[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03172777A - Diagnostic method for insulation deterioration of cv cable - Google Patents

Diagnostic method for insulation deterioration of cv cable

Info

Publication number
JPH03172777A
JPH03172777A JP31300689A JP31300689A JPH03172777A JP H03172777 A JPH03172777 A JP H03172777A JP 31300689 A JP31300689 A JP 31300689A JP 31300689 A JP31300689 A JP 31300689A JP H03172777 A JPH03172777 A JP H03172777A
Authority
JP
Japan
Prior art keywords
cable
current
deterioration
detected
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31300689A
Other languages
Japanese (ja)
Other versions
JP2876322B2 (en
Inventor
Kunihiko Sanada
邦彦 真田
Yoshio Tsunoda
角田 美伯
Masato Miyako
都 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP31300689A priority Critical patent/JP2876322B2/en
Publication of JPH03172777A publication Critical patent/JPH03172777A/en
Application granted granted Critical
Publication of JP2876322B2 publication Critical patent/JP2876322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To accurately detect a defective insulation at the time of cable deterioration by detecting harmonic wave components of a current having the frequency equal to the frequency of AC power source from the earth line current. CONSTITUTION:A current transformer CT is coupled to the earth line 3 pulled out from a shield layer 11 at one end of a CV cable 1 subjected to measurement, and the earth line current (ie) flowing in the earth line 3 is thereby detected. The earth line current (ie) detected by the current transformer CT is sent out to an insulation diagnostic device 2, wherein a fundamental wave component is eliminated by a band elimination filter(BEF) 21 at first, and noise current components, etc., are eliminated by a BPF 22, then the remaining harmonic wave components are displayed by a display device 23 as the absolute values. That is, the decision can be made as, the more the amount of harmonic wave components are detected, the more a water tree deterioration has progressed for the insulator of CV cable. By this procedure, the defective insulation can be accurately detected at the time of cable deterioration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、活線下においてCVケーブルの水トリー等に
よる絶縁劣化の程度を診断する絶縁劣化診断方法および
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an insulation deterioration diagnosis method and apparatus for diagnosing the degree of insulation deterioration due to water tree etc. of a CV cable under live wires.

[従来の技術] 一般的に、電カケープルは布設後の経年変化により電気
絶縁体の絶縁性能が低下づ゛る。特に、CVケーブルで
は架橋ポリエチレン絶縁体に樹状の亀裂が生じ、この亀
裂に水分が浸入する所謂水トリーの発生が絶縁劣化の主
な原因であることか知られている。このような絶縁性能
の低下は、放置すると進展して早晩大とな絶縁破壊事故
につながる慣れがある。従って、ケーブルの絶縁抵抗の
変化を把握し、劣化を早期に発見することが極めて重要
である。このため、従来から種々の絶縁d111定方法
が知られているが、特に近年では測定時に送電を停止す
ることなく活線状態で診断する方法か幾つか提案されて
おり、常時の状態監視も可能である等の有利な点が多い
ため注目されている。
[Prior Art] Generally, the insulation performance of the electric insulator of an electric cable tends to deteriorate due to aging after installation. In particular, it is known that in CV cables, dendritic cracks occur in the cross-linked polyethylene insulation, and the occurrence of so-called water trees, in which water infiltrates into these cracks, is the main cause of insulation deterioration. If left untreated, such deterioration in insulation performance will progress and sooner or later lead to a major dielectric breakdown accident. Therefore, it is extremely important to understand changes in cable insulation resistance and discover deterioration early. For this reason, various insulation d111 determination methods have been known for a long time, but in recent years in particular, several methods have been proposed for diagnosing in a live line state without stopping power transmission during measurement, and it is also possible to constantly monitor the condition. It is attracting attention because it has many advantages such as:

