外線検出素子へ入射する雑音光を低減する構成
としたので、背景温度が上昇しても低雑音の赤外線光学
装置が得られ、また、赤外線検出素子とともに冷却され
るコールドシールドを小形なもので構成できるので、赤
外線検出素子の冷却装置の熱負荷を軽減し、冷却に要す
る時間を短縮するという効果がある。[Effects of the Invention] As described above, according to the present invention, between the infrared optical system and the cold shield, there is a solid angle at which the aperture of the cold shield is viewed from the infrared detection element, and an aperture stop of the infrared optical system. It is equipped with a cooling aperture that covers the solid angle and is cooled by a second cooling device, and is configured to reduce noise light that enters the infrared detection element from the background between the infrared optical system and the cold shield, so the background temperature does not rise. In addition, since the cold shield that is cooled together with the infrared detection element can be constructed with a small size, the heat load on the cooling device for the infrared detection element can be reduced and the time required for cooling can be reduced. It has the effect of shortening it.
第1図はこの発明の一実施例を示す断面図、第2図は従
来の赤外線光学装置を示す断面図、第3図は低雑音化さ
れた従来の赤外線光学装置を示す断面図である。
1は赤外光学系、2は赤外線、3は鏡筒、4はデユア瓶
、5はデユア窓、6は赤外線検出素子、7はコールドシ
ールド、7aはコールドシールドの開口、8は筐体、9
は冷却装置、10は開口絞り、11は光軸、12は冷却
絞り、13は第2の冷却装置、14は断熱材。
なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional infrared optical device, and FIG. 3 is a sectional view showing a conventional infrared optical device with reduced noise. 1 is an infrared optical system, 2 is an infrared ray, 3 is a lens barrel, 4 is a dual bottle, 5 is a dual window, 6 is an infrared detection element, 7 is a cold shield, 7a is an opening in the cold shield, 8 is a housing, 9
10 is a cooling device, 10 is an aperture diaphragm, 11 is an optical axis, 12 is a cooling diaphragm, 13 is a second cooling device, and 14 is a heat insulating material. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (1)
ぞれ冷却され、上記赤外光学系の結像位置に設けられた
赤外線検出素子及び上記赤外光学系側に面して開口を有
し赤外線検出素子への雑音光を遮蔽するコールドシール
ドとを備えた赤外線光学装置において、 上記赤外光学系とコールドシールドとの間に、赤外線検
出素子からコールドシールドの開口を見込む立体角と赤
外光学系の開口絞りを見込む立体角間を覆い上記冷却装
置とは異なる第2の冷却装置によって冷却される冷却絞
りを備えたことを特徴とする赤外線光学装置。[Scope of Claims] An infrared optical system that forms an image of infrared rays, an infrared detection element that is cooled by a cooling device, and is provided at an imaging position of the infrared optical system, and an infrared detection element that faces the infrared optical system side. In an infrared optical device comprising a cold shield having an aperture and shielding noise light from reaching the infrared detecting element, a three-dimensional structure is provided between the infrared optical system and the cold shield, and the infrared detecting element looks through the aperture of the cold shield. An infrared optical device comprising a cooling diaphragm that covers a solid angle between a corner and an aperture stop of an infrared optical system and is cooled by a second cooling device different from the above cooling device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314694A JPH0629778B2 (en) | 1988-12-13 | 1988-12-13 | Infrared optics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63314694A JPH0629778B2 (en) | 1988-12-13 | 1988-12-13 | Infrared optics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03191835A true JPH03191835A (en) | 1991-08-21 |
JPH0629778B2 JPH0629778B2 (en) | 1994-04-20 |
Family
ID=18056424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63314694A Expired - Fee Related JPH0629778B2 (en) | 1988-12-13 | 1988-12-13 | Infrared optics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629778B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057550A (en) * | 1993-02-04 | 2000-05-02 | Steinheil Optronik Gmbh | Infrared objective |
WO2007140901A1 (en) * | 2006-06-09 | 2007-12-13 | ArcelorMittal Eisenhüttenstadt GmbH | Apparatus for suppressing radiation components which corrupt measured values in contactlessly operating ir measuring devices in high-temperature ovens |
CN111238659A (en) * | 2020-01-20 | 2020-06-05 | 武汉高芯科技有限公司 | Cold screen and refrigeration type infrared detector with stray light inhibiting function |
-
1988
- 1988-12-13 JP JP63314694A patent/JPH0629778B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6057550A (en) * | 1993-02-04 | 2000-05-02 | Steinheil Optronik Gmbh | Infrared objective |
WO2007140901A1 (en) * | 2006-06-09 | 2007-12-13 | ArcelorMittal Eisenhüttenstadt GmbH | Apparatus for suppressing radiation components which corrupt measured values in contactlessly operating ir measuring devices in high-temperature ovens |
CN111238659A (en) * | 2020-01-20 | 2020-06-05 | 武汉高芯科技有限公司 | Cold screen and refrigeration type infrared detector with stray light inhibiting function |
CN111238659B (en) * | 2020-01-20 | 2021-09-07 | 武汉高芯科技有限公司 | Cold screen and refrigeration type infrared detector with stray light inhibiting function |
Also Published As
Publication number | Publication date |
---|---|
JPH0629778B2 (en) | 1994-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101736418B1 (en) | Dewar assembly for IR detection systems | |
US9194750B2 (en) | Infra-red imager | |
US7002154B2 (en) | Optical system for a wide field of view staring infrared sensor having improved optical symmetry | |
JPH10281864A (en) | Thermal type infrared camera | |
EP0872718A2 (en) | Infrared video camera system with uncooled focal plane array and radiation shield | |
JPH03142330A (en) | Radiation shield for infrared detector cooled thermoelectrically | |
US20110080483A1 (en) | Infra-red imager | |
JPH03111997A (en) | Photoelectric smoke sensor | |
JPH03191835A (en) | Infrared-ray optical apparatus | |
US8254018B2 (en) | Monolithic lens/reflector optical component | |
US5298752A (en) | Retroreflectors for increasing cold shield efficiency | |
US11546530B2 (en) | Imaging device and solid-state imaging device | |
US6310347B1 (en) | Spectrometer with planar reflective slit to minimize thermal background at focal plane | |
JP2760789B2 (en) | Infrared lens | |
JP2531197B2 (en) | Compound optical system device | |
JPH0222522A (en) | Infrared-ray optical device | |
JPH08193880A (en) | Infrared detector | |
JP2011520158A (en) | Zero optical power reflective and wide-angle optical system with rear aperture stop and long rear focal length | |
JPS6251381A (en) | Infrared ray image pickup device | |
JP3344300B2 (en) | Infrared imaging device | |
US3163760A (en) | Refractive optics infrared scanning system | |
JPH01155220A (en) | Infrared optical system | |
JP2805954B2 (en) | Infrared imaging device | |
JPS63106531A (en) | Infrared radiometer | |
JPS6218848B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |