JPH03199988A - Position locating apparatus - Google Patents
Position locating apparatusInfo
- Publication number
- JPH03199988A JPH03199988A JP33667689A JP33667689A JPH03199988A JP H03199988 A JPH03199988 A JP H03199988A JP 33667689 A JP33667689 A JP 33667689A JP 33667689 A JP33667689 A JP 33667689A JP H03199988 A JPH03199988 A JP H03199988A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- station
- master station
- distance
- reference voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、無人搬送車、移動口がット等に適用される位
置標定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a position locating device applied to automatic guided vehicles, movable carts, and the like.
近年、工場ラインの自動化や危険場所への物品搬送等、
省力化や危険防止を目的とした無人搬送車の研究が盛ん
に行なわれている。現在、無人搬送車は予め走行ルート
を設定する必要があり、既定ルート外の走行が不可能な
ために自在性に欠け、任意ルートを自律走行する高機能
無人搬送車への要求が高まっている。かかる自律走行を
行うには。In recent years, automation of factory lines and transportation of goods to dangerous areas, etc.
Research into automatic guided vehicles is being actively conducted with the aim of saving labor and preventing danger. Currently, automated guided vehicles need to set a travel route in advance and are unable to travel outside of the predetermined route, so they lack flexibility, and there is a growing demand for high-performance automated guided vehicles that can autonomously travel along arbitrary routes. . To perform such autonomous driving.
走行エリア内における相対位置を認識する事が必要不可
欠である。It is essential to recognize the relative position within the driving area.
従来の位置標定装置は、第5図に示す様に主局10と複
数の従局30tL〜30nから構成されておシ、主局1
0が送信電波を発射し、従局30IL〜30nからの返
信電波を受信するまでの電波の往復時間から主局10と
従局sob〜30nとの距離を求め、自己(主局)の位
置を算出するものである。以下装置の動作について詳述
する。As shown in FIG. 5, the conventional positioning device is composed of a main station 10 and a plurality of slave stations 30tL to 30n.
The distance between the main station 10 and the slave stations sob to 30n is calculated from the round trip time of the radio waves from when 0 emits a transmission radio wave to receiving the reply radio waves from the slave stations 30IL to 30n, and the position of the self (master station) is calculated. It is something. The operation of the device will be described in detail below.
主局JOにおいて、タイミング回路1ノは標定開始を決
定する回路であシ、カウンタ12及び演算回路ノ3に接
続されている。この演算回路13には、外部インク−7
エース14を介して外部機器J5が接続される。上記演
算回路13では、タイミング回路12からのタイミング
パルスヲ受ケ、特定の従局に対応する符号化情報を変調
器16に送る。この符号化情報は変調器16で電波とし
て発射可能な様にアナログ波形に変調され、パワーアン
プ17.サーキュレータ181送受信アンテナ19を介
し、従局に対して発射される。サーキュレータ18は信
号の流れを制御するもので、ノヤワーアンプ17からの
信号はアンテナ19へ、アンテナ19からの信号はプリ
アンプ20へそれぞれ出力するが、パワーアンプ12か
らの信号はプリアンプ20に出力されないため、送受信
信号が分離出来、アンテナ19は送受信の兼用が可能と
なる。In the main station JO, a timing circuit 1 is a circuit for determining the start of orientation, and is connected to a counter 12 and an arithmetic circuit 3. This arithmetic circuit 13 includes an external ink-7
External device J5 is connected via Ace 14. The arithmetic circuit 13 receives the timing pulse from the timing circuit 12 and sends encoded information corresponding to a specific slave station to the modulator 16. This encoded information is modulated into an analog waveform by a modulator 16 so that it can be emitted as a radio wave, and is then modulated into an analog waveform by a power amplifier 17. The signal is transmitted to the slave station via the circulator 181 and the transmitting/receiving antenna 19. The circulator 18 controls the flow of signals, and the signal from the power amplifier 17 is output to the antenna 19, and the signal from the antenna 19 is output to the preamplifier 20, but the signal from the power amplifier 12 is not output to the preamplifier 20. Transmission and reception signals can be separated, and the antenna 19 can be used for both transmission and reception.
従局30龜〜30nでは主局からの上記送信電波を送受
信アンテナ31で受信し、サーキュレータ32を介して
復調器32に入力し、この復調器32で符号化情報に復
調した後、デコーダ34で符号化情報と自局のデコード
情報との比較を行う。In the slave stations 30 to 30n, the transmission radio waves from the master station are received by the transmitting/receiving antenna 31, inputted to the demodulator 32 via the circulator 32, demodulated into encoded information by the demodulator 32, and then encoded by the decoder 34. The decoded information is compared with the decoded information of the local station.
各従局30g〜3θnのデコーダ34には、予め異なる
デコード情報が割り当てられており、主局10からの符
号化情報と一致した時、自局が選択されたと認識され符
号化情報を再び変調器35で変調し、主局10に対して
返信する。Different decoding information is assigned in advance to the decoder 34 of each slave station 30g to 3θn, and when it matches the encoded information from the master station 10, it is recognized that the own station has been selected, and the encoded information is sent to the modulator 35 again. and sends a reply to the main station 10.
主局10では1選択した特定の従局からの返信電波をア
ンテナ19で受信し、サーキュレータ18、プリアンプ
2oを介して復調器2ノで復調した後、演算回路13へ
出力する。演算回路13は、返信信号を復号し、自身が
行った符号化情報と一致すれば該当の従局301L〜3
0nからの信号であると判断して標定終了のパルスをカ
ウンタ12へ出力する。カウンタ12では最初の標定開
始パルスと標定終了パルスとの時間を計測し、結果を再
び演算回路13に転送する。カウンタ12の計測時間は
、電波が主局JOと従局30a〜jOnとの間を往復す
る時間と電子回路の遅延時間との和であるが、電子回路
の遅延時間は予め補正出来るため1次式によシ主局−従
局間の距離が演算回路13内部で算出される。In the main station 10, the antenna 19 receives a return radio wave from one selected specific slave station, and after demodulating it in the demodulator 2 via the circulator 18 and preamplifier 2o, it outputs it to the arithmetic circuit 13. The arithmetic circuit 13 decodes the reply signal, and if it matches the encoded information it has encoded, the arithmetic circuit 13 decodes the corresponding slave station 301L to 3.
It determines that the signal is from 0n and outputs a pulse indicating completion of orientation to the counter 12. The counter 12 measures the time between the first orientation start pulse and the orientation end pulse, and transfers the result to the arithmetic circuit 13 again. The measurement time of the counter 12 is the sum of the time for the radio wave to travel back and forth between the main station JO and the slave stations 30a to 30jOn and the delay time of the electronic circuit, but since the delay time of the electronic circuit can be corrected in advance, the linear equation The distance between the master station and the slave station is calculated inside the arithmetic circuit 13.
ここで。here.
t:主局・従局間の距離(−
1o;主局・従局間の電波往復時間(lI)C:電波伝
搬速度 3 X 108(m/a )t:カウンタ12
による計測時間(slΔt:電子回路内部の遅延時間(
sl
である。t: Distance between master station and slave station (-1o; Radio wave round trip time between master station and slave station (lI) C: Radio wave propagation speed 3 x 108 (m/a) t: Counter 12
measurement time (slΔt: delay time inside the electronic circuit (
It is sl.
以上第5図で説明した通シ、従来の位置標定装置は主局
が選択した従局と主局との距離を測定する事が出来る。As described above with reference to FIG. 5, the conventional position locating device is capable of measuring the distance between the master station and the slave station selected by the master station.
次に主局と複数の従局との各距離を測定する事により、
主局の位置が標定される原理を第6図を用いて説明する
。第6図は、測定エリア36内に1例えば、3台の従局
301〜30cをそれぞれ(!1+3’1 ) e (
12e F2 ) e (3:5+73)の位置に配し
、主局10が(x(、yo)にある場合の位置標定装置
の配置図であシ、(”11y1 ) +(X2aY2
) e (X5+73 )が既知の位置であるのに対し
b (!o;7(、)は未知の被標定位置である。同5
−
図において、主局10と各従局30a〜30aとの距離
をtl z t2 * tMとすると、被標定位置(x
l)ty(1)は、各従局30a〜30cの位置を中心
とし、主局10との距離を半径とする3つの円の交点で
ある。Next, by measuring each distance between the master station and multiple slave stations,
The principle of locating the position of the main station will be explained using FIG. In FIG. 6, for example, three slave stations 301 to 30c are installed in the measurement area 36 (!1+3'1) e (
12e F2) e (3:5+73), and the main station 10 is at (x(, yo)), ("11y1) + (X2aY2
) e (X5+73) is a known position, while b (!o;7(,) is an unknown target position.
- In the figure, if the distance between the main station 10 and each slave station 30a to 30a is tl z t2 * tM, then the target position (x
l) ty(1) is the intersection of three circles whose centers are at the positions of the respective slave stations 30a to 30c and whose radius is the distance from the master station 10.
それぞれの円を円11円21円3とすると、缶内の方程
式は
となり、上記(2)式を解いて3つの円の交点(xO*
yに)を求めると。Assuming that each circle is 11 yen, 21 yen, and 3, the equation inside the can is as follows. Solving equation (2) above, we can find the intersection of the three circles (xO*
) to y.
となる。ここで、変数AK * BKe C1(K=1
+ 2 e 3 )は。becomes. Here, the variable AK * BKe C1 (K=1
+ 2 e 3 ) is.
6−
である。なお、従局数が3台以上の場合、(3)式の計
算を複数回行う事で被標定位置(xo+yo)の精度が
向上する事は明白である。6-. Note that when the number of slave stations is three or more, it is clear that the accuracy of the oriented position (xo+yo) is improved by performing the calculation of equation (3) multiple times.
以上説明した通シ、従来の位置標定装置では。As explained above, the conventional positioning device.
電波が主局10を複数の従局30h〜son間とを往復
する時間から各距離を求める事によシ、主局10の位置
が標定される。The position of the main station 10 is determined by determining each distance from the time taken for the radio waves to travel back and forth between the main station 10 and the plurality of slave stations 30h to 30son.
ところが上記従来の位置標定装置では第4図に示す様に
主局10と従局30mとの間に障外物37が存在した場
合1本来測距に供する直接波が障外物37で遮断され1
反射波A及び反射波B等によって測距が行なわれる事に
なり正しい距離が得られなくなる。However, in the above conventional position locating device, when an obstacle 37 exists between the main station 10 and the slave station 30m as shown in FIG. 4, the direct wave originally used for distance measurement is blocked by the obstacle 37.
Distance measurement will be performed using reflected waves A, B, etc., and the correct distance will not be obtained.
以上を第3図(al 、 (bl 、によシ説明する。The above will be explained with reference to FIGS. 3(al) and (bl).
第3図(mlは主局が送信する送信電波(送信信号)と
従局からの返信電波(返信信号)を示しており、同図(
blは、上記(a)の信号に対する復調器2ノの出力を
表わしている。主局・従局間に障害物が無い場合図中波
線で示した様に主局1oからの送信信号(直線波)に対
して、一番早タイミングt。(距離toに相当)で従局
からの返信信号が受信される。Figure 3 (ml indicates the transmission radio wave (transmission signal) transmitted by the master station and the reply radio wave (reply signal) from the slave station;
bl represents the output of the demodulator 2 for the signal in (a) above. When there are no obstacles between the master station and the slave station, the earliest timing t with respect to the transmission signal (straight wave) from the master station 1o, as shown by the broken line in the figure. (corresponding to distance to), a reply signal from the slave station is received.
しかし、主局・従局間に障害物が存在する場合、直接波
は障害物によって受信されず1反射による遅延を含んだ
タイミング1. (距離t1に相当)で従局からの返信
信号(反射波A)を受信する事になる。このため1本来
t。のタイミングに対してt、の遅延を含んだタイミン
グでは、1l−1oの時間に相当する1、−1゜の距離
誤差が発生する事になる。However, if there is an obstacle between the main station and the slave station, the direct wave will not be received by the obstacle and the timing 1.1 will include a delay due to one reflection. (corresponding to distance t1), the reply signal (reflected wave A) from the slave station is received. For this reason, 1 originally t. At a timing that includes a delay of t with respect to the timing of , a distance error of 1.-1°, which corresponds to a time of 1l-1o, will occur.
又1反射波の伝搬経路は上記以外に多数存在し。Furthermore, there are many propagation paths for one reflected wave other than those mentioned above.
例えば、反射波Aとは逆の壁面からの反射によって生ず
る反射波Bもその1つである。しかし、いづれの場合も
1反射波Aと同様、直接波に対して。For example, reflected wave B, which is generated by reflection from a wall surface opposite to reflected wave A, is one of them. However, in either case, as with 1 reflected wave A, it is for a direct wave.
反射の伝搬路から決定される遅延時間を含んでおり従来
の位置標定装置では直接波が視覚的に見通し外の場合、
測距が不正確になるという問題があつた0
本発明は上記の点に鑑みてなされたもので1反射波の影
響を除外して直接波のみを測定でき、標定精度を大幅に
向上し得る位置標定装置を提供することを目的とする。It includes a delay time determined from the propagation path of the reflection, and when the direct wave is out of visual line of sight with conventional positioning equipment,
There was a problem that distance measurement was inaccurate.The present invention was made in view of the above points.1It is possible to exclude the influence of reflected waves and measure only direct waves, which can greatly improve location accuracy. The purpose is to provide a position locating device.
本発明は、主局の受信部に、従局からの返信信号の振幅
を一定にするSTC(8snsitivity T1m
5Control )回路を設けると共にSTC回路の
次段に比較回路を設けて位置標定装置を構成した事を特
徴とするものである。The present invention provides a receiving section of a master station with an STC (8 snsitivity T1m
5Control) circuit is provided, and a comparison circuit is provided at the next stage of the STC circuit to constitute a position locating device.
本発明の位置標定装置は上記のように構成されているの
で、主局で受信した従局からの返信信号は、 STC回
路で、主局・従局面の距離による電波の減衰分を補正す
る増幅がなされた後、次段の比較回路に出力される。比
較回路は、返信信号と主局内部に設けられた基準電圧発
生器の出力とを比較するものであり、返信信号が反射波
である場合電波の減衰分に加えて反射の減衰があるため
、基9−
準電圧以下となシ、比較回路は次段の復調器に信号を出
力しない。反対に、返信信号が直接波である場合、電波
の減衰分のみであるので、基準電圧以上となり、比較回
路は次段の復調器に返信信号を出力する事になる。Since the positioning device of the present invention is configured as described above, the return signal received by the master station from the slave station is amplified in the STC circuit to compensate for the attenuation of radio waves due to the distance between the master station and the slave station. After that, it is output to the next stage comparison circuit. The comparison circuit compares the reply signal with the output of the reference voltage generator installed inside the main station.If the reply signal is a reflected wave, there is attenuation of the reflection in addition to the attenuation of the radio wave. Base 9 - If the voltage is below the standard voltage, the comparator circuit will not output a signal to the next stage demodulator. On the other hand, when the reply signal is a direct wave, it is only the attenuation of the radio wave, so it becomes higher than the reference voltage, and the comparison circuit outputs the reply signal to the demodulator at the next stage.
以下図面を診照して本発明の一実施例な説明する。本発
明は第1図に示すように上記第5図に示した回路に対し
、主局10に内のプリアンプ2θと復調器21との間に
STC回路41及び比較回路42を設けると共に、この
比較回路42に基準電圧発生回路43から基準電圧を供
給するように構成したものである。その他は第5図の回
路と同様の構成であるので、同一部分には同一符号を符
して詳細な説明は省略する。上記STC回路4ノは。An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the present invention provides an STC circuit 41 and a comparison circuit 42 between the preamplifier 2θ and the demodulator 21 in the main station 10 in addition to the circuit shown in FIG. The circuit 42 is configured to supply a reference voltage from a reference voltage generation circuit 43. The rest of the circuit is the same as the circuit shown in FIG. 5, so the same parts are denoted by the same reference numerals and detailed explanation will be omitted. The above STC circuit 4 is as follows.
送受信アンテナ19及びプリアンプ20を介して受信し
た各従局からの返信信号の振幅が一定となるように送信
開始からの経過時間に応じて補正し。The amplitude of the return signal from each slave station received via the transmitting/receiving antenna 19 and preamplifier 20 is corrected according to the elapsed time from the start of transmission so that the amplitude is constant.
次段の比較回路42へ出力する。この比較回路42は、
STC回路4ノから出力される返信信号を10−
基準電圧発生回路43により発生した基準電圧V。It is output to the comparison circuit 42 at the next stage. This comparison circuit 42 is
The reply signal outputted from the STC circuit 4 is the reference voltage V generated by the reference voltage generation circuit 43.