このような常時監視を行なう方法としては、従来では例
えば特公昭60−8465号公報等に記載されているよ
うに送電交流電流に直流電流を重畳させ、この結果とし
て検出されるケーブル漏洩電流の直流成分からケーブル
の絶縁抵抗を求めて評価する所謂直流重畳法や、或は特
開昭60−185171号公報等に記載きれているよう
に送電電圧波形と電流波形とを測定し、誘電正接を求め
て評価する所謂janδ法が一般に用いられている。ま
た、特にCVケーブルの場合では特開昭59 2020
75号公報において水トリーに電流整流作用があるとし
て、交流送電中のケーブル漏洩電流の直流分を測定し、
その方向と絶対値とから水トリーの分布と長ざ及び体積
を推定する方法が開示されている。
Conventionally, as a method for performing such constant monitoring, as described in Japanese Patent Publication No. 60-8465, etc., a direct current is superimposed on the power transmission alternating current, and the direct current of the cable leakage current detected as a result of this is superimposed on the transmitted alternating current. The so-called direct current superposition method is used to determine and evaluate the insulation resistance of the cable from its components, or the dielectric loss tangent is determined by measuring the transmission voltage waveform and current waveform as described in Japanese Patent Application Laid-open No. 185171/1983. The so-called jan δ method is generally used. In addition, especially in the case of CV cables,
In Publication No. 75, assuming that the water tree has a current rectifying effect, the DC component of the cable leakage current during AC power transmission was measured,
A method for estimating the distribution, length, and volume of a water tree from its direction and absolute value is disclosed.

[発明が解決しようとする課題] しかしながら、上述した公知の従来方法は何れも絶縁劣
化を早期に且つ正確に発見したいという要求を必ずしも
充分に満足し得る方法ではない。
[Problems to be Solved by the Invention] However, none of the above-mentioned known conventional methods can fully satisfy the demand for early and accurate detection of insulation deterioration.

即ち、第1に述べた直流重畳法は一般的に劣化の程度に
対する検出感度が悪いときれ、相当に程度の激しい劣化
でなければ検出されないという問題がある。また測定時
に数10V程度の直流重畳電圧を必要とし、このため直
流電源を別個に準備しなければならない。
That is, the first-mentioned DC superimposition method generally suffers from poor detection sensitivity to the degree of deterioration, and has the problem that it cannot be detected unless the degree of deterioration is extremely severe. Furthermore, a DC superimposed voltage of approximately several tens of volts is required during measurement, and therefore a separate DC power source must be prepared.

一方、janδ法ではケーブル全体にオ〕たる劣化は検
出されるものの、水トリーのような局部的な劣化に対す
る検出感度は悪いという欠点が知られている。
On the other hand, although the JAN δ method can detect major deterioration in the entire cable, it is known to have a drawback in that it has poor detection sensitivity for localized deterioration such as water trees.

更に、水トリーの整流作用を利用する特開昭59−20
2075号公報の場合では、同公報に記述されているよ
うにケーブル絶縁体に導体側から発生する所謂内溝水ト
リーとシース側から発生する外溝水トリーとでは、発生
する直流電流が互いに逆極性であることから、両種の水
トリーが同時に発生した場合には検出される直流電流は
互いに打ち消し合って充分な測定ができなくなる惧れが
ある。
Furthermore, Japanese Patent Application Laid-Open No. 59-20 utilizes the rectification effect of water trees.
In the case of Publication No. 2075, as described in the same publication, the so-called internal groove water tree generated from the conductor side of the cable insulator and the external groove water tree generated from the sheath side, the generated DC currents are opposite to each other. Because of the polarity, if both types of water trees occur at the same time, there is a risk that the detected DC currents will cancel each other out, making it impossible to make sufficient measurements.

