JPH03199938A - Inspecting method for leakage of liquid - Google Patents
Inspecting method for leakage of liquidInfo
- Publication number
- JPH03199938A JPH03199938A JP33918389A JP33918389A JPH03199938A JP H03199938 A JPH03199938 A JP H03199938A JP 33918389 A JP33918389 A JP 33918389A JP 33918389 A JP33918389 A JP 33918389A JP H03199938 A JPH03199938 A JP H03199938A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- leakage
- fluorescence
- inspected
- coloring matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 25
- 238000007689 inspection Methods 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 239000010705 motor oil Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims description 18
- 239000000498 cooling water Substances 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- 230000000007 visual effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 3
- 238000004040 coloring Methods 0.000 abstract 5
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000007850 fluorescent dye Substances 0.000 description 8
- 239000010711 gasoline engine oil Substances 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- YERRTOUSFSZICJ-UHFFFAOYSA-N methyl 2-amino-2-(4-bromophenyl)acetate Chemical compound COC(=O)C(N)C1=CC=C(Br)C=C1 YERRTOUSFSZICJ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010710 diesel engine oil Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 engines Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012929 ultra trace analysis Methods 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は自動車用燃料タンク、エンジン、液送パイプ等
の液漏れ検査方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for inspecting liquid leaks from automobile fuel tanks, engines, liquid delivery pipes, and the like.
「従来の技術」
従来、この種の液漏れ検査にはつぎのような方法があっ
た。"Prior Art" Conventionally, there have been the following methods for this type of liquid leakage test.
(1)被検査物であるタンクを密閉して水槽の中に沈め
、泡の発生の有無を目視で確認する方法。(1) A method in which the test object, a tank, is sealed and submerged in a water tank, and the presence or absence of bubbles is visually checked.
(2)被検査物であるタンクの中に高圧空気を注入して
密閉し、単位時間の圧力変化から漏れを検出する方法。(2) A method in which high-pressure air is injected into a tank, which is the object to be inspected, and the tank is sealed, and leaks are detected from pressure changes over a unit time.
(3)被検査物であるタンクを検査用チャンバ内に入れ
、このチャンバ外から被検査タンク内にポートを介して
フレオンガス、ヤリラムガスを封入した後、チャンバ内
を真空にする。この状態で、被検査タンク内からチャン
バ内に漏れてきたガス濃度を測定することでタンクの漏
れを検出する方法。(3) A tank as an object to be inspected is placed in an inspection chamber, and Freon gas and Yariram gas are filled from outside the chamber into the tank to be inspected via a port, and then the inside of the chamber is evacuated. A method of detecting tank leaks by measuring the concentration of gas leaking from inside the tank to be inspected into the chamber in this state.
「発明が解決しようとする課題」
前記(1)の方法では、小さな泡を見落としたり、目視
には限度があることなど検出精度が悪かった。"Problems to be Solved by the Invention" The method (1) described above had poor detection accuracy, such as overlooking small bubbles and limitations in visual inspection.
前記(2)の方法では(1)の方法より精度が高いが測
定すべき圧力変化が作業中の温度、湿度に影響されてば
らつきが生じるという問題があった。前記(3)の方法
は(1)の水槽を用いる方法より測定精度が約100倍
と高く、また、(2)の圧力変化を測定する方法のよう
な作業温度、湿度の影響を受けず、検査時間も短かいと
いう特徴を有する。しかし、この(3)の方法は、大き
な検査用チャンバ、真空装置、ガスの封入装置などが不
可欠で装置全体が大型化し、しかも極めて高価であると
いう欠点があった。Although the method (2) has higher accuracy than the method (1), there is a problem in that the pressure change to be measured is influenced by the temperature and humidity during the work and varies. The method (3) has a measurement accuracy about 100 times higher than the method (1) using a water tank, and is not affected by working temperature and humidity like the method (2) that measures pressure changes. It also has the characteristic of short inspection time. However, this method (3) has the disadvantage that it requires a large inspection chamber, a vacuum device, a gas sealing device, etc., making the entire device large and extremely expensive.
本発明は簡単な設備を用い、精度よく短時間で測定でき
る検査方法を得ることを目的とする。An object of the present invention is to obtain an inspection method that allows accurate measurement in a short time using simple equipment.
