[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03196583A - Vertical type silicon thermopile and manufacture thereof - Google Patents

Vertical type silicon thermopile and manufacture thereof

Info

Publication number
JPH03196583A
JPH03196583A JP1072899A JP7289989A JPH03196583A JP H03196583 A JPH03196583 A JP H03196583A JP 1072899 A JP1072899 A JP 1072899A JP 7289989 A JP7289989 A JP 7289989A JP H03196583 A JPH03196583 A JP H03196583A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
silicon
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1072899A
Other languages
Japanese (ja)
Inventor
Hikari Sakamoto
光 坂本
Atsushi Kawasaki
川崎 篤
Tomoshi Kanazawa
金沢 智志
Shoichi Masui
昇一 桝井
Gen Hashiguchi
原 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1072899A priority Critical patent/JPH03196583A/en
Publication of JPH03196583A publication Critical patent/JPH03196583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to obtain a thermopile of a three-dimensional structure wherein the electromotive force of thermocouples is large and which does not require a large area even when a large number of thermocouples are disposed therein, by fitting an electromagnetic wave absorber on the hot contact side with an insulative layer interlaid. CONSTITUTION:The end faces on one side of P-type layers 21, 22,... and N-type layers 31, 32,..., e.g. the end faces thereof connected by metal layers 52, 53,... constitute the hot contact side, while the end faces connected by metal layers 61, 62,... on the other side constitute the cold contact side. On the hot contact side, an electromagnetic wave absorber 70 is formed with an insulative layer interlaid. In a thermopile thus constructed, the temperature of the electromagnetic wave absorber 70 rises (falls) due to an electromagnetic wave entering the absorber and the temperature of a hot contact of a thermocouple located in the vicinity of the absorber rises higher (falls lower) than that on the cold contact side. Accordingly, a temperature difference occurs between the hot contact and the cold contact of the thermocouple and a thermoelectromotive force is generated by a Seebeck effect. According to this constitution, the thermopile of a three-dimensional structure is obtained and this is effective for a one-dimensional or two-dimensional sensor of high resolution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線などのセンサに利用できる、シリコン
単結晶を使用したサーモパイルとその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermopile using silicon single crystal, which can be used for infrared ray sensors, and a method for manufacturing the thermopile.

〔従来の技術〕[Conventional technology]

単結晶シリコンを用いたサーモパイルとしては、p型シ
リコンストリップとアルミニウムを用いたものが報告さ
ている(G、D、NIEVELD、 Thermopi
lesFabricated  using  5il
icon  Planar  Technology。
As a thermopile using single-crystal silicon, one using a p-type silicon strip and aluminum has been reported (G, D, NIEVELD, Thermopi
lesFabricated using 5il
icon Planar Technology.

5ensors and Actuators、 3.
(1982/83)179 183)。
5 sensors and actuators, 3.
(1982/83) 179 183).

このサーモバイルは、n型シリコン単結晶内に形成され
た10(μm) xl、5 C+++o+)  (マス
ク寸法)の形状を持つp型シリコンストリップと、その
上部に形成されたシリコン酸化膜で該ストリ・ンプと絶
縁されたアルミニウムストリップとを直列に接続してな
る熱電対を多数用いた構造である。
This thermomobile consists of a p-type silicon strip having a shape of 10 (μm) xl, 5 C+++o+) (mask dimensions) formed in an n-type silicon single crystal, and a silicon oxide film formed on top of the p-type silicon strip.・It has a structure that uses many thermocouples, which are made by connecting a pump and an insulated aluminum strip in series.

比抵抗が5X10−”(Ωcm)のシリコンストリップ
を持つこのサーモパイルの熱起電力は、熱電対を152
組直列に接続したもので76(mV/K)得られ、内部
抵抗値は250(kΩ〕である。
The thermoelectromotive force of this thermopile with a silicon strip with a resistivity of 5 x 10-" (Ωcm) is 152
When a pair is connected in series, 76 (mV/K) can be obtained, and the internal resistance value is 250 (kΩ).

このように、サーモパイルの熱電対としてP型シリコン
ストリップとアルミニウムストリップを使用した場合、
サーモパイルの出力である熱起電力への双方の材料の寄
与を比較すると、p型単結晶シリコンのゼーベック係数
は、そのドーピング濃度にも依存するが、その値はほぼ
450〜1600〔μV/K)をとるのに対し、アルミ
ニウムは1.7〔μV/K)程度となり、熱電対の出力
感度に対するアルミニウムの寄与は相対的に極めて小さ
い。従って、サーモパイルの出力を大きくするにはアル
ミニウムを大きなゼーベック係数をもつ別の材料に代え
る必要がある。
In this way, when using a P-type silicon strip and an aluminum strip as a thermopile thermocouple,
Comparing the contribution of both materials to thermoelectromotive force, which is the output of the thermopile, the Seebeck coefficient of p-type single crystal silicon is approximately 450 to 1600 [μV/K], although it also depends on its doping concentration. In contrast, the value of aluminum is about 1.7 [μV/K], and the contribution of aluminum to the output sensitivity of the thermocouple is relatively extremely small. Therefore, to increase the output of the thermopile, it is necessary to replace aluminum with another material with a large Seebeck coefficient.

また従来のシリコン基板利用サーモバイルは平面型であ
り、多数の熱電対を平面上に並べそれらを直列接続する
型式をとっている。これでは1個のサーモパイルが占め
る面積を余り小さくすることはできず、例えば4 (m
m) x4 (M)程度の大きさになってしまう。盪像
素子などでは解像度を上げるべく、素子の一層の微小化
が望まれる。
Furthermore, conventional thermocouples using silicon substrates are of a flat type, in which a large number of thermocouples are arranged on a flat surface and connected in series. In this case, the area occupied by one thermopile cannot be made very small; for example, 4 (m
m) x4 (M). In order to increase the resolution of image elements and the like, it is desired that the elements be further miniaturized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、シリコン単結晶とアルミニウムの熱電対で
は、熱起電力が十分でない。また多数の熱電対を平面上
に配設したサーモパイルでは、集積度向上が十分にはで
きない。
As described above, thermoelectromotive force is not sufficient in thermocouples made of silicon single crystal and aluminum. Furthermore, in a thermopile in which a large number of thermocouples are arranged on a plane, the degree of integration cannot be sufficiently improved.

本発明はか\る点を改善し、熱電対の起電力が大きく、
これを多数配設しても所要面積が大とならない立体構造
のサーモパイルを徒供することを目的とするものである
The present invention improves these points, and the electromotive force of the thermocouple is large.
The purpose is to provide a thermopile with a three-dimensional structure that does not require a large area even if a large number of thermopiles are installed.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に示すように本発明では、単結晶シリコン基板1
0内に多数のP型層21.22.・・・・・・とn型層
31,32.・・・・・・と、これらを相互に絶縁する
絶縁N41を形成する。これらのp型層、n型層は単結
晶シリコン、多結晶または非晶質シリコンのいずれでも
よい。また絶縁層41は二酸化シリコン、ノンドープの
多結晶シリコンなどでよい。基板IOの表面および裏面
も絶縁層42.43で被覆し、この絶縁層から露出する
p型層、n型層の両端面を金属層51,52.・・・・
・・および61.62.・・・・・・で接続し、全体を
ジグザグ状の直列接続体にする。このジグザグ状直列接
続体はX方向に延び、か\るものがY方向に複数組あり
、これらは全て直列に接続されて1つのサーモパイルを
構成する。
As shown in FIG. 1, in the present invention, a single crystal silicon substrate 1
A large number of P-type layers 21, 22 . . . . and n-type layers 31, 32 . . . . and an insulation N41 is formed to insulate these from each other. These p-type layer and n-type layer may be made of single crystal silicon, polycrystalline silicon, or amorphous silicon. Further, the insulating layer 41 may be made of silicon dioxide, non-doped polycrystalline silicon, or the like. The front and back surfaces of the substrate IO are also covered with insulating layers 42, 43, and both end surfaces of the p-type layer and n-type layer exposed from this insulating layer are covered with metal layers 51, 52, .・・・・・・
...and 61.62. Connect with... to make the whole into a zigzag series connection. This zigzag series connection body extends in the X direction, and there are multiple sets in the Y direction, all of which are connected in series to constitute one thermopile.

p型層とn型層の一方の端面、例えば金属層51.52
.・・・・・・で接続された端面が温接点側、他方の端
面本例では金属層61,62.・・・・・・で接続され
た端面が冷接点側になる。この温接点側には図示しない
絶縁層を介して電磁波吸収体70が形成される。
One end surface of the p-type layer and the n-type layer, for example, the metal layer 51.52
.. The end surface connected by . . . is the hot junction side, and the other end surface is the metal layer 61, 62 . The end face connected with ...... becomes the cold junction side. An electromagnetic wave absorber 70 is formed on this hot junction side via an insulating layer (not shown).