[発明の背景] 本発明者らが水トリー現象について研究した結果、次の
ような新事実を発見した。すなわち、Wjl定対象とす
るCVケーブルに交流電圧を印加すると、ケーブルの遮
蔽層にはケーブル導体との静電結合により印加交流電圧
に応じた電荷が誘起され、この時間変化のため大地との
間に印加交流電圧の周波数と同程度の周期で変動する電
流(接地線電流)が流れるわけであるが、前記接地線電
流の波形をa測した場合、 ■ CVケーブルの絶縁体中に水トリーが存在すると、
接地線電流波形に歪が生じる ■ 上記波形の歪は、印加交流電圧のピーク値付近で最
も大きくなる。
[Background of the Invention] As a result of research on the water tree phenomenon, the present inventors discovered the following new fact. In other words, when an AC voltage is applied to a CV cable that is subject to Wjl constant, a charge corresponding to the applied AC voltage is induced in the shielding layer of the cable due to electrostatic coupling with the cable conductor, and due to this time change, the voltage between the cable and the ground increases. A current (grounding line current) that fluctuates at a frequency comparable to the frequency of the applied AC voltage flows through the cable, but when the waveform of the grounding line current is measured a, there is a water tree in the insulation of the CV cable. If it exists,
Distortion occurs in the ground line current waveform (■) The distortion in the above waveform is greatest near the peak value of the applied AC voltage.

■ 歪んだ接地線電流は、印加交流電圧の高調波成分を
多く含んでいる。
■ Distorted ground line current contains many harmonic components of the applied AC voltage.

■ 水トリー劣化の激しいケーブルはど、接地線電流中
に含まれる高調波成分量が大きくなる。
■ For cables with severe water tree deterioration, the amount of harmonic components contained in the ground wire current increases.

水トリーが存在するケーブル絶縁体においては、電気的
観点で見れば、ケーブル導体と遮蔽層との間に、絶縁体
の健全部が有する静電容量Faと水トリ一部が有する静
電容IFbとが接続された等価回路が多数並列的に存在
すると考えることができる。このようなケーブルに交流
電圧を印加した場合、印加交流電圧のピーク値付近では
水トリー部静電容量Fbの電圧分担が強制的に低下する
ため、健全部静電容量Faの電圧分担が増大し、その結
果高調波を含む歪電流成分が絶縁体中を流れる。健全部
静電容量Faの電圧分担は水トリ一部の体積が大きいほ
ど増大するため、而して上記のような現象が発生すると
推測きれる。
In a cable insulator in which a water tree exists, from an electrical point of view, between the cable conductor and the shielding layer, the capacitance Fa of the healthy part of the insulator and the capacitance IFb of the part of the water tree are separated. It can be considered that there are many equivalent circuits connected in parallel. When an AC voltage is applied to such a cable, the voltage share of the water tree section capacitance Fb is forcibly reduced near the peak value of the applied AC voltage, so the voltage share of the healthy section capacitance Fa increases. As a result, distorted current components containing harmonics flow through the insulator. Since the voltage share of the healthy part capacitance Fa increases as the volume of the water pan increases, it can be inferred that the above phenomenon occurs.

本発明の目的は、従来方法の欠点を解消し、上述の新事
実を基に、劣化時に正確に絶縁不良を発見できる新規な
Cvケーブルの絶縁劣化診断方法を提供することにある
An object of the present invention is to provide a new method for diagnosing insulation deterioration of a Cv cable, which eliminates the drawbacks of the conventional method and can accurately detect insulation defects at the time of deterioration, based on the above-mentioned new facts.

[課題を解決するための手段] 本発明のCvケーブルの絶縁劣化診断方法は、交流電源
電圧が印加されたCVケーブルの遮蔽層と基準電位との
間を接続する接地線より接地線電流を検出し、該接地線
電流より前記交流電源の周波数に等しい周波数の電流の
高調波成分を検出することにより、CVケーブル絶縁体
の劣化の程度を検知することを特徴とするものである。
[Means for Solving the Problems] A method for diagnosing insulation deterioration of a CV cable according to the present invention detects a ground line current from a ground line connecting between a reference potential and a shielding layer of a CV cable to which an AC power supply voltage is applied. The present invention is characterized in that the degree of deterioration of the CV cable insulator is detected by detecting harmonic components of a current having a frequency equal to the frequency of the AC power source from the ground line current.

[作用] 本発明においては、接地線電流から交流電源周波数の高
調波成分を検出することにより、上記新知見に基づ(C
Vケーブルの絶縁劣化診断を行なうものである。すなわ
ち、検出される高調波成分量が多い程、そのCVケーブ
ルの絶縁体は水トリー劣化が進行していると判断するこ
とができる。
[Operation] In the present invention, based on the above new knowledge (C
This is to diagnose insulation deterioration of V cable. That is, as the amount of harmonic components detected increases, it can be determined that water tree deterioration of the insulator of the CV cable progresses.