[課題を解決するための手段」
本発明は被検査物内に、液体を収容してなるものにおい
て、前記液体中に、溶解または分散可能な蛍光性物質を
添加し、前記被検査物の液漏れの3−
検査部位に、前記蛍光性物質を励起可能な光を照射して
蛍光を測定するようにしたことを特徴とする液漏れ検査
方法である。[Means for Solving the Problems] The present invention includes a liquid contained in an object to be inspected, in which a fluorescent substance that can be dissolved or dispersed is added to the liquid, and the liquid of the object to be inspected is 3- This is a liquid leakage inspection method characterized in that the inspection site is irradiated with light capable of exciting the fluorescent substance and fluorescence is measured.
「作用」
被検査物であるオイルタンク内にガソリンエンジンオイ
ルを収容してなる場合において、このガソリンエンジン
オイルに親油性の蛍光物質を添加する。添加量はガソリ
ンエンジンオイルの特性に全く悪影響のないような極く
微量(例えば0.1%以下)とする。"Operation" When a gasoline engine oil is contained in an oil tank as an object to be inspected, a lipophilic fluorescent substance is added to the gasoline engine oil. The amount added should be extremely small (for example, 0.1% or less) so as not to have any adverse effect on the properties of gasoline engine oil.
この状態でタンクの漏れを検出する部位に、蛍光分子を
励起できる光を照射する。そして蛍光の有無を目視で検
出するか、またはフィルタを介在した各種光検出器で検
出する。In this state, light that can excite fluorescent molecules is irradiated to the area where leakage in the tank is to be detected. The presence or absence of fluorescence is detected visually or by using various photodetectors with filters interposed.
「実施例」 以下、本発明の一実施例を図面に基き説明する。"Example" Hereinafter, one embodiment of the present invention will be described based on the drawings.
被検査物は蛍光を検出するために照射する光を透過しな
いものであれば容積の大小、形状、材質など何ら制約が
ない。There are no restrictions on the volume, shape, material, etc. of the object to be inspected as long as it does not transmit the light irradiated to detect fluorescence.
具体的には、自動車、オートバイなどの燃料タ4−
ンク、オイルタンク、エンジンでもよいし、暖房器具、
燃料機器の灯油缶、ドラム缶などでもよい。Specifically, it may be a fuel tank, oil tank, or engine of a car or motorcycle, or a heater,
Kerosene cans, drums, etc. of fuel equipment may also be used.
さらに液体を送るためのオイルパイプ、冷却水を送るパ
イプなどであってもよい。また、収容される液体も、ガ
ソリン(炭化水素)、エンジンオイル、水などどのよう
な液体であってもよい。Furthermore, it may be an oil pipe for sending liquid, a pipe for sending cooling water, or the like. Further, the liquid to be accommodated may be any liquid such as gasoline (hydrocarbon), engine oil, or water.
液体に添加される蛍光物質は収納されている液体に適し
たものが選択される。特に、この選択において重要な点
はその液体に対する蛍光性物質の溶解度または分散度で
ある。すなわち、蛍光性物質は必ずしも完全に溶解する
必要がなく、均一に分散している状態でもよい。したが
って、ガソリンやエンジンオイルの漏れ検出には親油性
にすぐれ、また水の漏れ検出には親水性にすぐれている
ことが必要である。その他、液体の特性に影響を与えず
、かつ安価であることも要求される。添加量は極めて微
量(例えば0.1%以下)でよい。これは、蛍光物質の
検出は、現在、超微量分析における技術が進み極めて感
度の高いことによる。極く微量の添加により蛍光物質が
液体に与える影響は無視できる。The fluorescent substance added to the liquid is selected to be suitable for the liquid contained therein. Particularly important in this selection is the solubility or dispersion of the fluorescent substance in the liquid. That is, the fluorescent substance does not necessarily need to be completely dissolved, and may be in a uniformly dispersed state. Therefore, it is necessary to have excellent lipophilicity to detect leaks of gasoline or engine oil, and it is necessary to have excellent hydrophilicity to detect leaks of water. In addition, it is also required that it not affect the properties of the liquid and be inexpensive. The amount added may be extremely small (for example, 0.1% or less). This is because the detection of fluorescent substances is currently extremely sensitive due to advances in ultratrace analysis technology. The effect of the fluorescent substance on the liquid can be ignored due to the addition of an extremely small amount.
被検査物からの液体の漏れは液体の重量や毛細管現象に
より生じる場合が多いが、より短時間で漏れを検出する
ためには液体に外圧として散気圧の空気圧を加えること
が望ましい。Liquid leakage from a test object is often caused by the weight of the liquid or capillary action, but in order to detect leaks in a shorter time, it is desirable to apply diffused air pressure to the liquid as external pressure.
