[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03170616A - Laser beam optical instrument for heating inner face of pipe - Google Patents

Laser beam optical instrument for heating inner face of pipe

Info

Publication number
JPH03170616A
JPH03170616A JP1309990A JP30999089A JPH03170616A JP H03170616 A JPH03170616 A JP H03170616A JP 1309990 A JP1309990 A JP 1309990A JP 30999089 A JP30999089 A JP 30999089A JP H03170616 A JPH03170616 A JP H03170616A
Authority
JP
Japan
Prior art keywords
pipe
conical
laser beam
inner face
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309990A
Other languages
Japanese (ja)
Inventor
Tadashi Nagashima
長島 是
Shuhei Kuri
修平 久利
Takashi Ishide
孝 石出
Akira Maekawa
前川 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1309990A priority Critical patent/JPH03170616A/en
Publication of JPH03170616A publication Critical patent/JPH03170616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To uniformly and stably heat inner face of a pipe by making laser beam emitted from an optical fiber in parallel with a collimate lens and further, changing the irradiation direction with a conical mirror after making the beam uniform with a conical lens. CONSTITUTION:In an optical instrument made of SUS405, etc., and composed with inner face coated with Au, the optical fiber 6 is set through a fiber holder 7. The YAG layer beam 8 emitted from the optical fiber 6 is made in parallel beam with the collimate lens 5. The parallel laser beam 8 having beam intensity distribution 19 is made to the beam having uniform beam intensity distribution 20 with the conical lens 4. The uniform layer beam 8 obtd. with this procedure is changed the irradiation direction with the conical metallic mirror 1 and the inner face of pipe is irradiated with the beam 8 through a laser beam transmitting qualtz aperture 2. By this method, the inner face of pipe can by uniformly heated, and by using multi-steps conical mirror instead of the above conical mirror 1, heating over the wide range in longitudinal direction can be executed. Further, the above optical instrument is composed of many metal parts and made difficult-to-break.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車の摺動部品のレーザ焼入れ等に利用さ
れるレーザ光学装置に関する。本発明はパイプ溶接部の
残留応力除去のための加熱やパイプ溶接部の脱鋭敏化熱
処理にも利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser optical device used for laser hardening of sliding parts of automobiles. The present invention can also be used for heating to remove residual stress from pipe welds and for de-sensitization heat treatment of pipe welds.

【従来の技術] 第5図に従来手法によるパイプ内面加熱光学装置を示す
。これは、YAGレーザ光8によるパイプ内面加熱を目
的とするもので、光ファイバー6で伝送されたYAGレ
ーザ光8は、プリズム13によりパイプの周方向に拡が
り加熱するのに用いられる。
[Prior Art] FIG. 5 shows an optical device for heating the inner surface of a pipe using a conventional method. The purpose of this is to heat the inner surface of the pipe with the YAG laser beam 8. The YAG laser beam 8 transmitted through the optical fiber 6 is used to spread in the circumferential direction of the pipe by the prism 13 and heat it.

[発明が鯉決しようとする課題] 従来の加熱光学系では、先ファイバー6から出射された
YAGレーザ光8は第5図に示すようにそのビーム強度
分布23は中央が強い。従って、パイプ内面周方向に拡
がったレーザ光も部分的に強度の高いビーム強度分市2
4となることから、エネルギ密度の高い部分でパイプ内
面が局部的に溶融したりして、均一な加熱が困難であっ
た。
[Problems to be solved by the invention] In the conventional heating optical system, the beam intensity distribution 23 of the YAG laser beam 8 emitted from the tip fiber 6 is strong at the center, as shown in FIG. Therefore, the laser beam that spreads in the circumferential direction of the inner surface of the pipe also has a partially high beam intensity.
4, the inner surface of the pipe was locally melted in areas with high energy density, making uniform heating difficult.

また、プリズム13によりYAGレーザ光8を反射させ
.る方向では、パイプ長手方向の幅の広い加熱は困難で
あった。
Further, the YAG laser beam 8 is reflected by the prism 13. In this case, it was difficult to heat a wide pipe in the longitudinal direction.

さらに、従来の光学系は、石英ガラスバイプ12.円錐
状プリズム13,石英ガラスパイプ14.15等石英ガ
ラスにより製作されているが、これは実用上は、破損し
易いという欠点があった。
Furthermore, the conventional optical system uses a quartz glass vip 12. Although the conical prism 13, quartz glass pipes 14, 15, etc. are made of quartz glass, they have the drawback of being easily damaged in practical use.

本発明はこれらの問題を解決したパイプ内面加熱用レー
ザ光学装置を提供することを目的とする。
An object of the present invention is to provide a laser optical device for heating the inner surface of a pipe that solves these problems.