[実施例] 以下図面に基づいて本発明の一実施例を詳細に説明する
[Example] An example of the present invention will be described in detail below based on the drawings.

第1図は本発明の絶縁劣化診断方法を具体化するための
構成図の一例である。図において、Ckは測定対象とな
るCVケーブルの導体−遮蔽層間の静電容量であり、X
側をケーブルの導体側、Y側を遮蔽層側としている。E
は交流電源であり、一端を接地し、他端をケーブルの導
体X側に接続する。なお、ケーブルが活線状態の場合に
おいて本発明を実施する場合は、印加されている線路電
圧をそのまま利用すれば良く、交流電源Eは不要となる
FIG. 1 is an example of a configuration diagram for embodying the insulation deterioration diagnosing method of the present invention. In the figure, Ck is the capacitance between the conductor and shielding layer of the CV cable to be measured, and
The side is the conductor side of the cable, and the Y side is the shielding layer side. E
is an AC power source, one end of which is grounded, and the other end connected to the conductor X side of the cable. Note that when the present invention is implemented when the cable is in a live state, the applied line voltage may be used as is, and the AC power source E is not required.

ここで、交流電源Eにて供試Cvケーブルに電圧を印加
すると、ケーブルが有する静電容ff1ckに充電電流
が流れ、遮蔽層Y側から大地に接地線電流ieが流れる
ことになる。接地線電流ieは、前述の通り主として印
加交流電圧の周波数と同程度の周期で変動する電流であ
り、交流電源Eの周波数が50Hzの場合、接地線電流
ieも50Hzの電流成分が基本波となる。
Here, when a voltage is applied to the test Cv cable from the AC power source E, a charging current flows through the capacitance ff1ck of the cable, and a ground line current ie flows from the shielding layer Y side to the ground. As mentioned above, the grounding line current ie is a current that mainly fluctuates at a period comparable to the frequency of the applied AC voltage, and when the frequency of the AC power source E is 50Hz, the grounding line current ie also has a 50Hz current component as a fundamental wave. Become.

第2図に示すように、上記接地線電流ieの波形を1t
lI測した場合、水トリーが存在しないケーブルでは若
干の雑音電流成分の重畳は認められるものの、はぼ正弦
波に近い接地線電流ie(図中点線で表示)が検出され
るが、水トリーが存在しているケーブルでは、図中実線
で表示するように印加交流電圧(図中−点鎖線で表示)
のピーク値付近でとくに大きく波形が歪んだ接地線電流
ieがriA測される。
As shown in Fig. 2, the waveform of the grounding line current ie is 1t.
When performing II measurements, although some noise current components are superimposed on cables without water trees, a ground line current ie (indicated by a dotted line in the figure) that is close to a sine wave is detected; For existing cables, the applied AC voltage is indicated by the solid line in the figure (indicated by the dashed line in the figure).
The ground line current ie whose waveform is particularly greatly distorted near the peak value of riA is measured.

該接地線電流ieより高調波成分を検出して劣化診断を
行なうわけであるが、本実施例では先ず接地線より接地
線電流検出器20により接地線電流ieを検出し、バン
ドエリミネーションフィルタ−(以下BEFという)2
1にて、接地線電流ieより前記基本波成分(印加交流
電圧と同周波数の電流成分)を取り除き、次いでこの電
流中から雑音電流成分等の不要な電流成分を取り除いて
基本波の高調波成分のみを検出するために、パンドパス
フ、1ルター(以下BPFという)22を通過きせる場
合を例示している。第3図はBPF22の出力電流波形
を示しており、該電流は接地線電流ieより、その基本
波電流成分と雑音電流成分が除去された基本波の高周波
成分のみとなる。
Deterioration diagnosis is performed by detecting harmonic components from the grounding line current ie. In this embodiment, first, the grounding line current ie is detected from the grounding line by the grounding line current detector 20, and then a band elimination filter is applied. (hereinafter referred to as BEF)2
1, remove the fundamental wave component (current component with the same frequency as the applied AC voltage) from the grounding line current ie, and then remove unnecessary current components such as noise current components from this current to obtain harmonic components of the fundamental wave. A case is illustrated in which the signal is passed through a Pandpass Filter (hereinafter referred to as BPF) 22 in order to detect only the PPF. FIG. 3 shows the output current waveform of the BPF 22, and the current consists of only the high frequency component of the fundamental wave from which the fundamental wave current component and the noise current component are removed from the ground line current ie.