つぎに、被検査物は暗室に入れて光源で照射するが、こ
の光源は基本的には、添加する蛍光性物質を励起できる
光であればどんな光でもよい。すなおち被検査物として
小さな容器や溶接部分など特定の部位を検査するにはビ
ーム光が適しているし、大きな容器の広い面積の部位を
検査するには、大面積に広がる光が適している。目視で
検査する場合は、目に見えない紫外光源、例えば安価な
殺菌灯が望ましい。Next, the object to be inspected is placed in a dark room and irradiated with a light source. Basically, this light source may be any light that can excite the fluorescent substance to be added. In other words, beam light is suitable for inspecting a specific part of the object to be inspected, such as a small container or a welded part, and light that spreads over a large area is suitable for inspecting a large part of a large container. . For visual inspection, an invisible ultraviolet light source, such as an inexpensive germicidal lamp, is preferred.
被検査物の検査すべき、あらゆる部位を調べるにはつぎ
のような方法が考えられる。The following methods can be considered to examine all parts of the object to be inspected.
第1は、光源を固定しておき、被検査物を回転する方法
、第2は、逆に被検査物を固定し、光源を回転する方法
、第3は被検査物を固定し、その回りに複数個の光源を
固定的に設置する方法である。いずれを選択するかは、
測定する被検査物の形状、大きさ、検査したい部位など
を考慮の上で決定する。The first method is to fix the light source and rotate the object to be inspected.The second method is to fix the object to be inspected and rotate the light source.The third method is to fix the object to be inspected and rotate the object. This method involves installing multiple light sources in a fixed manner. Which one to choose?
This is determined by considering the shape and size of the object to be measured, the part to be inspected, etc.
蛍光の検出方法として、最も簡便な方法は、紫外光照射
により発生する可視光の蛍光を目視により検出する方法
である。しかし、より精度の高い検出方法として、励起
する照射光を通さず、発生する蛍光だけを通す透過特性
をもったフィルタを用いることにより、各種の光検出器
、具体的には、光電子増倍管、像増強管、赤外センサ、
1次元センサ、2次元センサなどが使用可能である。The simplest method for detecting fluorescence is to visually detect visible fluorescence generated by irradiation with ultraviolet light. However, as a more accurate detection method, by using a filter that has a transmission characteristic that allows only the generated fluorescence to pass through without passing the excitation irradiation light, various photodetectors, specifically photomultiplier tubes, can be used. , image intensifier, infrared sensor,
One-dimensional sensors, two-dimensional sensors, etc. can be used.
つぎに、被検査物としてエンジン(1)のオイル漏れを
検査する例を第1図により説明する。Next, an example of inspecting oil leakage of an engine (1) as an object to be inspected will be explained with reference to FIG.
エンジンオイル中に親油性蛍光色素としてジメチ/L/
P OP OP、つまり1,4−ジー2− (4−メ
チル−5−フェニルオキサゾイル)ベンゼンを添加し、
これをエンジン(1)に入れて運転試験を行う。Dimethy/L/ as a lipophilic fluorescent dye in engine oil
adding P OP OP, i.e. 1,4-di-2-(4-methyl-5-phenyloxazoyl)benzene;
Put this into engine (1) and perform a driving test.
このエンジン(1)は暗室(2)に入れて外光を遮断し
、蛍光色素を励起する光源(3)を点灯する。This engine (1) is placed in a dark room (2) to block external light, and a light source (3) that excites the fluorescent dye is turned on.
もし、エンジン(1)に液漏れがあると、蛍光色素から
の蛍光波長のみがフィルタを介して撮像装置(4)によ
り検出されて画像化され、モニタTV(5)に輝点(6
)として表示される。もし輝点(6)がなければ、液漏
れは存在しないこととなる。If there is a fluid leak in the engine (1), only the fluorescence wavelength from the fluorescent dye will be detected by the imaging device (4) through a filter and converted into an image, and the bright spot (6) will be displayed on the monitor TV (5).
). If there is no bright spot (6), there is no leakage.
前記光源(3)からの励起光が第2図の(A)のように
365nmにピークを有するものとする。液体がガソリ
ンエンジンオイルである場合、蛍光色素を添加しないと
第2図のCB)のように発光強度は低い。It is assumed that the excitation light from the light source (3) has a peak at 365 nm as shown in FIG. 2(A). When the liquid is gasoline engine oil, the luminescence intensity is low as shown in CB in Figure 2 unless a fluorescent dye is added.
そこで、ジメチルpopopを0.05wt%添加する
と、第2図の(C)のように、約470nmに数倍以上
の蛍光強度の高いピークが得られる。Therefore, when 0.05 wt% of dimethyl popop is added, a peak with a high fluorescence intensity several times or more is obtained at about 470 nm, as shown in FIG. 2(C).
また、ディーゼルエンジンオイルの場合、蛍光色素を添
加しないと第3図(D)のように発光強度は極めて低い
が、ジメチルpopopを0 、05wt%添加すると
第3図(E)のように約480nmに10倍以上の蛍光
強度の高いピークが得られる。したがって、蛍光色素と
してジメチルpopopは液漏れ検出に有効である。In addition, in the case of diesel engine oil, the luminescence intensity is extremely low as shown in Figure 3 (D) if no fluorescent dye is added, but when 0.05 wt% of dimethyl popop is added, the luminescence intensity is about 480 nm as shown in Figure 3 (E). A peak with a fluorescence intensity of 10 times or more can be obtained. Therefore, dimethyl popop as a fluorescent dye is effective in detecting liquid leakage.
なお、第2図の(B)と第3図の(D)から明らかなよ
うに蛍光色素を添加しなくとも特定の光に対しわずかな
発光のピークが観測される。これはエンジンオイルには
、添加剤として酸化防止剤、耐摩耗剤、粘度指数向上剤
、清浄分散剤、防錆剤などの有機または無機の発光性物
質が含まれていることによる。したがって、これらの添
加剤の中で特に蛍光色素としての性質を有するものを、
本来の特性に悪影響を及ぼさない範囲で多く含有させる
ことによって、光強度を高くすることもできる。Note that, as is clear from FIG. 2 (B) and FIG. 3 (D), a slight peak of luminescence is observed in response to specific light even without adding a fluorescent dye. This is because engine oil contains organic or inorganic luminescent substances such as antioxidants, anti-wear agents, viscosity index improvers, detergent dispersants, and rust preventive agents as additives. Therefore, among these additives, those that have properties as fluorescent dyes,
The light intensity can also be increased by containing a large amount within a range that does not adversely affect the original characteristics.
「発明の効果」
本発明は上述のように液体に蛍光性物質を極微量添加し
、光を照射することによって極めて容易に液漏れを検出
することができる。"Effects of the Invention" As described above, according to the present invention, liquid leakage can be detected very easily by adding a trace amount of a fluorescent substance to a liquid and irradiating the liquid with light.
また、高価で、大型の設備を必要としないばかりでなく
、検査精度も極めて高い。これは本発明が、漏れそのも
のの特性を巧みに利用していることによる。すなわち、
容器などの被検査体の漏れ部位から、蛍光性物質が漏れ
出ると、はじめて蛍光が発生し、しかも漏れが停止しな
い限り、蛍光性物質は、漏れ続けるため、漏れが存在す
ると蛍光強度が時間とともに増加し、漏れ以外の原因に
基づく、バックグラウンドとしの蛍光とは極めて容易に
識別できる。Moreover, not only does it not require expensive and large equipment, but also the inspection accuracy is extremely high. This is because the present invention skillfully utilizes the characteristics of leakage itself. That is,
Fluorescence occurs for the first time when a fluorescent substance leaks from a leakage site in a test object such as a container.Furthermore, unless the leakage stops, the fluorescent substance will continue to leak, so if there is a leak, the fluorescence intensity will increase over time. Increased fluorescence is very easily distinguished from background fluorescence due to causes other than leakage.
第1図は本発明による液漏れ検査方法を実現するための
装置の説明図、第2図はガソリンエンジンオイルの特性
図、第、3図はデーゼルエンジンオイルの特性図である
。
(1)・・・エンジン、(2)・・・暗室、(3)・・
・光源、(4)・・・撮像装置、(5)・・・モニタT
V、(6)・・・輝点。FIG. 1 is an explanatory diagram of an apparatus for implementing the liquid leakage inspection method according to the present invention, FIG. 2 is a characteristic diagram of gasoline engine oil, and FIGS. 3 and 3 are characteristic diagrams of diesel engine oil. (1)...Engine, (2)...Darkroom, (3)...
・Light source, (4)...imaging device, (5)...monitor T
V, (6)... Bright spot.
Claims (4)
、前記液体中に、溶解または分散可能な蛍光性物質を添
加し、前記被検査物の液漏れの検査部位に、前記蛍光性
物質を励起可能な光を照射して蛍光を測定するようにし
たことを特徴とする液漏れ検査方法。(1) In an object to be inspected containing a liquid, a soluble or dispersible fluorescent substance is added to the liquid, and the fluorescent substance is applied to the leakage inspection site of the object to be inspected. A liquid leakage inspection method characterized by measuring fluorescence by irradiating light that can excite a substance.
イルまたは燃料に、親油性蛍光性物質を添加するように
した請求項(1)記載の液漏れ検査方法。(2) The liquid leakage inspection method according to claim (1), wherein a lipophilic fluorescent substance is added to engine oil or fuel as the liquid contained in the object to be inspected.
親水性蛍光性物質を添加するようにした請求項(1)記
載の液漏れ検査方法。(3) Cooling water as a liquid contained in the inspected object,
2. The liquid leakage testing method according to claim 1, wherein a hydrophilic fluorescent substance is added.
倍管、像増強管、赤外センサー、1次元センサー、2次
元センサーなどの光センサーとした請求項(1)(2)
または(3)記載の液漏れ検査方法。(4) Claims (1) and (2) in which fluorescence is detected by visual observation or by an optical sensor such as a photomultiplier tube, an image intensifier tube, an infrared sensor, a one-dimensional sensor, or a two-dimensional sensor.
Or the liquid leakage inspection method described in (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33918389A JPH03199938A (en) | 1989-12-27 | 1989-12-27 | Inspecting method for leakage of liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33918389A JPH03199938A (en) | 1989-12-27 | 1989-12-27 | Inspecting method for leakage of liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03199938A true JPH03199938A (en) | 1991-08-30 |
Family
ID=18325025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33918389A Pending JPH03199938A (en) | 1989-12-27 | 1989-12-27 | Inspecting method for leakage of liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03199938A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008164614A (en) * | 2006-12-28 | 2008-07-17 | United Technol Corp <Utc> | Quantitative analysis method of engine oil, dyed engine oil, and determination method of dyestuff content |
WO2009079571A3 (en) * | 2007-12-17 | 2009-08-27 | Life Technologies Corporation | Methods for detecting defects in inorganic-coated polymer surfaces |
JP2010002182A (en) * | 2008-06-18 | 2010-01-07 | Eagle Ind Co Ltd | Leakage measuring method of mechanical seal |
WO2014030555A1 (en) * | 2012-08-21 | 2014-02-27 | 株式会社堀場製作所 | Leaked fuel measurement method and leaked fuel measurement device for internal combustion engine |
JP2015210113A (en) * | 2014-04-24 | 2015-11-24 | 株式会社東芝 | Leakage detection device and method |
US9310315B2 (en) | 2007-12-17 | 2016-04-12 | Life Technologies Corporation | Methods for detecting defects in inorganic-coated polymer surfaces |
WO2017090532A1 (en) * | 2015-11-26 | 2017-06-01 | トヨタ自動車株式会社 | Casting device, method for detecting coolant leakage in said casting device, and leak detection device |
JP2020003350A (en) * | 2018-06-28 | 2020-01-09 | 株式会社日立製作所 | Oil leakage detection system and oil leakage detection method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166237A (en) * | 1982-03-26 | 1983-10-01 | Sumitomo Metal Ind Ltd | Method for monitoring oil leakage |
JPS59216029A (en) * | 1983-05-23 | 1984-12-06 | Nippon Oil & Fats Co Ltd | Inspecting agent for leak of fluorescent light |
JPS6117037A (en) * | 1984-07-03 | 1986-01-25 | Idemitsu Kosan Co Ltd | Leaking liquid detecting method |
JPS636432A (en) * | 1986-06-26 | 1988-01-12 | Toshiba Corp | Method and device for leak detection |
-
1989
- 1989-12-27 JP JP33918389A patent/JPH03199938A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58166237A (en) * | 1982-03-26 | 1983-10-01 | Sumitomo Metal Ind Ltd | Method for monitoring oil leakage |
JPS59216029A (en) * | 1983-05-23 | 1984-12-06 | Nippon Oil & Fats Co Ltd | Inspecting agent for leak of fluorescent light |
JPS6117037A (en) * | 1984-07-03 | 1986-01-25 | Idemitsu Kosan Co Ltd | Leaking liquid detecting method |
JPS636432A (en) * | 1986-06-26 | 1988-01-12 | Toshiba Corp | Method and device for leak detection |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008164614A (en) * | 2006-12-28 | 2008-07-17 | United Technol Corp <Utc> | Quantitative analysis method of engine oil, dyed engine oil, and determination method of dyestuff content |
US9310315B2 (en) | 2007-12-17 | 2016-04-12 | Life Technologies Corporation | Methods for detecting defects in inorganic-coated polymer surfaces |
WO2009079571A3 (en) * | 2007-12-17 | 2009-08-27 | Life Technologies Corporation | Methods for detecting defects in inorganic-coated polymer surfaces |
JP2011507001A (en) * | 2007-12-17 | 2011-03-03 | ライフ テクノロジーズ コーポレーション | Method for detecting defects in polymer surfaces coated with inorganic materials |
US8304242B2 (en) | 2007-12-17 | 2012-11-06 | Life Technologies Corporation | Methods for detecting defects in inorganic-coated polymer surfaces |
JP2010002182A (en) * | 2008-06-18 | 2010-01-07 | Eagle Ind Co Ltd | Leakage measuring method of mechanical seal |
WO2014030555A1 (en) * | 2012-08-21 | 2014-02-27 | 株式会社堀場製作所 | Leaked fuel measurement method and leaked fuel measurement device for internal combustion engine |
JP2015210113A (en) * | 2014-04-24 | 2015-11-24 | 株式会社東芝 | Leakage detection device and method |
WO2017090532A1 (en) * | 2015-11-26 | 2017-06-01 | トヨタ自動車株式会社 | Casting device, method for detecting coolant leakage in said casting device, and leak detection device |
JP2017094373A (en) * | 2015-11-26 | 2017-06-01 | トヨタ自動車株式会社 | Casting apparatus, method of detecting refrigerant leakage in casting apparatus, and leakage detection apparatus |
CN108290214A (en) * | 2015-11-26 | 2018-07-17 | 丰田自动车株式会社 | Casting device, detect refrigerant in the casting device leakage method and leak detecting device |
US20190176221A1 (en) * | 2015-11-26 | 2019-06-13 | Toyota Jidosha Kabushiki Kaisha | Casting device, method for detecting leakage of refrigerant in casting device, and leakage detection device |
US10828694B2 (en) | 2015-11-26 | 2020-11-10 | Toyota Jidosha Kabushiki Kaisha | Casting device, method for detecting leakage of refrigerant in casting device, and leakage detection device |
JP2020003350A (en) * | 2018-06-28 | 2020-01-09 | 株式会社日立製作所 | Oil leakage detection system and oil leakage detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5304492A (en) | Spectrophotometer for chemical analyses of fluids | |
USH1045H (en) | Air bubble leak detection test device | |
US5266486A (en) | Method and apparatus for detecting biological activities in a specimen | |
US9005988B2 (en) | Method to assess multiphase fluid compositions | |
KR100795373B1 (en) | Method and apparatus for monitoring oil deterioration in real time | |
EP0448923B1 (en) | Method and apparatus for detecting biological activities in a specimen | |
US4802762A (en) | Optical inspection of polymer-based materials | |
WO1992007249A1 (en) | Methods and sensor systems for sensing hydrocarbon-containing fluids based on fluorescence detection | |
CN108603838B (en) | Determination of oil degradation using fluorescence rise time | |
JP5226395B2 (en) | Mechanical seal leak measurement method | |
JPH03199938A (en) | Inspecting method for leakage of liquid | |
JP3869070B2 (en) | Oil detector | |
EA034400B1 (en) | Device and method for testing integrity of a container filled with a drug | |
US20060270050A1 (en) | Method and test kit for the determination of iron content of in-use lubricants | |
US9518928B2 (en) | Optode for determining chemical parameters | |
US20110199604A1 (en) | Optical fiber hydrogen detection system and method | |
WO2014030555A1 (en) | Leaked fuel measurement method and leaked fuel measurement device for internal combustion engine | |
CN210323427U (en) | Dangerous goods detector | |
JP4201118B2 (en) | Optical analysis cell, optical analysis apparatus and optical analysis method using the cell | |
EP0703451A2 (en) | Monitoring process fluids in papermaking systems | |
CN85104229A (en) | The dual-purpose penetrating fluid of flaw detection of painted-fluorescence | |
JP3371541B2 (en) | Leak testing agent | |
JP2000356635A (en) | Concentration measuring method of chlorophyll a and device therefor | |
Ritchie et al. | A novel sensor for monitoring leakage of petroleum and other liquid hydrocarbons into soil environments | |
RU2187092C1 (en) | Method of check of quality of petroleum products, fuels and lubricants |