このサーモパイルは、p型シリコン基板とn型シリコン
基板を貼り合せ、そのP型基板に穴をあけてn型シリコ
ン層を成長または堆積させまたn型基板に穴をあけてp
型シリコン層を成長または堆積させ、これらのシリコン
成長または堆積層の周囲に穴をあけてその穴に絶縁層を
成長または堆積させ、こうしてp、nシリコン基板を貫
通するp型層121. 22.−・・・・−及びn型層
31,32゜・・・・・・を作り、これらの端面に金属
層51,52゜・・・・・・61,62.・・・・・・
を被着し、温接点側には絶縁層を介して電磁波吸収体7
0を取付ける、という要領で作ることができる。
This thermopile is made by bonding a p-type silicon substrate and an n-type silicon substrate, making a hole in the p-type substrate and growing or depositing an n-type silicon layer, and then forming a hole in the n-type substrate to grow or deposit a p-type silicon layer.
type silicon layers are grown or deposited, holes are drilled around these silicon growths or deposited layers, and an insulating layer is grown or deposited in the holes, thus forming a p-type layer 121. through the p,n silicon substrate. 22. -...- and n-type layers 31, 32°... are formed, and metal layers 51, 52°...61, 62... are formed on these end faces.・・・・・・
and an electromagnetic wave absorber 7 on the hot junction side via an insulating layer.
It can be created by attaching 0.

〔作用〕[Effect]

このサーモパイルでは電磁波吸収体70に入射した電磁
波により該吸収体の温度が上昇(降温)し、この近傍に
ある熱電対の温接点の温度が冷接点側よりも上昇(降温
)する。これにより、熱電対の温接点と冷接点の間に温
度差が生じて、ゼーベック効果により熱起電力が発生す
る。電磁波は例えば赤外線であるが、電磁波吸収体19
に吸収されて熱になるものであれば何でもよく、全波長
帯域型である。n型層21,22.・・・・・・、n型
層31.32  ・・・・・・はシリコンであるからゼ
ーベック係数が大きく、これらで構成される熱電対の熱
起電力は大きい。サーモバイルは、か\る熱電対の複数
個を直列に接続して構成するので、その紛然起電力は各
々の熱電対が発生する熱起電力の総和となる。
In this thermopile, the electromagnetic wave incident on the electromagnetic wave absorber 70 causes the temperature of the absorber to rise (fall), and the temperature of the hot junction of the thermocouple in the vicinity rises (falls) more than the cold junction side. This creates a temperature difference between the hot and cold junctions of the thermocouple, and a thermoelectromotive force is generated due to the Seebeck effect. The electromagnetic wave is, for example, infrared rays, and the electromagnetic wave absorber 19
Anything that can be absorbed by the body and turn into heat can be used, and it can be of any wavelength band type. n-type layers 21, 22. . . ., n-type layers 31, 32, . Since a thermomobile is constructed by connecting a plurality of such thermocouples in series, its apparent electromotive force is the sum of the thermoelectromotive force generated by each thermocouple.

またこのサーモパイルはその構成要素である熱電対の素
子21と31.22と32.・・・・・・が基板10の
厚み方向に延びており、温接点群の下方にこれらの素子
が埋まっている形になっている。従って集積度が高く、
温接点の周囲に非感光領域がないので、微小ビクセルを
1次元または2次元に多数配設した構造の撮像素子を容
易に構成できる。
This thermopile also has thermocouple elements 21, 31, 22, 32. ... extend in the thickness direction of the substrate 10, and these elements are buried below the hot junction group. Therefore, the degree of integration is high,
Since there is no non-photosensitive area around the hot junction, it is possible to easily configure an image sensor having a structure in which a large number of minute pixels are arranged one-dimensionally or two-dimensionally.