BEF21及びBPF22としては各種公知のフィルタ
ー回路を採用することができ、適当なフィルター回路を
適宜選択して使用すれば良い。
Various known filter circuits can be employed as the BEF 21 and BPF 22, and any suitable filter circuit may be selected and used as appropriate.

最後にBEF21.BPF22のフィルタリングにより
検出きれた高調波成分に、高調波成分量表示装置23に
おいて例えば整流する等の加工を施し、高調波成分の絶
対量の大ときを表示する。
Finally, BEF21. The harmonic components detected by the filtering of the BPF 22 are processed, for example, by rectification, in the harmonic component amount display device 23, and the magnitude of the absolute amount of the harmonic components is displayed.

前述の通り、水トリー劣化の激しいケーブル程高調波成
分量は増加Jるので、高調波成分量表示装置23にて高
調波成分量を測定することにより、水トリー劣化診断を
行なうことができる。
As mentioned above, the amount of harmonic components increases as the cable undergoes more severe water tree deterioration, so water tree deterioration diagnosis can be performed by measuring the amount of harmonic components with the harmonic component amount display device 23.

第4図は本発明の劣化診断方法を、活線状態にある3相
3線式線路に適用した場合を示す図である。測定対象と
なるCVケーブル1の一端の遮蔽層11から引き出きれ
ている接地線3には変流器CTがカップリングされてお
り、接地線3中を流れる接地線電流ieを検出するよう
になされている。変流器CTが検出した接地線電流ie
は絶縁診断装置2へ送出され、該装置2内において前述
のように先ずBEF21により基本波成分が除去され、
BPF22により雑音電流成分等が除去され、そして表
示装置23において残る高調波成分が絶対量として表示
される。実際に測定を行なう場合は、CVケーブル1の
他端の遮蔽層12からも接地線30を引き出し、その中
間部にスイッチSを設け、測定時にスイッチSを閉とし
て片端接地の状態で行なう。
FIG. 4 is a diagram showing a case where the deterioration diagnosis method of the present invention is applied to a three-phase three-wire line in a live line state. A current transformer CT is coupled to the grounding wire 3 drawn out from the shielding layer 11 at one end of the CV cable 1 to be measured, so as to detect the grounding wire current ie flowing through the grounding wire 3. being done. Earthing wire current ie detected by current transformer CT
is sent to the insulation diagnosis device 2, in which the fundamental wave component is first removed by the BEF 21 as described above, and
Noise current components and the like are removed by the BPF 22, and the remaining harmonic components are displayed as absolute quantities on the display device 23. When actually performing measurements, the grounding wire 30 is also drawn out from the shielding layer 12 at the other end of the CV cable 1, and a switch S is provided in the middle thereof, and the measurement is performed with the switch S closed and one end grounded.

接地線電流ieを検出する他の方法として、図中点線で
示すように接地線3°に抵抗Rを挿入し、この抵抗Rの
両端にあられれる電圧を利用して絶縁診断装置2°を動
作きせることもできる。しかしながら抵抗Rによる検出
の場合、Cvケーブル1と大地との間に電位差が発生ず
ることになり、その結果ケーブル−大地間静電容MCs
が測定に急影響を及ばずこととなるので、ケーブル−大
地間にはと76、と静電容量が生しることかない、変流
器C′Fによる接地線電流ieの検出が望ましい。
Another method for detecting the grounding wire current ie is to insert a resistor R into the grounding wire 3° as shown by the dotted line in the figure, and operate the insulation diagnostic device 2° using the voltage that appears across this resistor R. You can also write it down. However, in the case of detection using the resistor R, a potential difference occurs between the Cv cable 1 and the ground, and as a result, the cable-ground capacitance MCs
Since this does not have a sudden effect on the measurement, it is desirable to detect the grounding line current ie using a current transformer C'F, which does not generate a capacitance such as 76 between the cable and the ground.