[3題を解火するための千段] 本発明に係るパイプ内面加熱用レーザ光学装置は、 (1)  光ファイバーから出aJされるレーザ光を平
行光線にするコリメートレンズ5と、平行にされたレー
ザ光を均一にする円錐状レンズ4とビーム照躬方向をパ
イプ内面方向にかえる円錐状ミラー1からなることを特
徴,とする。
[A Thousand Steps to Solving Three Problems] The laser optical device for heating the inner surface of a pipe according to the present invention includes: (1) a collimating lens 5 that converts the laser beam emitted from the optical fiber into parallel light; It is characterized by comprising a conical lens 4 that makes the laser beam uniform and a conical mirror 1 that changes the direction of beam illumination toward the inner surface of the pipe.

(2)前記手段において、円錐状ミラー1の代りに多段
円錐状ミラー10を用いることを特徴とする。
(2) In the above means, a multi-stage conical mirror 10 is used instead of the conical mirror 1.

[作用] ファイバから出射されたYAGレーザ光8あるいは拡が
りを持つYAGレーザ光8は、第1図のコリーメントレ
ンズ5により、平行に近い光線に変換される。そして、
円錐状レンズ4に入射する以前において中央にビーム強
度のビーク19があるYAGレーザ光8は円錐状レンズ
4により、均一化されてビーム強度分布20のごとくな
り、円錐状ミラー1によりパイプ内面の加熱領域に結像
するように導びかれる。
[Operation] The YAG laser beam 8 emitted from the fiber or the YAG laser beam 8 having a spread is converted into a nearly parallel beam by the collimation lens 5 shown in FIG. and,
Before entering the conical lens 4, the YAG laser beam 8, which has a beam intensity peak 19 at the center, is made uniform by the conical lens 4 and has a beam intensity distribution 20, and the conical mirror 1 heats the inner surface of the pipe. guided to image the area.

また、円錐状ミラー1を、第3図のように多段円錐状金
属ミラー10とすることにより、反射光を2分し、均一
な2分割されたビーム強度分布21として、パイプ内面
に照射される事により通常の目錐状ミラー1に比べ、パ
イプ長手方向に広い範囲の加熱が可能となる。
In addition, by using a multistage conical metal mirror 10 as the conical mirror 1 as shown in FIG. 3, the reflected light is divided into two parts, and the inner surface of the pipe is irradiated as a uniform two-divided beam intensity distribution 21. This makes it possible to heat a wider range in the longitudinal direction of the pipe than with a normal conical mirror 1.

[実施例] 本発明の尖施例を第1図〜第4図に示す。[Example] A pointed embodiment of the present invention is shown in FIGS. 1-4.

第1図は本発明の丈施に供した光学装置を示す。FIG. 1 shows an optical device used for implementing the present invention.

本光学装置のYAGレーザによりパイプ内面加熱を実施
した。レーザ出力500Wのレーザ光をファイバ出射後
2枚の平凸レンズ5によりコリメートした後円錐状レン
ズ4により集光し、多段円錐状金属ミラー1でパイプ内
面を加熱した。加熱に供したバイプ17は、内径10m
+1’、肉厚2mlIのステンレス製パイプである。
The inner surface of the pipe was heated using the YAG laser of this optical device. A laser beam with a laser output of 500 W was emitted from a fiber, collimated by two plano-convex lenses 5, and then condensed by a conical lens 4, and the inner surface of the pipe was heated by a multistage conical metal mirror 1. The vip 17 used for heating has an inner diameter of 10 m.
+1', a stainless steel pipe with a wall thickness of 2mlI.

一方、この光学装置の外径は9ml1−で、金属は熱膨
張の少ないSUS405で製作した。また、光学装置の
金屈内面は、すべてAuコーティングされ、YAGレー
ザ光8の反射光により光学系が損傷を受けないよう考慮
している。第1図中3はレンズホルダー 7はファイバ
ホルダー 9は冷却用ガス入口を示す。
On the other hand, the outer diameter of this optical device was 9 ml1-, and the metal was made of SUS405 with low thermal expansion. In addition, all the gold-bent inner surfaces of the optical device are coated with Au to prevent the optical system from being damaged by the reflected light of the YAG laser beam 8. In FIG. 1, 3 indicates a lens holder, 7 indicates a fiber holder, and 9 indicates a cooling gas inlet.

第4図に第1図に示した加熱光学装置によりバイプ17
の内面を加熱した際のパイプ内面の熱雷対による温度測
定結果を示す。18は計δII1位置を示す。測定は、
レーザ出力500Wで、ビームを3秒照射した際の最高
到達温度を計った。
FIG. 4 shows the heating optical device shown in FIG.
Shows the results of temperature measurement using a thermal lightning pair on the inner surface of the pipe when the inner surface of the pipe was heated. 18 indicates a total of δII1 positions. The measurement is
The maximum temperature reached when the beam was irradiated for 3 seconds with a laser output of 500 W was measured.

第4図(A)には、パイプ内面の長芋方向の温度分布を
示す。これからわかるように多段円錐ミラー1を用いる
り■こより、長手方向に対し、4〜5m■の長い均一加
熱幅が得られた。その際の温度は750℃〜850℃の
間に押えられる。
FIG. 4(A) shows the temperature distribution in the direction of the yam inside the pipe. As can be seen, by using the multistage conical mirror 1, a long uniform heating width of 4 to 5 m in the longitudinal direction was obtained. The temperature at that time is kept between 750°C and 850°C.

第4図(B)には、パイプ周方向の温度分6iを示した
。第4図(B)から円周上で均一な温度分布が得られて
いる事がわかる。その際の温度は750℃〜800℃の
間に押えられる。
FIG. 4(B) shows the temperature 6i in the circumferential direction of the pipe. It can be seen from FIG. 4(B) that a uniform temperature distribution is obtained on the circumference. The temperature at that time is kept between 750°C and 800°C.

以上により、パイプの全周の長手方向4〜5恥の広い範
囲を均一に加熱し得る事がわかった。
As a result of the above, it was found that it was possible to uniformly heat a wide range of 4 to 5 mm in the longitudinal direction around the entire circumference of the pipe.

また、第1図で、YAGレーザ光透過窓2,田錐状レン
ズ4,コリメートレンズ5,光ファイバ6等以外はすべ
て金属により構戊する。そのため破損しずらく、実用に
供し易い。
Moreover, in FIG. 1, everything except the YAG laser light transmission window 2, the conical lens 4, the collimating lens 5, the optical fiber 6, etc. is made of metal. Therefore, it is hard to be damaged and is easy to put into practical use.

[発明の効果] 本発明は前述のように構威されているので、本発明装置
によりパイプの全周の長手方向4〜5III1の広い範
囲を均一に加熱することができる。
[Effects of the Invention] Since the present invention is configured as described above, a wide range in the longitudinal direction 4 to 5III1 around the entire circumference of the pipe can be uniformly heated by the apparatus of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例の組立図、第2図は、本発
明装置の実施例の円錐状ミラーによるビームの状態を示
す図、第3図は本発明装置の丈施例の多段円錐状ミラー
による加熱の状態を示す図、第4図は本発明装置の丈施
例による加熱時の温度分布を示す図、第5図は従来装置
の断面図である。 1・・・円錐状金属ミラー 2・・・YAGレーザ光透
過窓、3・・・レンズホルダー 4・・・石英製r+’
i錐状レンズ、5・・・石英製コリメートレンズ、6・
・・光ファイバ、7・・・金属製ファイバホルダー 8
・・1YAGレーザ光、9・・・冷却用ガス人口、10
・・・多段円錐状金属ミラー 11・・・テフロン製ス
トッパー12・・・石英ガラスパイプ、13・・・石英
製囚錐状プリズム、14.15・・・石英ガラスパイプ
、16・・・金属製ガイドチューブ、17・・・パイプ
、18・・・計aJ位置、19,20.21・・・ビー
ム強度分布、22・・・バイプ西而の温度分布、23.
24・・・ビーム強度分布。
Fig. 1 is an assembly diagram of an embodiment of the device of the present invention, Fig. 2 is a diagram showing the state of the beam by the conical mirror of the embodiment of the device of the present invention, and Fig. 3 is a multistage embodiment of the device of the present invention. FIG. 4 is a diagram showing the state of heating by the conical mirror, FIG. 4 is a diagram showing the temperature distribution during heating by a height embodiment of the device of the present invention, and FIG. 5 is a sectional view of the conventional device. 1... Conical metal mirror 2... YAG laser beam transmission window, 3... Lens holder 4... Quartz r+'
i-conical lens, 5... quartz collimating lens, 6...
...Optical fiber, 7...Metal fiber holder 8
...1YAG laser beam, 9...Cooling gas population, 10
... Multistage conical metal mirror 11 ... Teflon stopper 12 ... Quartz glass pipe, 13 ... Quartz conical prism, 14.15 ... Quartz glass pipe, 16 ... Metal Guide tube, 17... Pipe, 18... Total aJ position, 19, 20. 21... Beam intensity distribution, 22... Temperature distribution around the pipe, 23.
24...Beam intensity distribution.

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバーから出射されるレーザ光を平行光線
にするコリメートレンズ(5)と、平行にされたレーザ
光を均一にする円錐状レンズ(4)とビーム照射方向を
パイプ内面方向にかえる円錐状ミラー(1)からなるこ
とを特徴とするパイプ内面加熱用レーザ光学装置。
(1) A collimating lens (5) that converts the laser beam emitted from the optical fiber into a parallel beam, a conical lens (4) that makes the parallel laser beam uniform, and a conical lens that changes the beam irradiation direction toward the inner surface of the pipe. A laser optical device for heating the inner surface of a pipe, characterized by comprising a mirror (1).
(2)円錐状ミラー(1)の代りに多段円錐状ミラー(
10)を用いることを特徴とする請求項(1)のパイプ
内面加熱用レーザ光学装置。
(2) Multi-stage conical mirror (
10) The laser optical device for heating the inner surface of a pipe according to claim (1).
JP1309990A 1989-11-29 1989-11-29 Laser beam optical instrument for heating inner face of pipe Pending JPH03170616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309990A JPH03170616A (en) 1989-11-29 1989-11-29 Laser beam optical instrument for heating inner face of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309990A JPH03170616A (en) 1989-11-29 1989-11-29 Laser beam optical instrument for heating inner face of pipe

Publications (1)

Publication Number Publication Date
JPH03170616A true JPH03170616A (en) 1991-07-24

Family

ID=17999811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309990A Pending JPH03170616A (en) 1989-11-29 1989-11-29 Laser beam optical instrument for heating inner face of pipe

Country Status (1)

Country Link
JP (1) JPH03170616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285744B2 (en) * 2003-08-21 2007-10-23 Leister Process Technologies Method and apparatus for simultaneously heating materials
US20160151862A1 (en) * 2012-02-10 2016-06-02 Limo Patentverwaltung Gmbh & Co. Kg Device for laser processing of a surface of a workpiece or for post-treatment of a coating on the outside or the inside of a workpiece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224883A (en) * 1985-07-25 1987-02-02 Toyota Motor Corp Laser beam surface treatment of circumferential part
JPS62109924A (en) * 1985-11-08 1987-05-21 Komatsu Ltd Laser hardening method
JPS6368288A (en) * 1986-09-09 1988-03-28 Hitachi Ltd Linear beam taking off device
JPS63108318A (en) * 1986-10-27 1988-05-13 Nikon Corp Laser working device
JPS63262414A (en) * 1987-04-20 1988-10-28 Nippon Steel Corp Method and apparatus for heat-treating work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224883A (en) * 1985-07-25 1987-02-02 Toyota Motor Corp Laser beam surface treatment of circumferential part
JPS62109924A (en) * 1985-11-08 1987-05-21 Komatsu Ltd Laser hardening method
JPS6368288A (en) * 1986-09-09 1988-03-28 Hitachi Ltd Linear beam taking off device
JPS63108318A (en) * 1986-10-27 1988-05-13 Nikon Corp Laser working device
JPS63262414A (en) * 1987-04-20 1988-10-28 Nippon Steel Corp Method and apparatus for heat-treating work

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285744B2 (en) * 2003-08-21 2007-10-23 Leister Process Technologies Method and apparatus for simultaneously heating materials
US20160151862A1 (en) * 2012-02-10 2016-06-02 Limo Patentverwaltung Gmbh & Co. Kg Device for laser processing of a surface of a workpiece or for post-treatment of a coating on the outside or the inside of a workpiece

Similar Documents

Publication Publication Date Title
US4678268A (en) Method and apparatus for constructing microlens ends for optical fibers
US6876790B2 (en) Method of coupling a laser signal to an optical carrier
US4868361A (en) Coupling device for high power laser beam transmitting optical fibers
US4263495A (en) Method of splicing optical fibers by CO2 -laser
JPS6156634B2 (en)
JPH02284783A (en) Holder
JPH04270090A (en) Method and device for laser operation using remote control
JPH0364818B2 (en)
US5359616A (en) Solid state laser apparatus and laser machining apparatus
US20180252868A1 (en) Method and system for fiber-coupled, laser-assisted ignition in fuel-lean, high-speed flows
JP2003279758A (en) Fiber for transmitting femtosecond laser, and laser machining apparatus and method using the same
JPH03170616A (en) Laser beam optical instrument for heating inner face of pipe
US9618700B1 (en) Orthogonal output optical fiber
JP4554154B2 (en) UV curing of optical fiber coatings using lasers
JP3160467B2 (en) Laser device for heating tubular body
CN113655566A (en) Spatial light coupling method and coupling system for special photonic crystal fiber
US20020139781A1 (en) Method and apparatus for brazing and thermal processing
Dou et al. Laser machining of micro-lenses on the end face of single-mode optical fibers
JP2006045598A (en) Device for improving residual stress in installed pipe
JP2000084688A (en) Laser welding method
RU2758775C1 (en) Method for introducing powerful multimode pulse laser emission into a light guide and apparatus for implementation thereof
JP2000340868A (en) Solid state laser device and laser processing device using same
US6917010B2 (en) Method for brazing and thermal processing
JPH04141514A (en) Method and device for laser beam quenching
KR102515241B1 (en) Thermal fatigue characteristic evaluation apparatus and method for barrel material