このサーモパイルでは異種金属(p、n型層)を直接接
続しないで、金属層51,52.・・・・・・61.6
2.・・・・・・を介して接続する。温接点側の温度は
どこも等温と見做せるので、中間金属の法則が適用され
、金属層51.・・・・・・は熱電対の起電力には影響
を及ぼさない。
In this thermopile, metal layers 51, 52 .・・・・・・61.6
2. Connect via... Since the temperature on the hot junction side can be considered to be the same everywhere, the law of intermediate metals is applied, and the metal layer 51. ...does not affect the electromotive force of the thermocouple.

このサーモパイルはトランジスタ製造工程を応用して製
作することができ、製造は容易である。
This thermopile can be manufactured by applying a transistor manufacturing process and is easy to manufacture.

〔実施例〕〔Example〕

このサーモパイルの具体例を示すと、n型層21.22
.・・・・・・のサイズはX方向で25〔μm〕、X方
向で25〔μm〕、Z方向で500〔μm〕であり、n
型層31,32.・・・・・・のサイズはX方向で25
〔μm〕、X方向で25〔μm〕、Z方向で500〔μ
m〕である。n型層とn型層の各1つで構成される熱電
対の個数は50個であり、P型層、n型層が共に多結晶
シリコンのときl[に]の温度差で25mVの熱起電力
を生じる。このサーモバイル全体の大きさはX方向で4
75〔μm〕、X方向で475 (μm)、Z方向で約
500[μm〕である。
To give a specific example of this thermopile, the n-type layers 21, 22
.. The size of ... is 25 [μm] in the X direction, 25 [μm] in the X direction, 500 [μm] in the Z direction, and n
Mold layers 31, 32. The size of ... is 25 in the X direction
[μm], 25 [μm] in the X direction, 500 [μm] in the Z direction
m]. The number of thermocouples consisting of one n-type layer and one n-type layer is 50, and when both the P-type layer and the n-type layer are polycrystalline silicon, a temperature difference of 1 generates 25 mV of heat. Generates an electromotive force. The overall size of this thermomobile is 4 in the X direction.
75 [μm], 475 (μm) in the X direction, and approximately 500 [μm] in the Z direction.

第2図にこのサーモパイルの製造工程を示す。Figure 2 shows the manufacturing process of this thermopile.

先ず(+)に示すようにp型車結晶シリコン基板11と
n型単結晶シリコン基板12を用意し、熱酸化により表
面に二酸化シリコン膜13.14を形成する。
First, as shown in (+), a p-type wheel crystal silicon substrate 11 and an n-type single crystal silicon substrate 12 are prepared, and silicon dioxide films 13 and 14 are formed on their surfaces by thermal oxidation.

次に(2)に示すように、これらの基板11と12を貼
り合わせる。この貼り合わせは、酸化膜13゜14を純
水でぬらしたのち重ね合せ、200°Cでベーキングし
た後、800〜1000”Cの温度で30〜60分間熱
処理することにより行なうことができる。
Next, as shown in (2), these substrates 11 and 12 are bonded together. This bonding can be carried out by wetting the oxide films 13 and 14 with pure water, overlapping them, baking them at 200°C, and then heat-treating them at a temperature of 800 to 1000''C for 30 to 60 minutes.

次に(3)に示すように、p型基板11にn型層31.
32.・・・・・・(以下30という)の断面に相当す
る穴をあける。この穴は、貼り合せ部分の酸化W413
、I4を貫いて、n基板12が露出するまであける。然
るのちCVD法などでn型シリコン層を成長または堆積
させ、上記穴をシリコン層で埋める。12aはこの穴に
成長または堆積したn型シリコン層を示し、これは単結
晶、多結晶または非晶質(アモルファス)である。熱電
対の熱起電力は単結晶の方が高いので、単結晶シリコン
が成長するように工程を管理するのがよい。穴の周囲の
p基板上にもn型シリコンが成長または堆積するが、こ
れはエツチングなどにより除去する(他も同様)。
Next, as shown in (3), an n-type layer 31.
32. A hole corresponding to the cross section of . . . (hereinafter referred to as 30) is drilled. This hole is made of oxidized W413 from the bonding part.
, I4 and open until the n-substrate 12 is exposed. Thereafter, an n-type silicon layer is grown or deposited by CVD or the like, and the hole is filled with the silicon layer. 12a shows an n-type silicon layer grown or deposited in this hole, which may be single crystal, polycrystalline or amorphous. Since the thermoelectromotive force of a thermocouple is higher in a single crystal, it is better to manage the process so that single crystal silicon grows. N-type silicon also grows or deposits on the p-substrate around the hole, but this is removed by etching or the like (the same goes for others).

次は(4)に示すようにn基板12にn型層21゜22
、・・・・・・(以下20という)の断面に相当する穴
をあけ、この穴にp型シリコンIlaを成長または堆積
させる。これも単結晶、多結晶、または非晶質であるが
、単結晶が成長するようにするのが好ましい。こうして
(5)に示すように、貼り合わされたp型基板11とn
型基板12を貫通し、交互に並ぶn型層20とn型層3
0ができ上る。
Next, as shown in (4), the n-type layer 21°22 is placed on the n-substrate 12.
, ... (hereinafter referred to as 20) is made, and p-type silicon Ila is grown or deposited in this hole. It can also be single crystal, polycrystalline, or amorphous, but it is preferred to grow a single crystal. In this way, as shown in (5), the bonded p-type substrate 11 and n
N-type layers 20 and n-type layers 3 pass through the type substrate 12 and are arranged alternately.
0 is completed.

次はp型基板11のn型層の周囲に溝を作り、この溝に
CVD法などにより絶縁層(二酸化シリコンなど)41
aを成長または堆積させる。(7)に示すようにn型基
板12側のn型層の周囲にも溝を作り、この溝に絶縁層
(二酸化シリコンなど)41bを成長または堆積させる
Next, a groove is created around the n-type layer of the p-type substrate 11, and an insulating layer (silicon dioxide, etc.) 41 is formed in this groove using a CVD method or the like.
grow or deposit a. As shown in (7), a groove is also formed around the n-type layer on the n-type substrate 12 side, and an insulating layer (such as silicon dioxide) 41b is grown or deposited in this groove.

次は(8)に示すようにアルミニウムなどの金属の蒸着
、そのバターニングを行なって、金属層50゜60を形
成する。これで第1図に示すサーモバイルができ上る。
Next, as shown in (8), a metal such as aluminum is deposited and patterned to form metal layers 50° and 60. This completes the thermomobile shown in Figure 1.

なお表面の絶縁膜などは適宜形成しまた除去する。Note that an insulating film on the surface is formed and removed as appropriate.

次は(9)に示すように電磁波吸収体70を温接点側に
取付けるが、これは絶縁層71の形成、金属(この場合
は金Au)の蒸着、そのパターニングを行なえばよい。
Next, as shown in (9), the electromagnetic wave absorber 70 is attached to the hot junction side, which can be done by forming an insulating layer 71, depositing metal (gold Au in this case), and patterning it.

。 p型基板11とn型基板12の厚さは200〜300〔
μm〕、であり、これらを合わせたp型層20、n型層
30の長さは500〜600 (μm〕である。p/n
型層の断面は100(μm〕X100〔μm]程度であ
り、これでICIIIm”)内に収まるサーモバイルを
作ることができる。
. The thickness of the p-type substrate 11 and the n-type substrate 12 is 200 to 300 [
μm], and the combined length of the p-type layer 20 and n-type layer 30 is 500 to 600 (μm).p/n
The cross section of the mold layer is approximately 100 (μm) x 100 [μm], which makes it possible to make a thermomobile that fits within ICIIIm'').