ざらに変(ん器C′「による検出では、接地線3に同等
加工を施ず必要か無いので既設線路への適用が容易であ
り、また局部電池の影響を受けない等、抵抗Rによる検
出の場合に比べこれらの点でも優れている。
Detection using a rough transformer C' does not require equivalent processing on the grounding wire 3, so it is easy to apply to existing lines, and detection using a resistor R is not affected by local batteries. It is also superior in these respects compared to the case of .

検出する高調波としては、全人の高調波を検出しても良
いし、またある一つの特定大高調波のみを検出してし良
く、これらの選択はBPF22の回路条件を適宜設定す
ることにより行なうことができる。
The harmonics to be detected may be the harmonics of all persons, or only one specific large harmonic, and these selections can be made by appropriately setting the circuit conditions of the BPF22. can be done.

ところで、一般に66kV程度以上の特別高圧線路にお
ける変圧器結線としては、Y−Y結線が各種の方式での
中性点接地が可能及び位相変位がないという1県で有利
であるが、実際の特別高圧線路においてはΔ結線が変圧
器の三次巻線として使用される。これは、Y−Y結線の
場合は第3高調波励磁電流が流れ得ないため、誘起起電
力は正弦波ではなく第3高調波を含むひずみ波形となる
ので、Δ結線変圧器を使用し第3高調波の還−流通路を
設は正弦波誘起起電力を生成するものである。
By the way, in general, Y-Y connection is advantageous for connecting transformers in special high-voltage lines of about 66 kV or higher because it allows neutral point grounding in various ways and there is no phase shift, but in actual special cases In high-voltage lines, the delta connection is used as the tertiary winding of the transformer. This is because in the case of Y-Y connection, the third harmonic excitation current cannot flow, so the induced electromotive force is not a sine wave but a distorted waveform that includes the third harmonic. The third harmonic circulation path is provided to generate a sinusoidal induced electromotive force.

従って、特別高圧線路においては第3高調波は積極的に
除外されており、線路自体が具備Jる第3高調波は極め
て少ない。
Therefore, the third harmonic is actively excluded from the extra high voltage line, and the line itself contains extremely little third harmonic.

このことから、本発明を実施するに際しては、接地線電
流ieの基本波の第3高調波のみを検出するようにすれ
ば、線路自体が有する高調波の影響を受けることがない
ので、より正確に線路の特性の評価、すなわも水ト・り
一劣化診断を行なうことができる。ざらに、この場合B
PF22においてフィルタリングする帯域幅を狭くする
ことかできるので、雑音成分の混入をより少なくするこ
とが可能となる。
Therefore, when implementing the present invention, if only the third harmonic of the fundamental wave of the grounding line current ie is detected, it will be more accurate since it will not be affected by the harmonics of the line itself. It is also possible to evaluate the characteristics of railway lines, in other words, to diagnose water damage and deterioration. Roughly, in this case B
Since the filtering bandwidth in the PF 22 can be narrowed, it is possible to further reduce the mixing of noise components.

上記の絶縁診断装置2は、診断すべき全てのケーブルに
個々に設けて据置型として常時監視に用いても良いし、
或は運搬が容易な図示しない筐体に組み入れた可搬型と
し、複数のケーブルに共通して用いても良い。
The above insulation diagnostic device 2 may be installed individually on all cables to be diagnosed and used for constant monitoring as a stationary type, or
Alternatively, it may be of a portable type built into a casing (not shown) that is easy to transport, and used commonly for a plurality of cables.

また、本実施例においては単芯三線型カケープルへの適
用の場合を例示しているが、三芯−括電力ケーブル或は
単芯型カケープル線路にも同様にして適用可能である。
Further, in this embodiment, application to a single-core three-wire cable cable is exemplified, but the present invention can be similarly applied to a three-core bundled power cable or a single-core cable cable line.

[効果] 以上説明した通りの本発明のCvゲーブルの絶縁劣化診
断方法によれば、接地線電流の高調波成分の検出により
水トリー劣化診断を行なうという新規な方法であり、従
来各種ある活線絶縁診断法に比べ、別個に直流電源を用
意する必要もなく簡素に診断を行なうことができる。ま
た、絶縁体中に水トリーによる変質部位があればその劣
化を検出することができるので、従来では貫通水トリー
の如き劣化の激しいものしか検出できなかったのに対し
、微小な水1・り一欠陥でも検出することがでとる。従
−〕で本発明法によれば、簡素に且つ劣化が余り進行し
ていない水トリー検出が可r1旨であり、経済的に大事
故を未然に防ぐことがで、ぎる。
[Effects] According to the method for diagnosing insulation deterioration of Cv cables of the present invention as explained above, it is a novel method of diagnosing water tree deterioration by detecting harmonic components of the grounding line current. Compared to the insulation diagnosis method, diagnosis can be performed simply without the need to prepare a separate DC power supply. In addition, if there is a site of deterioration caused by water trees in the insulator, the deterioration can be detected. Even a single defect can be detected. According to the method of the present invention, it is possible to detect water trees in a simple manner in which deterioration has not progressed much, and it is possible to economically prevent major accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のCVり゛−プルの劣化診断方法を実施
するための一例を示すブロック図、第2図は接地線電流
の波形を示すグラフ図、第3図はバンドパスフィルタの
出力の時間変化を示すグラフ図、第4図は本発明法を3
相3線式線路に適用した場合を例示する回路図をそれぞ
れ示している。 1・・・CVケーブル、11.12・・・遮蔽層、2・
・・絶縁診断装置、20・・・接地線電流検出器、21
・・・バンドエルミネーションフィルター 22・・・
バンドパスフィルター、23・・・表示装置、3.30
・・・接地線、CT・・・変流器、ie・・・接地線電
流、E・・交流電源 特  許  出  願  人 三菱電線工業株式会社 代表者代表取締役 結城醇造
Fig. 1 is a block diagram showing an example of implementing the CV ripple deterioration diagnosis method of the present invention, Fig. 2 is a graph showing the waveform of the grounding line current, and Fig. 3 is the output of the bandpass filter. Figure 4 is a graph showing the time change of the method of the present invention.
A circuit diagram illustrating a case where the circuit is applied to a phase three-wire line is shown. 1...CV cable, 11.12...shielding layer, 2.
...Insulation diagnostic device, 20...Grounding wire current detector, 21
...Band illumination filter 22...
Bandpass filter, 23...Display device, 3.30
...Grounding wire, CT...Current transformer, IE...Grounding wire current, E...AC power supply patent applicant Mitsubishi Cable Industries, Ltd. Representative Director Yuki Yuki

Claims (3)

【特許請求の範囲】[Claims] (1)交流電源電圧が印加されたCVケーブルの遮蔽層
と基準電位との間を接続する接地線より接地線電流を検
出し、該接地線電流より前記交流電源の周波数に等しい
周波数の電流の高調波成分を検出することにより、CV
ケーブル絶縁体の劣化の程度を検知することを特徴とす
るCVケーブルの絶縁劣化診断方法。
(1) Detect the grounding line current from the grounding line connecting between the shielding layer of the CV cable to which the AC power supply voltage is applied and the reference potential, and from the grounding line current, detect a current with a frequency equal to the frequency of the AC power supply. By detecting harmonic components, CV
A method for diagnosing insulation deterioration of a CV cable, the method comprising detecting the degree of deterioration of a cable insulator.
(2)接地線からの接地線電流の検出を変流器にて行な
うことを特徴とする特許請求の範囲第(1)項記載のC
Vケーブルの絶縁劣化診断方法。
(2) C according to claim (1), characterized in that the grounding line current from the grounding line is detected by a current transformer.
Method for diagnosing insulation deterioration of V cable.
(3)上記高調波成分の検出に際し、第3高調波成分の
みを検出することを特徴とする特許請求の範囲第(1)
項記載のCVケーブルの絶縁劣化診断方法。
(3) Claim (1) characterized in that when detecting the harmonic component, only the third harmonic component is detected.
Method for diagnosing insulation deterioration of CV cables as described in Section 1.
JP31300689A 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable Expired - Fee Related JP2876322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31300689A JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31300689A JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Publications (2)

Publication Number Publication Date
JPH03172777A true JPH03172777A (en) 1991-07-26
JP2876322B2 JP2876322B2 (en) 1999-03-31

Family

ID=18036099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31300689A Expired - Fee Related JP2876322B2 (en) 1989-12-01 1989-12-01 Diagnosis method for insulation deterioration of CV cable

Country Status (1)

Country Link
JP (1) JP2876322B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580113A (en) * 1991-09-24 1993-04-02 Mitsubishi Cable Ind Ltd Diagnostic method for deterioration of power cable insulation
WO1999053329A1 (en) * 1998-04-14 1999-10-21 The Furukawa Electric Co., Ltd. Method of diagnosing deterioration of electric power cable
US6361378B1 (en) 1999-01-11 2002-03-26 Sumitomo Wiring Systems, Ltd. Connector with a side retainer
JP2007205992A (en) * 2006-02-03 2007-08-16 Central Res Inst Of Electric Power Ind Diagnostic method and diagnostic device for deterioration of high-voltage power cable
CN113933755A (en) * 2021-11-24 2022-01-14 国网北京市电力公司 Cable defect determining method, device, equipment, storage medium and processor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580113A (en) * 1991-09-24 1993-04-02 Mitsubishi Cable Ind Ltd Diagnostic method for deterioration of power cable insulation
WO1999053329A1 (en) * 1998-04-14 1999-10-21 The Furukawa Electric Co., Ltd. Method of diagnosing deterioration of electric power cable
US6361378B1 (en) 1999-01-11 2002-03-26 Sumitomo Wiring Systems, Ltd. Connector with a side retainer
JP2007205992A (en) * 2006-02-03 2007-08-16 Central Res Inst Of Electric Power Ind Diagnostic method and diagnostic device for deterioration of high-voltage power cable
JP4740757B2 (en) * 2006-02-03 2011-08-03 財団法人電力中央研究所 Degradation diagnosis method and degradation diagnosis device for high-voltage power cable
CN113933755A (en) * 2021-11-24 2022-01-14 国网北京市电力公司 Cable defect determining method, device, equipment, storage medium and processor

Also Published As

Publication number Publication date
JP2876322B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US20050184751A1 (en) Method and apparatus for detection of brush sparking and spark erosion on electrical machines
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JPH03172777A (en) Diagnostic method for insulation deterioration of cv cable
JPH03206976A (en) Diagnosis of insulation
CN1135607A (en) Voltage-resistant test device
JPH0429982B2 (en)
JPH09318696A (en) Method and device for diagnosing insulation deterioration of active line power cable
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPH063390A (en) Diagnostic method for deterioration of cable
JP2542406B2 (en) Insulation deterioration diagnosis method for power cables
JP2002214273A (en) Breaking inspection circuit for high voltage cable shielding copper tape
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JPH05264642A (en) Method for diagnosing deterioration of cable
JPS59202073A (en) Diagnosis of insulation deterioration of power cable
JP2002196030A (en) Method for diagnosing deterioration of power cable
Tsujimoto et al. Approach for wide use of diagnostic method for XLPE cables using harmonics in AC loss current
JP2000009788A (en) Deterioration diagnosis method of cables
JPH0862264A (en) Insulation resistance measuring device for power cable
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPH02122284A (en) Diagnostic device for deterioration of cable
JPH0442779Y2 (en)
JP2612367B2 (en) Diagnosis method for insulation deterioration of power cable
JPH04299051A (en) Rotary electric machine
JPH07294590A (en) Method for monitoring insulation of live cable
JPH0684979B2 (en) Insulation deterioration diagnosis method for power cables

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees