JPH03197821A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeterInfo
- Publication number
- JPH03197821A JPH03197821A JP1339469A JP33946989A JPH03197821A JP H03197821 A JPH03197821 A JP H03197821A JP 1339469 A JP1339469 A JP 1339469A JP 33946989 A JP33946989 A JP 33946989A JP H03197821 A JPH03197821 A JP H03197821A
- Authority
- JP
- Japan
- Prior art keywords
- flow velocity
- flow
- flow rate
- pipe
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 7
- 230000003321 amplification Effects 0.000 abstract description 2
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
夜宜分見
本発明は超音波流量計、より詳細には、非定常で流通す
る流体の乱流モデルをベースにして管路モデルを近似し
、該管路モデルに部分観点の流速の計劉値を代入して流
量を予測演算するモデルペースト法と流量検知手段とを
組み合わせた技術に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention approximates a pipe model based on an ultrasonic flow meter, more specifically, a turbulence model of unsteady flowing fluid, and adds parts to the pipe model. The present invention relates to a technique that combines a model paste method for predicting and calculating a flow rate by substituting a measured value of the flow velocity at a viewpoint, and a flow rate detection means.
k未技先
本発明者は先に管路内を流れる流体の非定常な乱流に対
し流れの動脈挙動をあられす管路モデルに基づき流速分
布および瞬時流量を推定計測するモデルペースト計測手
法を提案し、第31回自動制御連合講演会(昭和63年
10月25日)に報告した。このモデルペースト法は流
速の観測を管路断面の複数位置で行い、得られた流速の
観測値を乱流方程式から求めた管路モデルに代入し、流
速分布および流量を推定するものであるが、実験におい
ては、流速の測定はレーザ流速計が使用された。このレ
ーザ流速計は、差動形光学系を用いて管路断面を通過す
る懸濁粒子に対してレーザ光を照射し、この照射光と反
射光とからビート信号を検知し、このビート信号から流
速を求めるものであり、レーザとしてHe −N e光
を利用した。The present inventor first developed a model paste measurement method for estimating and measuring the flow velocity distribution and instantaneous flow rate based on a pipeline model that evaluates the arterial behavior of the flow in response to unsteady turbulent flow of fluid flowing in the pipeline. We proposed this and reported it at the 31st Automatic Control Association Conference (October 25, 1986). In this model paste method, flow velocity is observed at multiple locations on a pipe cross section, and the obtained flow velocity observations are substituted into a pipe model calculated from a turbulence equation to estimate the flow velocity distribution and flow rate. In the experiment, a laser current meter was used to measure the flow velocity. This laser anemometer uses a differential optical system to irradiate laser light onto suspended particles passing through a pipe cross section, detects a beat signal from the irradiated light and reflected light, and detects a beat signal from this beat signal. The purpose was to determine the flow velocity, and He-Ne light was used as a laser.
流速計より得られるビート信号は、フィルタバンりを経
て、周期カウント回路に送られる。この得られるビート
信号の周波数は流速に比例するので、カウント回路によ
り周期を測定し、マイクロコンピュータにより流速が求
められた。The beat signal obtained from the current meter is sent to a period counting circuit via a filter band. Since the frequency of the obtained beat signal is proportional to the flow velocity, the period was measured by a counting circuit, and the flow velocity was determined by a microcomputer.
従来技術の問題点
この手法によれば精度良く点流速が求められるが、実験
においては理論値と比較するため、観測点をビームスキ
ャナにより管路直径を走査するという光学系を設定した
ので、繁雑さに加えて周期のカウントミスにより測定デ
ータにパルス状の雑音が混入するという問題や、レーザ
ー流速計は光不透過性の条件では使用できないという問
題があった。Problems with the conventional technology Although this method allows the point flow velocity to be determined with high accuracy, in the experiment, in order to compare it with the theoretical value, an optical system was set up that scanned the pipe diameter using a beam scanner at the observation point, so it was complicated. In addition, there was the problem that pulse-like noise was mixed into the measurement data due to period counting errors, and the laser current meter could not be used in conditions where it was opaque to light.
コJし乳鰍迭ノどE反
本発明は叙上の問題点を解決するためになされたもので
、超音波を用いた伝播時間差方式により平均流速の実流
速信号を平均流速位置に代入して流電予測演算して流量
変動の影響を受す、SN比を改善した高精度な超音波流
量計を提供することを目的とするもので、管路に介装さ
れ管路断面を通過する非定常流体の平均流速を検知する
超音波平均流速検知手段と、流れを渦粘性係数を含む偏
微分方程式の乱流モデルであらわし、該乱流モデルの流
れ現象を分布定数システムとしてとらえて管路モデルを
近似し、該管路モデルに任意の部分観測の計測値を代入
することにより管路内の流速分布を推定して流量を求め
る予測演算手段とからなり、前記流速検知手段の流速信
号を予測演算手段で管路モデルの平均流速点に代入して
非定常な流量を演算出力する超音波流量計としたもので
ある。The present invention was made to solve the above-mentioned problems, and it substitutes the actual flow velocity signal of the average flow velocity into the average flow velocity position using a propagation time difference method using ultrasonic waves. The purpose of this is to provide a highly accurate ultrasonic flowmeter with an improved S/N ratio that is affected by flow rate fluctuations by predicting and calculating the current flow. An ultrasonic average flow velocity detection means for detecting the average flow velocity of an unsteady fluid, a turbulence model using a partial differential equation that includes an eddy viscosity coefficient, and a turbulence model that captures the flow phenomenon of the turbulence model as a distributed constant system. a prediction calculation means for estimating the flow velocity distribution in the pipeline and calculating the flow rate by approximating a model and substituting measured values of arbitrary partial observations into the pipeline model; This is an ultrasonic flowmeter that calculates and outputs an unsteady flow rate by substituting it into the average flow velocity point of a pipe model using a prediction calculation means.
去−JL−桝
管路内を非定常で流通する流体の流れ計測に関しては、
管路内の非定常流の流体流速分布のモデルを求め、該モ
デルに流速Il!測点の実流速値を代入して流量を算出
するモデルペースト計測法がある1本発明は、円形管路
を流通する十分発達した軸対称な乱流をあられすため乱
流粘性の概念を導入したレイノルズ方程式を基本として
進めるものである。該レイノルズ方程式は。Regarding the measurement of the flow of fluid flowing unsteadily in a pipe,
A model of the fluid flow velocity distribution of unsteady flow in the pipe is obtained, and the flow velocity Il! is added to the model. There is a model paste measurement method that calculates the flow rate by substituting the actual flow velocity value at a measurement point.The present invention introduces the concept of turbulent viscosity to evaluate the well-developed axisymmetric turbulent flow flowing through a circular pipe. The method is based on the Reynolds equation. The Reynolds equation is:
であられされる。ここで
U :管軸方向の時間平均速度成分
p :時間平均圧力
r :管半径方向座標
X :管軸方向座標
t :時間
ρ :流体の密度
ν :流体の動粘性係数
シ1:渦粘性係数
であり、境界条件は、管路中心r=oにおいてU
a 〒=v −” O−管壁r=a(a:管半径)でU
=ν、=0である。レイノルズ方程式(1)に基づいて
流速分布を求めるため管路内のm個の観測点において流
速Uを検卸し、該m点の流速値を計測値とする。しかし
計測値は確率値であるため計謂値Y(r、、t)は
y(r++t)=ciu(r、、t)+v(rt+t)
(2)ここで、u(r、、t):真の流速
V (r+−t): 2次確率過程
CI:観測行列
1=1121・・・9m
であられされる。Hail to you. Here, U: time average velocity component in the tube axis direction p: time average pressure r: tube radial coordinate X: tube axis coordinate t: time ρ: fluid density ν: fluid kinematic viscosity coefficient S1: eddy viscosity coefficient And the boundary condition is U a 〒=v −” at the pipe center r=o, U at the pipe wall r=a (a: pipe radius)
=ν, =0. In order to obtain the flow velocity distribution based on the Reynolds equation (1), the flow velocity U is measured at m observation points in the pipe, and the flow velocity value at the m points is taken as the measured value. However, since the measured value is a probability value, the estimated value Y(r,,t) is y(r++t)=ciu(r,,t)+v(rt+t)
(2) Here, u(r,, t): true flow velocity V (r+-t): second-order stochastic process CI: observation matrix 1=1121...9m.
また(1)式において渦粘性係数ヤ、を定めなければな
らないが1本発明者は乱流領域に適用するため乱流の速
度分布をあられす実験式
%式%(3)
:
および、平均混合距離Ωmを求める実験式として知られ
るN1kuradseの式により平均混合距離nmを算
出し、この平均混合距離Qmを次式(4)に代入して渦
粘性係数ν、を求める。In addition, in equation (1), it is necessary to determine the eddy viscosity coefficient y, but in order to apply it to the turbulent flow region, the inventor has determined the velocity distribution of turbulent flow using the empirical formula % formula % (3): and the average mixing The average mixing distance nm is calculated using the N1 kuradse equation, which is known as an experimental equation for determining the distance Ωm, and the eddy viscosity coefficient ν is obtained by substituting this average mixing distance Qm into the following equation (4).
v 、(r、 t)=C:w Q m”(1−r/a)
−”Um(t) (4)但し、C!二二定
へに(1)、(4)式によって表わされた分布定数シス
テムを、有限要素法を用いて集中定数化して、流速分布
Uを出力とする管路の有限近似モデルが求められる。該
有限近似モデルは次の(5)。v, (r, t)=C:w Q m”(1-r/a)
−”Um(t) (4) However, to C! A finite approximation model of the conduit with output is obtained.The finite approximation model is as follows (5).
(6)式であられされる。(6) Expression is used.
X=A (Um)X+B Y (
5)u=c (r)X
(6)ここで、
XER’:節点流速を要素とするベクトルγCR:圧力
勾配
AeR”、BERI′、CERe: 有5M要174法
により定まる係数
(2)式と(5)を連立して、流れの観測システムが得
られる。圧力勾配項γを未知入力と考えて、それを状態
変数に取り込むとつぎのように観測システムが拡張され
る。X=A (Um)X+B Y (
5) u=c (r)X
(6) where, An observation system is obtained.By considering the pressure gradient term γ as an unknown input and incorporating it into the state variable, the observation system is expanded as follows.
Z=f (Z)+GW
Y 、= HZ > + V*
(7)
(8)
但し、
z=(xTγ〕7
H= (C0)
WER:[動ノイズで正規性白色過程
VkER:観測ノイズで正規性白色過程ω :パラメ
ータに依存する係数
添字k :に番目のサンプリング時刻であり(7)と
(8)式に拡張カルマンフィルタを適用することにより
以下の流速分布と流量の推定フィルタ式(9)〜(13
)が得られる。Z=f (Z)+GW Y , = HZ > + V* (7) (8) However, z=(xTγ)7 H= (C0) WER: [Normal with dynamic noise White process VkER: Normal with observation noise white process ω: parameter-dependent coefficient subscript k: is the th sampling time, and by applying the extended Kalman filter to equations (7) and (8), the following flow velocity distribution and flow rate estimation filter equations (9) ~ (13
) is obtained.
2=f (2) (9
)p (t)= F (’2) P (t)+ p (
t)FT(2)+G QvGT(10)
2に/に= 2に/)ニー t”Kx (Yx−H2x
z、−0〕(11)
P K/に= [I−KrH) PK/X−(12
)Kx”PK/に−□HT(HPK/X−xH+Qv)
(13)
流速分布の推定値Uと流量の推定値qは、それぞ古=C
交 (15)q =
f 2 πrcdrX (1
6)であられされる。2=f (2) (9
) p (t) = F ('2) P (t) + p (
t)FT(2)+G QvGT(10) 2 to/to = 2 to/) knee t”Kx (Yx-H2x
z, -0] (11) PK/N = [I-KrH) PK/X-(12
)Kx”PK/ni-□HT(HPK/X-xH+Qv)
(13) The estimated value U of flow velocity distribution and the estimated value q of flow rate are respectively ancient = C
Cross (15)q =
f 2 πrcdrX (1
6) Hail upon you.
但し、Q v E R1およびQvER”’は、各々W
、V*の共分散である。However, Q v E R1 and QvER"' are each W
, is the covariance of V*.