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば立体構造のサーモバ
イルを提供でき、解像度の高い1次元または2次元セン
サの提供に有効である。
As explained above, according to the present invention, it is possible to provide a thermomobile with a three-dimensional structure, and it is effective in providing a one-dimensional or two-dimensional sensor with high resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のサーモバイルの説明図、第2図は本発
明のサーモバイルの製造工程を示す説明図である。 第1図で21.22はp型層、31,32.・・・・・
・はn型層、51,52.・・・・・・、61,62.
・・・・・・は金属層、70は電磁波吸収体である。 出 願 人 新日本製鐵株式会社
FIG. 1 is an explanatory diagram of the thermomobile of the present invention, and FIG. 2 is an explanatory diagram showing the manufacturing process of the thermomobile of the present invention. In FIG. 1, 21, 22 are p-type layers, 31, 32 .・・・・・・
- is an n-type layer, 51, 52. ......,61,62.
. . . is a metal layer, and 70 is an electromagnetic wave absorber. Applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】 1、単結晶シリコン基板内にその厚さ方向に複数個のp
型層とn型層とこれらを絶縁する絶縁層を形成し、 これらp型層とn型層の各端面を基板表、裏面に被着し
た金属層により接続して全体をジグザグ状の直列接続体
とし、 温接点となる側の面上には絶縁層を介して電磁波吸収体
層を被着したことを特徴とする縦型シリコンサーモパイ
ル。 2、p型単結晶シリコン基板とn型単結晶シリコン基板
それらの表面の絶縁膜で貼り合わせる工程と、 貼り合わされたp型基板に、n型基板に達する穴をあけ
、該穴にn型シリコン層を成長または堆積させ、また貼
り合わされたn型基板に、p型基板に達する穴をあけ、
該穴にp型シリコン層を成長または堆積させる工程と、 p型基板の穴に成長または堆積したn型シリコン層の周
囲に穴をあけてその穴に絶縁層を成長または堆積させ、
またn型基板の穴に成長または堆積したp型シリコン層
の周囲に穴をあけてその穴に絶縁層を成長または堆積さ
せる工程と、 こうしてできた、貼り合わされたp型基板とn型基板を
貫通し絶縁層で相互に絶縁されたp型層とn型層の端面
を金属層で接続して全体をジグザグ状の直列接続体にす
る工程と、 温接点側の端面に絶縁膜を介して電磁波吸収体を被着す
る工程とを有することを特徴とする縦型シリコンサーモ
パイルの製造法。
[Claims] 1. A plurality of P in the thickness direction of a single crystal silicon substrate.
A type layer, an n-type layer, and an insulating layer that insulates them are formed, and the end faces of these p-type and n-type layers are connected by metal layers deposited on the front and back surfaces of the substrate, and the whole is connected in series in a zigzag shape. A vertical silicon thermopile characterized by having an electromagnetic wave absorber layer coated on the side that serves as a hot junction via an insulating layer. 2. The step of bonding a p-type single crystal silicon substrate and an n-type single crystal silicon substrate with an insulating film on their surfaces, and drilling a hole in the bonded p-type substrate that reaches the n-type substrate, and filling the hole with n-type silicon. growing or depositing layers and drilling holes in the bonded n-type substrate to reach the p-type substrate;
growing or depositing a p-type silicon layer in the hole; forming a hole around the n-type silicon layer grown or deposited in the hole of the p-type substrate and growing or depositing an insulating layer in the hole;
There is also a step of making a hole around the p-type silicon layer grown or deposited in the hole of the n-type substrate and growing or depositing an insulating layer in the hole, and bonding the p-type substrate and n-type substrate that are bonded together in this way. A step in which the end faces of the p-type layer and n-type layer, which are insulated from each other by an insulating layer, are connected by a metal layer to form a zigzag series connection, and the end face on the hot junction side is connected via an insulating film. 1. A method for manufacturing a vertical silicon thermopile, comprising the step of depositing an electromagnetic wave absorber.
JP1072899A 1989-03-24 1989-03-24 Vertical type silicon thermopile and manufacture thereof Pending JPH03196583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072899A JPH03196583A (en) 1989-03-24 1989-03-24 Vertical type silicon thermopile and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072899A JPH03196583A (en) 1989-03-24 1989-03-24 Vertical type silicon thermopile and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03196583A true JPH03196583A (en) 1991-08-28

Family

ID=13502658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072899A Pending JPH03196583A (en) 1989-03-24 1989-03-24 Vertical type silicon thermopile and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03196583A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010937A1 (en) * 1997-08-25 1999-03-04 Citizen Watch Co., Ltd. Thermoelectric device
WO1999022410A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Thermoelectric transducing material and method of producing the same
WO1999034450A1 (en) * 1997-12-27 1999-07-08 Sumitomo Special Metals Co., Ltd. Thermoelectric element
JP2004140064A (en) * 2002-10-16 2004-05-13 Citizen Watch Co Ltd Thermoelement and its manufacturing method
US7005643B2 (en) * 2003-03-31 2006-02-28 Denso Corporation Infrared sensor
JP2006093364A (en) * 2004-09-24 2006-04-06 Citizen Watch Co Ltd Differential thermoelectric element
GB2433650A (en) * 2005-12-22 2007-06-27 Bosch Gmbh Robert Micromechanical thermopile sensor and method for producing same
JP2009186223A (en) * 2008-02-04 2009-08-20 Aruze Corp Infrared sensor
WO2014064755A1 (en) * 2012-10-22 2014-05-01 富士通株式会社 Semiconductor device, method for manufacturing semiconductor device, and electronic thermoelectric power generation device
US10224474B2 (en) 2013-01-08 2019-03-05 Analog Devices, Inc. Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor
US10481008B2 (en) 2015-08-05 2019-11-19 Denso Corporation Radiant heat sensor
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010937A1 (en) * 1997-08-25 1999-03-04 Citizen Watch Co., Ltd. Thermoelectric device
US6314741B1 (en) 1997-08-25 2001-11-13 Citizen Watch Co., Ltd. Thermoelectric device
WO1999022410A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Thermoelectric transducing material and method of producing the same
WO1999034450A1 (en) * 1997-12-27 1999-07-08 Sumitomo Special Metals Co., Ltd. Thermoelectric element
JP2004140064A (en) * 2002-10-16 2004-05-13 Citizen Watch Co Ltd Thermoelement and its manufacturing method
US7005643B2 (en) * 2003-03-31 2006-02-28 Denso Corporation Infrared sensor
JP2006093364A (en) * 2004-09-24 2006-04-06 Citizen Watch Co Ltd Differential thermoelectric element
JP4490774B2 (en) * 2004-09-24 2010-06-30 シチズンホールディングス株式会社 Differential thermoelectric element
GB2433650B (en) * 2005-12-22 2008-01-23 Bosch Gmbh Robert Micromechanical thermopile sensor and method for producing same
GB2433650A (en) * 2005-12-22 2007-06-27 Bosch Gmbh Robert Micromechanical thermopile sensor and method for producing same
JP2009186223A (en) * 2008-02-04 2009-08-20 Aruze Corp Infrared sensor
WO2014064755A1 (en) * 2012-10-22 2014-05-01 富士通株式会社 Semiconductor device, method for manufacturing semiconductor device, and electronic thermoelectric power generation device
JPWO2014064755A1 (en) * 2012-10-22 2016-09-05 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and thermoelectric power generation electronic device
US9455390B2 (en) 2012-10-22 2016-09-27 Fujitsu Limited Semiconductor device, method for manufacturing semiconductor device and electronic thermoelectric power generation device
US10224474B2 (en) 2013-01-08 2019-03-05 Analog Devices, Inc. Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor
US10481008B2 (en) 2015-08-05 2019-11-19 Denso Corporation Radiant heat sensor
JP2021512488A (en) * 2018-01-23 2021-05-13 エルジー イノテック カンパニー リミテッド Thermoelectric module

Similar Documents

Publication Publication Date Title
TW468360B (en) Thermopile infrared device, thermalpile infrared array device and the manufacturing method thereof
JP3399399B2 (en) Infrared sensor and method of manufacturing the same
JPH03196583A (en) Vertical type silicon thermopile and manufacture thereof
DE112011101444T5 (en) A temperature sensor device and radiation thermometer using this device, manufacturing method for temperature sensor devices, multilayer thin film thermopile using a photoresist film and a radiation thermometer using this thermopile, and manufacturing method of a multilayer thin film thermopile
JP2000340848A (en) Thermopile infrared sensor, and manufacture thereof
US6750452B1 (en) Thermal type-infrared detection device and method for manufacturing the same, and array of thermal type-infrared detection device
JP2001330511A (en) Infrared sensor
JP3186415B2 (en) Manufacturing method of infrared detecting element
JPS6212454B2 (en)
CN116963574B (en) Infrared thermopile sensor and manufacturing method thereof
DE10033589A1 (en) Microstructured thermal sensor
JP2541458B2 (en) Infrared sensor and manufacturing method thereof
US20230088920A1 (en) Infrared sensor and method of controlling infrared sensor
JP2811709B2 (en) Infrared sensor
JPH02165025A (en) Thermopile
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JPH05126643A (en) Infrared sensor
JP3235361B2 (en) Infrared detector
JPH11258041A (en) Thermopile type infrared ray sensor
JPH03196582A (en) Thermopile using silicon single crystal and manufacture thereof
JP3435997B2 (en) Infrared detector
CN215439669U (en) MEMS thermopile infrared sensor
KR970006040B1 (en) Sensor manufacturing method
EP1462782B1 (en) Thermal type-infrared detection device with increased fill-factor, method for manufacturing the same, and array of thermal type-infrared detection devices
JPH06260686A (en) Layered thermopile and manufacture thereof