とレベル比較し、返信信号が基準電圧V。以上であった
場合に復調器21に出力する。The response signal is the reference voltage V. If it is above, it is output to the demodulator 21.
次に上記8TC回路41の動作を第2図を参照して説明
する。Next, the operation of the 8TC circuit 41 will be explained with reference to FIG.
第2図(atはプリアンプ20の出力信号、同図(bl
はSTC回路4〕を通した場合の信号、同図fclはS
TC回路41の特性である利得の時間変化、同図(di
は電波伝搬の距離減衰を表わしている。伝搬路上に障害
物が無い場合、電波の伝搬特性は次式で表わされる様に
、伝搬距離、即ち送信開始からの経過時間の2乗に比例
して減衰が起こ′6(第2図(d))。Fig. 2 (at is the output signal of the preamplifier 20,
is the signal when it passes through the STC circuit 4], and fcl in the figure is the signal when it passes through the STC circuit 4].
The time variation of the gain, which is a characteristic of the TC circuit 41, is shown in the same figure (di
represents the distance attenuation of radio wave propagation. When there are no obstacles on the propagation path, the propagation characteristics of radio waves are attenuated in proportion to the square of the propagation distance, that is, the elapsed time from the start of transmission, as expressed by the following equation. )).
4πr LP =(7)2(4) ここで。4πr LP = (7) 2 (4) here.
L、: γ: よって。L: γ: Therefore.
自由空間での減衰量 伝搬距離 +m3 波長 (− 電波の伝搬特性のため。Attenuation in free space Propagation distance +m3 Wavelength (- Due to the propagation characteristics of radio waves.
主局1
OAで
受信する従局からの返信信号は、第2図(a)に示す通
り経過時間が短い時(主局・従局間距離が短い時)の返
信信号A1の振幅は大きく、経過時間が長い時(主局・
従局間距離が長い時)の返信信号A3の振幅は小さくな
る。このため第2図[elに示す様に経過時間に伴い8
TC回路41の増幅器の利得を大きくすれば、電波の伝
搬特性による減衰量((4)式)を補正出来、同図fb
lの様に経過時間に依存せず返信信号(B1〜BJ)の
振幅は一定になる。As shown in Figure 2 (a), when the elapsed time is short (when the distance between the master station and the slave station is short), the amplitude of the reply signal A1 received by the master station 1 OA from the slave station is large; is long (main station/
(when the distance between slave stations is long), the amplitude of the reply signal A3 becomes small. For this reason, as shown in Figure 2 [el], as the elapsed time increases,
If the gain of the amplifier of the TC circuit 41 is increased, the amount of attenuation (formula (4)) due to the propagation characteristics of radio waves can be corrected.
1, the amplitude of the reply signals (B1 to BJ) remains constant regardless of the elapsed time.
上記の様に構成された位置標定装置においては。In the position locating device configured as described above.
第3図に示す通シ、主局・従局間に障害物が存在しない
場合の直接波は、STC回路4ノによって主局・従局間
の距離に依らず一定振幅Vとなシ、基準電圧発生器43
の基準電圧V。が一定振幅Vよシ低く設定されているた
め、比較回路42は返信信号(直接波)を後段の復調器
21へ出力する。As shown in Figure 3, when there is no obstacle between the master station and the slave station, the direct wave has a constant amplitude V regardless of the distance between the master station and slave station due to the STC circuit 4, and the reference voltage is generated. Vessel 43
The reference voltage V. is set lower than the constant amplitude V, the comparator circuit 42 outputs a reply signal (direct wave) to the demodulator 21 at the subsequent stage.
一方、主局・従局間に障害物が存在する場合。On the other hand, if there is an obstacle between the master station and slave station.
反射波A及び反射波Bは、 STC回路4ノの増幅によ
って補正される電波の伝搬特性の減衰量に加えて1反射
による減衰が発生するため、比較回路42に入力される
信号の振幅は基準電圧V。以下となシ、比較回路42け
後段の復調器21に返信信号(反射波A及び反射波B)
を出力しない。Reflected wave A and reflected wave B are attenuated by one reflection in addition to the attenuation of the radio wave propagation characteristics corrected by the amplification of STC circuit 4, so the amplitude of the signal input to comparator circuit 42 is based on the standard. Voltage V. The following is a reply signal (reflected wave A and reflected wave B) to the demodulator 21 after the comparison circuit 42.
is not output.
そして、上記比較回路42から出力される信号が復調器
2ノを介して演算回路13へ送られ、主局10にの標定
処理が行なわれる。Then, the signal outputted from the comparison circuit 42 is sent to the arithmetic circuit 13 via the demodulator 2, and orientation processing to the main station 10 is performed.
以上説明した様に1本発明によれば、870回路と比較
回路によシ反射波の影響を除外して直接波のみを距離測
定に供する事ができ、これに伴い距離測定の誤差を低減
して標定精度を大幅た改善することができる。As explained above, according to the present invention, the 870 circuit and the comparison circuit can exclude the influence of reflected waves and use only direct waves for distance measurement, thereby reducing errors in distance measurement. The location accuracy can be greatly improved.
第1図は本発明の一実施例に係る位置標定装置の回路図
、第2図は本発明の特徴をなす870回路の動作を説明
するための図、第3図は本発明の効果を表わす送受信動
作を説明するための信号波形図、第4図は主局・従局間
に障害物が存在する場合の装置の配置図、第5図は従来
の位置標定装置13−
を示す回路図、第6図は位置標定装置による標定原理図
である。
10k・・・主局、11・・・タイミング回路、12・
・・カウンタ、13・・・演算回路、J4・・・外部イ
ンターフェース、15・・・外部機器、17・・・パワ
ーアンプ。
18・・・サーキュレータ、19・・・送受信アンテナ
。
20・・・プリアンプ、41・・・870回路、42・
・・比較回路、43・・・基準電圧発生器。Fig. 1 is a circuit diagram of a position locating device according to an embodiment of the present invention, Fig. 2 is a diagram for explaining the operation of the 870 circuit which is a feature of the present invention, and Fig. 3 shows the effects of the present invention. Figure 4 is a signal waveform diagram for explaining transmission and reception operations, Figure 4 is a layout diagram of the device when an obstacle exists between the master station and slave station, Figure 5 is a circuit diagram showing a conventional position locating device 13-. FIG. 6 is a diagram showing the principle of location using the position location device. 10k...Main station, 11...Timing circuit, 12.
... Counter, 13... Arithmetic circuit, J4... External interface, 15... External device, 17... Power amplifier. 18... Circulator, 19... Transmitting/receiving antenna. 20...Preamplifier, 41...870 circuit, 42.
...Comparison circuit, 43...Reference voltage generator.
Claims (1)
時より各従局からの返信電波を受信するまでの電波の往
復時間から主局と従局との距離を求めて主局の位置を標
定する位置標定装置において、主局の受信部に設けられ
、各従局からの返信信号の振幅が一定となるように送信
開始からの経過時間に応じて補正する補正手段と、この
手段により補正された返信信号のレベルと基準電圧とを
比較し、基準電圧以上の場合に上記返信信号を出力する
比較回路と、この比較回路から出力される返信信号に基
づいて主局の位置を標定する手段とを具備したことを特
徴とする位置標定装置。The master station emits transmission radio waves to multiple slave stations, and the distance between the master station and slave stations is determined from the round trip time of the radio waves from the time the radio waves are emitted until receiving the reply radio waves from each slave station, and the position of the master station is determined. In a position locating device, a correction means is provided in the receiving section of the main station and corrects the amplitude of the return signal from each slave station according to the elapsed time from the start of transmission so that the amplitude is constant, and A comparison circuit that compares the level of the response signal with a reference voltage and outputs the response signal when the level is equal to or higher than the reference voltage, and means for locating the position of the main station based on the response signal output from the comparison circuit. A position locating device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33667689A JPH03199988A (en) | 1989-12-27 | 1989-12-27 | Position locating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33667689A JPH03199988A (en) | 1989-12-27 | 1989-12-27 | Position locating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03199988A true JPH03199988A (en) | 1991-08-30 |
Family
ID=18301644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33667689A Pending JPH03199988A (en) | 1989-12-27 | 1989-12-27 | Position locating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03199988A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223593A (en) * | 2009-03-19 | 2010-10-07 | Mitsubishi Electric Corp | Moving body detection system |
JP2015505033A (en) * | 2011-12-05 | 2015-02-16 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Method and apparatus for use in selecting transmission device used in positioning function |
JP2018522232A (en) * | 2015-06-15 | 2018-08-09 | ヒューマティクス コーポレイション | High precision time-of-flight measurement system for industrial automation |
US10992024B2 (en) | 2015-12-17 | 2021-04-27 | Humatics Corporation | Radio-frequency localization techniques and associated systems, devices, and methods |
US11237263B2 (en) | 2015-06-15 | 2022-02-01 | Humatics Corporation | High-precision time of flight measurement systems |
US12080415B2 (en) | 2020-10-09 | 2024-09-03 | Humatics Corporation | Radio-frequency systems and methods for co-localization of medical devices and patients |
-
1989
- 1989-12-27 JP JP33667689A patent/JPH03199988A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010223593A (en) * | 2009-03-19 | 2010-10-07 | Mitsubishi Electric Corp | Moving body detection system |
JP2015505033A (en) * | 2011-12-05 | 2015-02-16 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Method and apparatus for use in selecting transmission device used in positioning function |
JP2018522232A (en) * | 2015-06-15 | 2018-08-09 | ヒューマティクス コーポレイション | High precision time-of-flight measurement system for industrial automation |
US11237263B2 (en) | 2015-06-15 | 2022-02-01 | Humatics Corporation | High-precision time of flight measurement systems |
US10992024B2 (en) | 2015-12-17 | 2021-04-27 | Humatics Corporation | Radio-frequency localization techniques and associated systems, devices, and methods |
US11050134B2 (en) | 2015-12-17 | 2021-06-29 | Humatics Corporation | Radio-frequency localization techniques and associated systems, devices, and methods |
US11050133B2 (en) | 2015-12-17 | 2021-06-29 | Humatics Corporation | Polarization techniques for suppression of harmonic coupling and associated systems, devices, and methods |
US11177554B2 (en) | 2015-12-17 | 2021-11-16 | Humatics Corporation | Chip-scale radio-frequency localization devices and associated systems and methods |
US11688929B2 (en) | 2015-12-17 | 2023-06-27 | Humatics Corporation | Radio-frequency localization techniques and associated systems, devices, and methods |
US12080415B2 (en) | 2020-10-09 | 2024-09-03 | Humatics Corporation | Radio-frequency systems and methods for co-localization of medical devices and patients |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113168179B (en) | Detecting the location of an autonomous device | |
US6300904B1 (en) | Narrowband based navigation scheme | |
JP3480576B2 (en) | Method and apparatus for sensing an obstacle for an autonomous device | |
KR20000062430A (en) | Method for determining the vertical distance between an object and a device with a variable position | |
JPH0431075B2 (en) | ||
US11656083B2 (en) | Autonomous tunnel navigation with a robotic system | |
RU76464U1 (en) | SHIP RADAR COMPLEX | |
US6133875A (en) | Position determining apparatus and position determining method using the same | |
US4990921A (en) | Multi-mode microwave landing system | |
JPH03199988A (en) | Position locating apparatus | |
JP3356275B2 (en) | Autonomous mobile robot and distance measuring device | |
Shoval et al. | Measuring the relative position and orientation between two mobile robots with binaural sonar | |
EP0492015A1 (en) | Method and apparatus for navigating an automatic guided vehicle | |
Walworth et al. | 3D position sensing using the difference in the time-of-flights from a wave source to various receivers | |
JPS5910513B2 (en) | Obstacle detection method using ultrasound | |
JPS59168512A (en) | Control method for position of traveling object | |
JP2007192763A (en) | Autonomous travel device | |
JPH0720223A (en) | Device for measuring position of unmanned carrying vehicle | |
JP2882356B2 (en) | Cleaning device for cylindrical tank | |
RU1840781C (en) | Navigation hydroacoustic system | |
JPH0635535A (en) | Indoor mobile robot | |
JPS6024475A (en) | Apparatus for detecting running of moving vehicle | |
JP3484499B2 (en) | Optical position detector | |
JPH03188388A (en) | Position locator | |
JPH02278181A (en) | Temperature compensating method for ultrasonic range finder |