第1図は、本発明の超音波流量計の一実施例の構成を示
すブロック図であり、図において、1は被測の非定常流
体を流通する管路、2は該管路1の外壁部に傾斜くさび
(シュー)3を介装した超音波パルス送波器で、超音波
パルスは該送波器2から管壁1′を通して流れの方向に
αの角度で入射され、対向位置の管壁に介装された傾斜
くさび3′を通り超音波受波器2′で受信される。パル
スが受波器2′に到達するとそのパルスを増幅袋@4で
増幅し、つぎのパルスをトリガし、パルス発振器5を経
由させ再び超音波送波器2から送信させる。このような
事象を繰り返すと、超音波パルスの周期は伝搬時間t1
に等しくなり、その周波数土、はf□=1/l□となる
。次にタイミング回路6によりスイッチ7を切り換えて
、2′を送波器、2を受波器と切り換えると超音波パル
スの経路が逆になるので、この時の伝搬時間をt2とす
れば、パルス周波数f2はf2=1/12となる。FIG. 1 is a block diagram showing the configuration of an embodiment of an ultrasonic flowmeter of the present invention. In the figure, 1 is a pipe through which an unsteady fluid to be measured flows, and 2 is an outer wall of the pipe 1. This is an ultrasonic pulse transmitter in which an inclined wedge (shoe) 3 is interposed in the part, and the ultrasonic pulse is incident from the transmitter 2 through the tube wall 1' at an angle α in the flow direction, and is transmitted to the tube at the opposite position. The waves pass through an inclined wedge 3' installed in the wall and are received by an ultrasonic receiver 2'. When the pulse reaches the receiver 2', the pulse is amplified by the amplification bag @4, and the next pulse is triggered and transmitted from the ultrasonic transmitter 2 again via the pulse oscillator 5. When such an event is repeated, the period of the ultrasonic pulse becomes the propagation time t1
, and its frequency, f□=1/l□. Next, when the timing circuit 6 switches the switch 7 and switches 2' to the transmitter and 2 to the receiver, the path of the ultrasonic pulse is reversed, so if the propagation time at this time is t2, the pulse The frequency f2 is f2=1/12.
求められたパルス周波数の差Δfは次式で与えられるの
で、平均流速Vが求められる。Since the obtained pulse frequency difference Δf is given by the following equation, the average flow velocity V can be obtained.
Δf=f1−f、=1/11−1/1z=sin2α/
D・V
、’、 v =Δf−D/5in2α
ここでDは管路の内径である。Δf=f1-f,=1/11-1/1z=sin2α/
D·V,', v = Δf-D/5in2α where D is the inner diameter of the conduit.
従って、変換器8の出力は管路1を流通する液体の平均
流速をあられすものである。10は予測演算手段で、前
述のモデルペースト法に基づく予測流量を求めるコンピ
ュータ等からなる演算手段である。11は円管路内の十
分発達した軸対象な乱流をあられす前記レイノルズ方程
式(1)式であり、12は(1)式における過粘性係数
ν8を求める演算部であり、流速分布の近似式としての
指数法則(3)式およびN i k u r a d
s e式から求められる混合距離Qmを計算し、その値
を(4)式に代入して演算される213はレイノルズ方
程式(1)式と過粘性係数ν、の(4)式によって表さ
れた分布定数システムを、有限要素法を用いて集中定数
化する演算部で、適当に管半径領域を所定個の要素に分
割して各要素内において4つの節点を設け、各要素にお
ける流速Uを節点に付随した形状関数ベクトルと要素内
の節点における速度ベクトルとのベクトル積としてあら
れし、重み付き残差方程式との連立として流速分布Uを
出力とする管路の有限次元近似モデル(5)、(6)式
を演算する演算部である。14は管路半径上の流速点の
流速値をあられす(2)式と有限次元近似モデル(5)
式とを連立して得られる未知パラメータを含む確立線形
システムから流速分布(15)式の推定値を求める(9
)〜(14)式であられされた拡張カルマシフィルタで
あり、出力された推定流量は(16)式に基づいて数値
演算され表示器16に流量表示される。The output of the transducer 8 therefore represents the average flow rate of the liquid flowing through the conduit 1. Reference numeral 10 denotes a prediction calculation means, which is a calculation means such as a computer that calculates a predicted flow rate based on the above-mentioned model paste method. 11 is the above-mentioned Reynolds equation (1) that generates a sufficiently developed axisymmetric turbulent flow in a circular pipe, and 12 is a calculation unit that calculates the hyperviscosity coefficient ν8 in equation (1), which approximates the flow velocity distribution. Exponent law formula (3) as a formula and N i k u r a d
213, which is calculated by calculating the mixing distance Qm obtained from the e equation and substituting that value into equation (4), is expressed by equation (4) of the Reynolds equation (1) and the hyperviscosity coefficient ν. The calculation unit converts the distributed constant system into lumped constants using the finite element method.The pipe radius area is divided into a predetermined number of elements, four nodes are established in each element, and the flow velocity U in each element is calculated from the node. A finite-dimensional approximation model of a pipe (5), which outputs the flow velocity distribution U as the vector product of the shape function vector associated with the vector and the velocity vector at the node in the element, and as a simultaneous equation with the weighted residual equation. 6) It is a calculation unit that calculates the formula. 14 expresses the flow velocity value at the velocity point on the pipe radius using equation (2) and finite dimensional approximation model (5)
Find the estimated value of the flow velocity distribution equation (15) from the established linear system including unknown parameters obtained by simultaneously calculating the equation (9
) to (14), and the output estimated flow rate is numerically calculated based on equation (16), and the flow rate is displayed on the display 16.
叙上の予測演算手段10においては、流電検出手段2よ
り出力される平均流速部位を管路の有限モデル13の平
均流速部位の流速信号として入力することにより瞬時流
量の推定値を実流信号として表示するものである。本発
明の超音波流量計によれば非定常に流通するの流体の瞬
時流量をリアルタイムで流速分布の変動に影響されるこ
となく表示できる。In the prediction calculation means 10 described above, the estimated value of the instantaneous flow rate is converted into an actual flow signal by inputting the average flow velocity portion outputted from the current detection means 2 as a flow velocity signal of the average flow velocity portion of the finite model 13 of the pipe. It is displayed as follows. According to the ultrasonic flowmeter of the present invention, the instantaneous flow rate of a non-constantly flowing fluid can be displayed in real time without being affected by fluctuations in flow velocity distribution.
効 果
叙上のごとく、本発明の超音波流量計によれば、所定時
間間隔で検出される超音波流量信号を流体管路内を流通
する非定常の流体の平均瞬時流量信号として、管路モデ
ルにおける平均流速部位に入力することにより流量を推
定表示するものであるから非定常な流れにおいても正確
な予測流量が得られ、更にリアルタイムで流量表示がで
きる。As described above, according to the ultrasonic flowmeter of the present invention, the ultrasonic flow rate signal detected at predetermined time intervals is used as the average instantaneous flow rate signal of the unsteady fluid flowing in the fluid pipe. Since the flow rate is estimated and displayed by inputting it into the average flow velocity part of the model, an accurate predicted flow rate can be obtained even in an unsteady flow, and furthermore, the flow rate can be displayed in real time.
第1図は、本発明の超音波流量計の構成を示すブロック
図である。
1・・・流路配管、2・・・超音波パルス送波器、3・
・・傾斜くさび(シュー)、4・・・増幅装置、5・・
・パルス発信器、6・・タイミング回路、7・・・切り
換えスイッチ、8・・変換器、10・・・予測演算手段
、11・・・乱流方程式、12・・渦粘性係数、13・
・有限管路モデル、14・・拡張カルマンフィルタ、1
5・・・流量演算器、16・・表示器。
第1図
0
1、事件の表示
xll成1年
手糸売拘n正−+(自発)
特許願 第339469号
2、発明の名称
超音波流量計
3、補IFをする者
事件との関係 特許出願人
住所 東京都新宿区上落合3丁+110番8号氏名
(名称)オーバル機器工業株式会社代表者 高 1
) 明
4、代
埋入
住所
〒231 横浜市中区不老町1−2−1中央第6関内ビ
ル1001
6、補正の対象
明細書の発明の詳細な説明の欄
7、補正の内容
(1)、明細書第1頁第20行目〜第2頁第1行目に記
載の「部分観点の流速の計測値を」を1部分観測の流速
計測値を」に補正する。
(2)、同第2頁第2行目に記載の「と流量検知手段」
を「と超音波流速検知手段」に補正する。
(3)、同第2頁第6行目に記載の「流れの動脈挙動を
」を「流れの脈動挙動を」に補正する。
(4)、同第2頁第12行目に記載の「求めた」を「求
められた」に補正する。
(5)、同第3頁第1行目〜2行目に記載の「この得ら
れるビート信号」を「このビート信号」に補正する。
(6)、同第3頁第4行目に記載の「求められた。」を
「求められる。」に補正する。
(7)、同第3頁第6行目に記載の「精度良く点流速が
」を「精度良く#R測点の流速が」に補正する。
(8)、同第3頁第8行目に記載に「管路直径を走査」
を「管路直径上で走査」に補正する。
(9)、同第4頁第18行目に記載の「あらゎすため乱
流粘性」を「あわらす乱流粘性」に補正する。
(10)、同第5頁第1行目に記載の
す1=町・ (1) を
δt 」
に補正する。
(11)、同第5頁第12行目に記載の「(a:管半径
)で」を「(a:管半径)において」に補正する。
(12)、同第5頁第14行目〜15行目に記載の「求
めるため・・・・・・流速値を」を「求めるために、管
路内のm個の代表流速Uを検知し、該m個の代表流速値
を」に補正する。
(13)、同第5頁第18行目に記載の’y (rt。
・・・・・・(2)」を
rY(rt、 t) =Ctu (rt+ t) +V
(r++ t) (2)Jに補正する。
(14)、同第6頁第4行目〜5行目に記載の「であら
れされる。
また(1)式」を
「であられされる。
また(1)式」に補正する。
(15)、同第6頁第6行目〜7行目に記載の「ならな
いが、・・・・・・乱流の」を「ならない。本発明者は
乱流の」に補正する。
(16)、同第6頁第8行目に記載の「u=・・・・・
・(3)」をru=αu、(a r)“′” (3
)」に補正する。
(17)、同第6頁第9行目に記載のrum : Jを
rTJ、:Jに補正する。
(18)、同第6頁第10行目、11行目、12行目に
記載のrflmJをrQ、Jに補正する。
(19)、同第6頁第14行目に記載の「ν、・・団・
(4)」をrv t(r I t ) =Cfu w”
(1−r/a )−”’U+n(t ) (4)J
に補正する。
(20)、同第6頁第19行目に記載の「ルが求められ
る。」を「ルを求める。」に補正する。
(21)、
同第7頁第1行目に記載の「交=・・・・・・(5)」
をrx=A(tJ、) x+13y (5) J(
22)、
(23)、
に補正する。
同第7頁第8行目に記載の「(5)を」をr (5)、
(6)式を」に補正する。
同第7頁第13行目に記載の「Yk=・・・・・・(8
)」をrYk=H2m+Vi+ (8) J(25
)、同第9頁第4行目〜5行目に記載の「であられされ
る。
但し、」を「であられされる。但し、」に補正する。
(26)、同第10頁第20行目に記載の「2mを」を
rQ、をJに補正する。
(27)、同第11頁第12行目に記載の「流速点の流
速値を」を「代表流速値を」に補正する。
(28) 、同第11頁第14行目に記載の「確立線形
」を「確率線形」に補正する。
(29)、同第11頁第・17行目に記載のr(16)
式に基づいて数値」をr(16)式の演算器15により
数値Jに補正する。
(30)、同第12頁第10行目〜11行目に記載の「
流体の平均瞬時流量信号」を「流体の瞬時平均流速信号
」に補正する。
(31)、同第12頁第12行目に記載の「ことにより
流量を」を「ことにより瞬時流量を」に補正する。FIG. 1 is a block diagram showing the configuration of an ultrasonic flowmeter according to the present invention. 1...Flow path piping, 2...Ultrasonic pulse transmitter, 3.
... Inclined wedge (shoe), 4... Amplifier, 5...
・Pulse transmitter, 6. Timing circuit, 7. Changeover switch, 8. Converter, 10. Prediction calculation means, 11. Turbulence equation, 12. Eddy viscosity coefficient, 13.
・Finite pipe model, 14...Extended Kalman filter, 1
5...Flow rate calculator, 16...Display device. Figure 1 0 1. Display of the case Applicant Address: 3-110-8 Kamiochiai, Shinjuku-ku, Tokyo Name: Representative of Oval Equipment Industry Co., Ltd. High School: 1
) Mei 4, Substitute address: 1001 Chuo Dai-6 Kannai Building, 1-2-1 Furocho, Naka-ku, Yokohama, 231 6. Column 7 for detailed explanation of the invention in the specification to be amended, Contents of the amendment (1) , "the measured value of the flow velocity from a partial viewpoint" described in the 20th line of the first page of the specification to the first line of the second page is corrected to "the measured value of the flow velocity of one partial observation". (2) "and flow rate detection means" stated in the second line of page 2 of the same
is corrected to "and ultrasonic flow velocity detection means". (3) Correct "the arterial behavior of the flow" written in the sixth line of the second page to "the pulsating behavior of the flow". (4), "required" written on page 2, line 12 of the same is amended to "required". (5) The "obtainable beat signal" described in the first and second lines of page 3 is corrected to "this beat signal". (6), "required." written on page 3, line 4 of the same is amended to "required." (7) Correct "point flow velocity with high precision" in line 6 of page 3 to "flow velocity at point #R with high precision". (8), "Scan pipe diameter" written on page 3, line 8.
Correct to "scan on pipe diameter". (9), "turbulent viscosity to cause turbulence" written on page 4, line 18 of the same is corrected to "turbulent viscosity to cause turbulence". (10), ``S1=Machi'' written in the first line of page 5 of the same (1) is corrected to ``δt''. (11), "(a: pipe radius)" written in the 12th line of page 5 is corrected to "(a: pipe radius)". (12), "To determine the flow velocity value" stated on page 5, lines 14 to 15, "In order to determine the flow velocity value, m representative flow velocities U in the pipe are detected." Then, the m representative flow velocity values are corrected to ``. (13), 'y (rt. . . . (2))' written on page 5, line 18 of the same page, as rY(rt, t) = Ctu (rt+ t) +V
(r++ t) (2) Correct to J. (14), "It is done. Also, formula (1)" written in the fourth to fifth lines of page 6 is corrected to "It is done. Also, formula (1)." (15), "It will not happen, but... turbulent flow" written in the 6th line and 7th line of the same page will be corrected to "It will not happen. The inventor of the present invention will cause turbulent flow." (16), "u=..." written on page 6, line 8 of the same
・(3)" is ru=αu, (a r)"'" (3
)”. (17), rum:J described on page 6, line 9 of the same is corrected to rTJ,:J. (18), rflmJ described on page 6, lines 10, 11, and 12 is corrected to rQ,J. (19), page 6, line 14, “ν,...dan...
(4) "rv t(r I t ) = Cfu w"
(1-r/a)-”'U+n(t) (4)J
Correct to. (20), "L is calculated" on page 6, line 19 of the same document is amended to "L is calculated." (21), "Cross=...(5)" written in the first line of page 7 of the same
rx=A(tJ,) x+13y (5) J(
22), (23), Correct as follows. ``(5)'' written in page 7, line 8 of the same page is r (5),
Correct equation (6) to ``. "Yk=......(8
)” as rYk=H2m+Vi+ (8) J(25
), on page 9, lines 4 and 5, the phrase ``It will be. However,'' will be amended to ``It will be. However,''. (26), "2m" written on page 10, line 20 is corrected to rQ and to J. (27), "the flow velocity value at the flow velocity point" written on page 11, line 12 is corrected to "representative flow velocity value". (28) Correct the "probability linear" described in the 14th line of page 11 to "probability linear". (29), r(16) stated on page 11, line 17 of the same
The numerical value "is corrected to the numerical value J by the arithmetic unit 15 of the r(16) formula based on the formula. (30), page 12, lines 10-11, “
The fluid average instantaneous flow rate signal is corrected to the fluid instantaneous average flow velocity signal. (31), ``In some cases, the flow rate'' stated in the 12th line of page 12 is corrected to ``In some cases, the instantaneous flow rate.''
Claims (1)
均流速を検知する超音波平均流速検知手段と、流れを渦
粘性係数を含む偏微分方程式の乱流モデルであらわし、
該乱流モデルの流れ現象を分布定数システムとしてとら
えて管路モデルを近似し、該管路モデルに平均流速値を
代入することにより管路内の流速分布を推定して流量を
求める予測演算手段とからなり、前記流速検知手段より
出力される流速信号を予測演算手段で算出した管路モデ
ルの平均流速部位に代入して非定常流量を演算出力する
ことを特徴とする超音波流量計。1. An ultrasonic average flow velocity detection means that is installed in a pipe and detects the average flow velocity of an unsteady fluid passing through a cross section of the pipe, and the flow is expressed by a turbulence model of a partial differential equation including an eddy viscosity coefficient,
Prediction calculation means for approximating a pipe model by approximating the flow phenomenon of the turbulent flow model as a distributed constant system, estimating the flow velocity distribution in the pipe by substituting an average flow velocity value into the pipe model, and calculating the flow rate. An ultrasonic flowmeter characterized in that the flow velocity signal output from the flow velocity detection means is substituted into the average flow velocity portion of the pipeline model calculated by the prediction calculation means to calculate and output an unsteady flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339469A JP2758679B2 (en) | 1989-12-26 | 1989-12-26 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1339469A JP2758679B2 (en) | 1989-12-26 | 1989-12-26 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03197821A true JPH03197821A (en) | 1991-08-29 |
JP2758679B2 JP2758679B2 (en) | 1998-05-28 |
Family
ID=18327762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1339469A Expired - Lifetime JP2758679B2 (en) | 1989-12-26 | 1989-12-26 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2758679B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05263708A (en) * | 1992-03-18 | 1993-10-12 | Hitachi Ltd | Air flow meter for internal combustion engine |
-
1989
- 1989-12-26 JP JP1339469A patent/JP2758679B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05263708A (en) * | 1992-03-18 | 1993-10-12 | Hitachi Ltd | Air flow meter for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2758679B2 (en) | 1998-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2660011C1 (en) | Method and device for ultrasonic flow method measurement and layout device for controlling ultrasonic flow measurements by practical method | |
Carlander et al. | Installation effects on an ultrasonic flow meter with implications for self diagnostics | |
US3370463A (en) | Mass flow meter | |
JP2002340644A (en) | Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method | |
JPH03197821A (en) | Ultrasonic flowmeter | |
JP4535065B2 (en) | Doppler ultrasonic flow meter | |
Willatzen | Ultrasonic flowmeters: temperature gradients and transducer geometry effects | |
Florio Jr et al. | Development of a periodic flow in a rigid tube | |
Sato et al. | Theoretical investigation of guide wave flowmeter | |
Coulthard | The principle of ultrasonic cross-correlation flowmetering | |
Kang et al. | A novel mathematical model for transit-time ultrasonic flow measurement | |
JP3103264B2 (en) | Ultrasonic flow meter | |
JP2007051913A (en) | Correction method for ultrasonic flowmeter | |
JP3732570B2 (en) | Ultrasonic flow meter | |
Mahadeva et al. | Studies of the accuracy of clamp-on transit time ultrasonic flowmeters | |
JPS58151564A (en) | Ultrasonic current meter | |
US4481811A (en) | Measurement of fluid oscillation amplitude | |
JPH03197822A (en) | Ultrasonic flowmeter | |
Mansfeld et al. | The Features of Measuring the Gas Flow Velocity in Pipes by an Ultrasonic Correlation Method | |
Qorbani et al. | An Ultrasonic Tomography Flowmeter Implementation for Gas/Liquid Two-Phase Flow Measurement | |
RU2313068C2 (en) | Mode of measuring gas consumption in main pipelines and an arrangement for its execution | |
JP2644043B2 (en) | Correlation type flow meter | |
JPS6040916A (en) | Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter | |
JPH0791996A (en) | Ultrasonic flowmeter | |
Biernacki et al. | Non-invasive Ultrasound Doppler Effect Based Method of Liquid Flow Velocity Estimation in Pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |