[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03178146A - Inspecting equipment for wire bonding state - Google Patents

Inspecting equipment for wire bonding state

Info

Publication number
JPH03178146A
JPH03178146A JP1316997A JP31699789A JPH03178146A JP H03178146 A JPH03178146 A JP H03178146A JP 1316997 A JP1316997 A JP 1316997A JP 31699789 A JP31699789 A JP 31699789A JP H03178146 A JPH03178146 A JP H03178146A
Authority
JP
Japan
Prior art keywords
image
distance
pixel
ball
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1316997A
Other languages
Japanese (ja)
Other versions
JP2843388B2 (en
Inventor
Hiroyuki Tsukahara
博之 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1316997A priority Critical patent/JP2843388B2/en
Publication of JPH03178146A publication Critical patent/JPH03178146A/en
Application granted granted Critical
Publication of JP2843388B2 publication Critical patent/JP2843388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To improve the inspection precision of bonding state by distance- transforming a binary-valued monochromatic image of an inspection region, searching each pixel value of the above obtained image, from the direction opposite to a wire, setting the center of pixel position of the firstly detected maximum value as the center position of a bonding ball, and detecting the minimum radius of the image subjected to distance transformation. CONSTITUTION:A monochromatic image obtained by a threshold value calculating means 13 is subjected to distance transformation by a distance-transforming means 14. Out of the values of the pixels of the monochromatic image subjected to distance transformation, the maximum value is detected from the direction opposite to a wire 4 by using a center detecting means 15. The center of the pixel position of the firstly detected maximum value is set as the center position of the bonding ball 5. By a shape inspecting means 16, the distance between the above center position and the pixel position of a specified value out of each pixel of the image subjected to distance transformation is calculated, and the shape of the bonding ball 5 is inspected. Thereby the ball shape can be inspected without the influence of wire image and ball shape, and the state of the bonding ball 5 can be inspected with high precision.

Description

【発明の詳細な説明】 (INり 集積回路等のワイヤボンディング状態を自動検査する視
覚機能を備えたワイヤボンディング状態検査装置に間し
、 ワイヤ会やボール変形の影響を受けることなく、精度良
くボンディングボール中心を検出してワイヤボンディン
グ状態を検査することを目的とし、パッドにボンディン
グされたワイヤの先端のボンディングボールを撮像する
m像手段と、該撮像手段の出力映all信号をディジタ
ル56理して画素を生成する画素生成手段と、該画素生
成手段により生成された画素のうち所定サイズの検査領
域における画素を記憶するm淡階調画像メモリと、該濃
淡階調画像メモリから読み出した全画素から自動2値化
算出法により閾値を算出し、該閾値で前記検査領域にお
ける画像を2iflj化する閾値算出手段と、該閾値算
出手段により得られた該2値画像を距離変換する距離変
換手段と、該距離変換されたfi像の各画素の値を前記
ワイヤと反対の方向からサーチして最初に検出した最大
鎗の画素位置の中心を前記ボンディングボールの中心位
置として検出する中心検出手段と、該中心検出手段で検
出された中心位置と該距離変換された画像の各画素のう
ち所定鉛の画素位置とのか離を計算してボンディングボ
ール形状を検査する形状検査手段とより構成する。
[Detailed Description of the Invention] (Installed into a wire bonding condition inspection device equipped with a visual function that automatically inspects the wire bonding condition of IN integrated circuits, etc., the wire bonding condition can be accurately bonded without being affected by wire formation or ball deformation. The purpose of detecting the center of the ball and inspecting the wire bonding state is to include an imaging means for imaging the bonding ball at the tip of the wire bonded to the pad, and digital processing of all output video signals of the imaging means. a pixel generation means for generating pixels; an m-light gray scale image memory for storing pixels in an inspection area of a predetermined size among the pixels generated by the pixel generating means; Threshold value calculation means for calculating a threshold value by an automatic binarization calculation method and converting the image in the inspection area into 2iflj using the threshold value; and distance conversion means for distance converting the binary image obtained by the threshold value calculation means; center detecting means for searching the value of each pixel of the distance-converted fi image from a direction opposite to the wire and detecting the center of the first detected pixel position of the largest spear as the center position of the bonding ball; The apparatus comprises a shape inspection means for inspecting the bonding ball shape by calculating the distance between the center position detected by the center detection means and a predetermined lead pixel position among each pixel of the distance-converted image.

〔産業上の利用分野〕[Industrial application field]

本発明はワイヤボンディング状態検査装置に係り、特に
集81回路等のワイヤボンディング状態を自動検査する
視覚機能を備えたワイヤボンディング状態検査装置に関
する。
The present invention relates to a wire bonding condition inspection device, and more particularly to a wire bonding condition inspection device having a visual function for automatically inspecting the wire bonding condition of integrated circuits and the like.

近年、集積り路(IC)や大規模集W1回路(LSI)
は広範囲に、かつ、大量に使用されるようになっている
ため、ICやLSIにおけるワイヤボンディング状態の
外観検査の自動化が行なわれるようになってきた。この
ワイヤボンディング状態の外観検査においては、ボンデ
ィングボールの中心位置を正確に検出することが必要と
される。
In recent years, integrated circuits (IC) and large-scale integrated W1 circuits (LSI)
Since wire bonding devices have come to be used widely and in large quantities, the visual inspection of wire bonding conditions in ICs and LSIs has been automated. In this visual inspection of the wire bonding state, it is necessary to accurately detect the center position of the bonding ball.

〔従来の技術〕[Conventional technology]

第10図は従来のワイヤボンディング状態検査装置の一
例の構成図を示す。同図中、1はリードフレームで、そ
の上にICチップ2が載置されている。ICチップ2上
にはパッド3が形成されている。4はワイヤで、−Sが
パッド3上にボンディングボール5を形成して固着され
ている。
FIG. 10 shows a configuration diagram of an example of a conventional wire bonding condition inspection device. In the figure, 1 is a lead frame, on which an IC chip 2 is placed. A pad 3 is formed on the IC chip 2. 4 is a wire, and -S is fixed to form a bonding ball 5 on the pad 3.

リードフレーム1は搬送装置であるフレームフィーダ6
により、照明装置7及びII像装茸8の真下に搬送され
る。これにより、ボンディングボール5は照明装d7で
照明され、m*装置8で撮像される。iIIm装置8か
ら取り出された映像信号は情報処3g!装置9に供給さ
れ、ここでアブ0グ処理又はディジタル処理にてシェー
ディングが補正されて画像を均一な!2淡状態にしてか
ら自動的に求めたgA(llIで211i化されてlc
像画像のワイヤボンディング状態が検査される。
The lead frame 1 is connected to a frame feeder 6 which is a conveying device.
As a result, the mushrooms are transported directly below the illumination device 7 and the II imaged mushrooms 8. As a result, the bonding ball 5 is illuminated by the illumination device d7 and imaged by the m* device 8. The video signal taken out from the IIm device 8 is sent to the information processor 3g! The image is supplied to the device 9, where the shading is corrected by ab-ogg processing or digital processing to make the image uniform! gA automatically obtained after changing to a 2-light state (converted to 211i with llI and lc
The wire bonding condition of the image is inspected.

ここで、従来のワイヤボンディング状態検査装金では、
上記情報処1!!9における処理として、パッド3を検
出した後、このパッド3におけるワイヤ4の部分を除く
個所を横切る線分の最大鎖からボンディングボール5の
径を算出し、この径からボンディングボール5の中心位
置を検出したり(例えば、特開昭57−172746号
公報)、あるいはボンディングボール5の平面形状を真
円と仮定し、X方向とy方向の各々についてボンディン
グボール像からパッド像へ変わる接点を検出し、その接
点を通りx、y方向に垂線を引いてそれらの交点をボー
ル中心位置として検出する方法(例えば、特R[53−
124066号公報)が知られている。
Here, in the conventional wire bonding condition inspection metal,
Above information center 1! ! As the process in step 9, after detecting the pad 3, the diameter of the bonding ball 5 is calculated from the largest chain of line segments that cross the part of the pad 3 excluding the wire 4, and the center position of the bonding ball 5 is calculated from this diameter. (for example, Japanese Patent Laid-Open No. 57-172746), or assuming that the planar shape of the bonding ball 5 is a perfect circle, detecting the contact point where the bonding ball image changes to the pad image in each of the X direction and the y direction. , a method of drawing perpendicular lines in the x and y directions through the contact point and detecting their intersection as the ball center position (for example, special R[53-
124066) is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、前者の従来IIはワイヤ4の部分を除く個所
を求めているが、ボンディングボール5はワイヤ4の端
点であるので、ボンディングボール画像にはワイヤ画像
がfiP!iy、、ワイヤ4だけを除くことが実際には
困難であり、ボンディング状態検査精度に制約を与えて
いる。
However, although the former Conventional II requires the location excluding the wire 4, since the bonding ball 5 is the end point of the wire 4, the wire image is fiP! in the bonding ball image. iy, it is actually difficult to remove only the wire 4, which limits the accuracy of bonding state inspection.

また、後者の従来装置では、ボンディングボール5の平
面形状を真円と仮定しているが、実際のボンディングボ
ール5の平面形状は真円でないことが殆どであるため、
ボール中心taを正確に検出できず、またボンディング
ボール5に変形がある場合は、ボール中心付置から極端
にずれた位置をボール中心位置として検出してしまう。
Further, in the latter conventional device, the planar shape of the bonding ball 5 is assumed to be a perfect circle, but since the planar shape of the actual bonding ball 5 is not a perfect circle in most cases,
If the ball center ta cannot be detected accurately and the bonding ball 5 is deformed, a position extremely deviated from the ball center placement will be detected as the ball center position.

本発明は以上の点に鑑みてなされたもので、ワイヤ像や
ボール変形の影響を受けることなく、精度良くボンディ
ングボール中心を検出してワイヤボンディング状態を検
査し得るワイヤボンディング状態検査’IAEを提供す
ることを目的とする。
The present invention has been made in view of the above points, and provides a wire bonding condition inspection 'IAE' that can accurately detect the center of the bonding ball and inspect the wire bonding condition without being affected by the wire image or ball deformation. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理ブロック図を示す、同図中、10
はva像手段で、パッドにボンディングされたワイヤの
先端のボンディングボールをflII!する。11は画
素生成手段、12は濃淡階調画像メモリで、これらは爬
像手段10からの映像信号から画素を生成し、l前窓サ
イズの検査領域における画素を記憶する。
FIG. 1 shows a block diagram of the principle of the present invention, in which 10
is a va image means, flII! the bonding ball at the tip of the wire bonded to the pad! do. 11 is a pixel generation means, and 12 is a gray scale image memory, which generates pixels from the video signal from the imager means 10 and stores pixels in an inspection area of l front window size.

13は閾値緯出手段で、濃淡階調画像メモリ12から読
み出した全画素から自動2値化算出法により閾値を算出
し、その閾値で前記検査領域における画像を2f+!化
して濃淡画像を得る。
Reference numeral 13 denotes a threshold value calculation means which calculates a threshold value using an automatic binarization calculation method from all pixels read out from the gray scale image memory 12, and uses the threshold value to convert the image in the inspection area to 2f+! to obtain a grayscale image.

14は距離変換手段で、上記濃淡画像を距離変換する。14 is a distance conversion means that performs distance conversion on the gray scale image.

15は中心検出手段で、距離変換されh画像の各画素の
鎗を前記ワイヤと反対の方向からサーチして最初に検出
した最大値の画素位置の中心を前記ボンディングボール
の中心位置として検出する。更に、16は形状検査手段
で、上記検出した中心付置と距離変換された11淡画像
の各画素のうち所定伯の画素位置との距離を計算してボ
ンディングボール形状を検査する。
Reference numeral 15 denotes a center detecting means which searches for the spear of each pixel of the distance-converted h image from the direction opposite to the wire and detects the center of the pixel position of the first detected maximum value as the center position of the bonding ball. Furthermore, 16 is a shape inspection means, which calculates the distance between the detected center position and a predetermined pixel position of each pixel of the distance-converted gray image 11 to inspect the shape of the bonding ball.

〔作用〕[Effect]

本発明ではmItix出手段13により得られた濃淡画
像を匝離変換手段14により罪離変換し、距離画像の各
画素の値を最外周(輪郭部)で「1]とし、中心の画素
はど値を大とする。しかる後に、この距離変換された濃
淡画像の画素の値のうち、中心検出手段15によりワイ
ヤの反対方向から最大値を検出し、そのうち最初に検出
された最大値の画素位置の中心をボンディングボールの
中心位置とすることで、ワイヤ像やボール変形に影響さ
れずにボンディングボール中心1ftFを検出すること
ができる。
In the present invention, the density image obtained by the mItix output means 13 is subjected to separation conversion by the separation conversion means 14, and the value of each pixel of the distance image is set to "1" at the outermost periphery (contour part), and the value of the center pixel is Then, among the pixel values of this distance-converted grayscale image, the center detection means 15 detects the maximum value from the opposite direction of the wire, and the pixel position of the first detected maximum value is detected. By setting the center of the bonding ball as the center position of the bonding ball, the bonding ball center 1 ftF can be detected without being affected by the wire image or ball deformation.

また、最大値そのものがボンディングボールの最大半径
となるため、本発明では上記検出した中心位置を基準に
して、形状検査手段16により距離変換画像の最小半径
を検出することにより、ワイヤ像やボール変形に影響さ
れずにボール形状を検査することができる。
In addition, since the maximum value itself becomes the maximum radius of the bonding ball, in the present invention, the shape inspection means 16 detects the minimum radius of the distance conversion image based on the detected center position, so that wire images and ball deformation can be detected. The ball shape can be inspected without being affected by the

〔実施例〕〔Example〕

第2図は本発明の一実施例の構成図を示す。同図中、第
10図と同一構成部分には同一符号を付し、その説明を
省略する。第2図において、照明装置7及び撮11ff
8は第1図に示した撮像手段10を構成している。第2
図中、21は画像入力回路で、前記画素生成手段11を
構成しており、入力映像信号をディジタル処理する。2
2Lt画像メモリ、23&i画像処理メモリで、これら
は前記′a淡階;alj*メモリ12を構成している。
FIG. 2 shows a configuration diagram of an embodiment of the present invention. In the figure, the same components as those in FIG. 10 are denoted by the same reference numerals, and the explanation thereof will be omitted. In FIG. 2, the lighting device 7 and the camera 11ff
8 constitutes the imaging means 10 shown in FIG. Second
In the figure, an image input circuit 21 constitutes the pixel generating means 11 and digitally processes an input video signal. 2
2Lt image memory and 23&i image processing memory, which constitute the above-mentioned 'a;alj* memory 12.

また、24は画像処理プロセッサで、前記積値わ出手段
13.距離変換手段14.中心検出手段15及び形状検
査手段16を構成しており、後述する第3図に示すフロ
ーチャートに従ってm値を算出する。25は画像表示回
路で、デイスプレィ26に画像表示を行なわせる。上記
の画像入力回路219画倣メモリ222画像処理メモリ
23゜画像処理プロセッサ24及び画像表7j、@路2
5の4g互固の画素データ転送は、イメージバス27を
/?6て行なわれる。
Further, 24 is an image processing processor, and the product value calculating means 13. Distance conversion means 14. It constitutes a center detection means 15 and a shape inspection means 16, and calculates the m value according to a flowchart shown in FIG. 3, which will be described later. 25 is an image display circuit that causes a display 26 to display an image. The above image input circuit 219 image copying memory 222 image processing memory 23° image processing processor 24 and image table 7j, @Route 2
The pixel data transfer between 5 and 4G uses the image bus 27/? 6 will be held.

また、28はプログラムメモリで、このワイヤボンディ
ング状態検査装置全体をtsmするための10グラムが
格納されている。29はシステムプロセッサで、プログ
ラムメモリ28からのプログラムに従い、このワイヤボ
ンディング状態検査装置全体の回路を統括v4tlする
Further, 28 is a program memory which stores 10 grams for performing TSM on the entire wire bonding condition inspection device. A system processor 29 supervises the circuits of the entire wire bonding condition inspection apparatus according to the program from the program memory 28.

30はカメラコントローラで、Ill!I!装置8の動
作制御を行なう。31は照明コントローラで、照明装W
17のICチップ2に対する照明光量を調整して映像信
号のS/Nを最適にする。32はフレームフィーダコン
トローラで、搬送¥A置であるフレームフィーダ6を搬
送l1lIIIする。33はI10コントローラで、キ
ーボード及びジョイスティック34.プリンタ35とシ
ステムプロセッサ29との向のインタフェースをとる。
30 is the camera controller, Ill! I! The operation of the device 8 is controlled. 31 is a lighting controller, which is a lighting device W
The amount of illumination light for the 17 IC chips 2 is adjusted to optimize the S/N of the video signal. Reference numeral 32 denotes a frame feeder controller that transports the frame feeder 6 at the transport \A position. 33 is the I10 controller, keyboard and joystick 34. It provides an interface between the printer 35 and the system processor 29.

キーボード及びジョイスティック34は検査条件の設定
などに用いられ、またプリンタ35は検査結果の印刷出
力などに用いられる。
The keyboard and joystick 34 are used to set test conditions, and the printer 35 is used to print out test results.

36虹ノロツビーデイスクコントローラ(FCC)及び
ハードディスクコント0−ラ(HDC)で、フロッピー
ディスク37及びハードディスク38に接続されている
。フロッピーディスク37及びハードディスク38には
、検査結果や検査基準などが格納される。更に39はシ
ステムバスで、上記の各回路間のデータ転送用バスであ
る。
It is connected to a floppy disk 37 and a hard disk 38 by a disk controller (FCC) and a hard disk controller (HDC). The floppy disk 37 and hard disk 38 store test results, test standards, and the like. Furthermore, 39 is a system bus, which is a bus for data transfer between the above-mentioned circuits.

次に本実施例の動作について説明する6鴎像装′r18
はtCチップ2にボンディングされたワイψ4のICチ
ップ2側の端に形成されたボンディングボール5をm像
し、これにより得られる映像信号を画像入力回路21に
供給する。画像入力回路21は人力峡ffi信gをディ
ジタル処理して画素群が時系列的に台底された画像デー
タを生成し、そのtaデータをイメージバス27を介し
て画像メモリ22に格納する。システムプロセッサ29
はgl像メモリ22から所定の[、サイズの領w1.D
の画素〈画像データ〉を切り出して画像処理メモリ23
に格納する。
Next, the operation of this embodiment will be explained.
m-images the bonding ball 5 formed at the end of the wire ψ4 on the IC chip 2 side bonded to the tC chip 2, and supplies the resulting video signal to the image input circuit 21. The image input circuit 21 digitally processes the human power ffi signal g to generate image data in which the pixel groups are bottomed out in time series, and stores the ta data in the image memory 22 via the image bus 27. system processor 29
from the gl image memory 22 to a predetermined [, size area w1. D
The pixels (image data) are cut out and stored in the image processing memory 23.
Store in.

このようにして画像処理メモリ23に格納された上記の
領域りの全画素を用いて、画像処理プロセッサ24は第
3図に示す)O−チャートに従って、前記IIIti算
出手段13から形状検査手段16に至る各処理を行なう
Using all the pixels in the above-mentioned area stored in the image processing memory 23 in this way, the image processing processor 24 sends the data from the IIIti calculation means 13 to the shape inspection means 16 according to the O-chart (shown in FIG. 3). Perform each process.

まず、第3図に示すように画像処理プロセッサ24は前
記領1tLoの全画素を読み出すく切り出す)(ステッ
プ41)。次に、画像処理プロセッサ24は読み出した
各自1に間の階調補m(サブビクセル生成〉を行なう(
第3図中、ステップ42)。
First, as shown in FIG. 3, the image processor 24 cuts out all the pixels of the region 1tLo (step 41). Next, the image processing processor 24 performs gradation compensation m (sub-vixel generation) on each of the read 1s (
Step 42 in FIG. 3).

この画素!1階調補I&i第4図に丞す如く、画像処理
メモリ23から読み出された領域りの各画素のうち、任
意の相鱗る4つの6素を黒丸P+〜P4で示し、またそ
れらの画素N清値をP+=f’(i、j)、Pz =f
’  (i+1.j)、Pal =f’  (i、j+
1)、P4−f’  (i+1.j+1)とすると、白
丸SPで示す位置に次式%式%(1 ) で表わされるf (x、y)の階調値をもつサブビクセ
ルを生成する方法である。ただし、上式中αはP+から
の水平方向の距離、βはPlからの垂直方向の距離を示
す。
This pixel! 1st Gradation Complementary I&I As shown in FIG. Pixel N value is P+=f'(i,j), Pz=f
' (i+1.j), Pal = f' (i, j+
1), P4-f' (i+1.j+1), the method generates a sub-vixel at the position indicated by the white circle SP with the gradation value of f (x, y) expressed by the following formula % formula % (1) be. However, in the above formula, α represents the horizontal distance from P+, and β represents the vertical distance from Pl.

この画素圓階A補1畠によって、上記の4画素P+”P
4間には第4図に白丸で示す各位置に上記と同様にして
サブビクセルが生成される。これにより、上記の画1k
aW調補面前のボンディングボール5の画像が第5図(
A)に示す如く斜めの11像部分のギザギザが大であっ
たのに対し、上記の画lA閤階講補濡を行なうことによ
り、ボンディングボール5の画I&は同図(8)に示す
如く斜めのllill分のギザギザが大幅に小さくなり
、ディジタル化に伴うaF化誤差が大幅に軽減された画
像が得られる。
With this pixel floor A supplementary 1 field, the above 4 pixels P+”P
4, sub-vixels are generated in the same manner as above at each position indicated by a white circle in FIG. As a result, the above image 1k
The image of the bonding ball 5 before the aW adjustment surface is shown in Figure 5 (
As shown in A), the jaggedness of the diagonal 11th image part was large, but by performing the rewetting of the above image IA, the image I& of the bonding ball 5 became as shown in (8) of the same figure. The diagonal jaggedness is significantly reduced, and an image in which the aF conversion error caused by digitization is significantly reduced can be obtained.

次に、画f11!l!L理プロセッサ24は検査領域り
の全癒1(サブビクセルを含む)からその2値化濁値下
を自動2m化処理で算出する(第3図中、ステップ43
〉、ここでいう自動2Wi化とは、例えば適応2値化(
Adaptive B 1nariZation )の
ような自動2値化lIr1算出法のことである。この適
応2値化により、検査領域り内の全画素数をN。
Next, picture f11! l! The L processor 24 calculates the binarized low value from the complete recovery 1 (including sub-vixels) of the inspection area by automatic 2m conversion processing (step 43 in FIG. 3).
>, automatic 2Wi conversion here refers to, for example, adaptive binarization (
This refers to an automatic binarization lIr1 calculation method such as Adaptive B 1nariZation). This adaptive binarization reduces the total number of pixels within the inspection area to N.

画素階ll鎖をf (x、y)・γを所定の比とすると
、2値化閾filTは次式 %式%) なる式に基づいて算出される。
When f (x, y)·γ is a predetermined ratio for the pixel level 1 chain, the binarization threshold filT is calculated based on the following formula.

上記の2値化閾値Tの算出後、Tより大なる階調値をも
つ画素を“O”、T以下の階調値をもつ画素を“1”と
したときの検査領VtDにおける画像は第6図に模式的
に示す如き2WI化画像である。
After calculating the above binarization threshold T, the image in the inspection area VtD is set to "O" for pixels with a gradation value greater than T and "1" for pixels with a gradation value less than or equal to T. This is a 2WI image as schematically shown in FIG.

ただし、第6図中では値“O”の各画素の図示は省略し
である。この2iU化画像は、第6図に示すようにIC
チップ2やバッド3に比べて映像信号強度の小さなワイ
ヤ4及びボンディングボール5の検査領[0における形
状を示している。この2値化画像のデータは画像処理メ
モリ23内に、前記画素格納領域とは別の領域に格納さ
れる。
However, in FIG. 6, illustration of each pixel with the value "O" is omitted. This 2iU image is converted into an IC as shown in FIG.
The shape of the wire 4 and the bonding ball 5 in the inspection area [0], which have a lower video signal strength than the chip 2 and the pad 3, is shown. The data of this binarized image is stored in the image processing memory 23 in an area different from the pixel storage area.

次に、画像処理プロセッサ24は上記の2鉛化画像の距
離変換を行なう(第3図中、ステップ44)。この距離
変換は、2fB化画像の輪郭を形成する最も外側の画素
の値を“1″とし、そこから2鉛化画像の中心へ向って
画素が1つ進む毎にその4索の値を1つ増加させる処理
である。換言すると、この距離変換は2偵化画像を41
Ii或する各lIm素が輪郭から何番目の画素であるか
を示す値をその画素に付与する処理である。従って、こ
の距J11変換により、上記の2 (a化画像を構成す
る各画素の艙は第7図に示す如くに設定される。
Next, the image processing processor 24 performs distance conversion on the above-mentioned halved image (step 44 in FIG. 3). In this distance conversion, the value of the outermost pixel forming the outline of the 2fB image is set to "1", and each time the pixel advances one by one toward the center of the 2fB image, the value of the four lines is changed to 1. This is a process to increase the number by one. In other words, this distance transformation transforms the two-dimensional image into 41
Ii is a process of assigning to each pixel a value indicating which pixel it is from the contour. Therefore, by this distance J11 conversion, the distance of each pixel constituting the above 2(a) image is set as shown in FIG.

次に、画像処理プロセッサ24は距離変換後の検査領域
り内の上記画像に対して、ワイヤ4に対向するfりdか
らワイヤ4に向かう方向へ画素の値をリーチし、ボンデ
ィングボール5の中心位置を検出する(第3図中、ステ
ップ45)。すなわち、第8Fj!Iに示す如く、ワイ
ヤ4のある位置と反対方向から上記の距離変換後の画像
を構成する各画素の釦を検出し、最初に検出した最大1
fI(ここでは“6”)のあった画素(第8図に斜線で
示す)の中心をボンディングボール5の中心位置Cとす
る。
Next, the image processing processor 24 reaches the pixel values in the direction toward the wire 4 from the f-d facing the wire 4 for the above-mentioned image within the inspection area after the distance conversion, and The position is detected (step 45 in FIG. 3). That is, the 8th Fj! As shown in I, the button of each pixel constituting the image after the above distance conversion is detected from the direction opposite to the position of the wire 4, and
The center of the pixel (indicated by diagonal lines in FIG. 8) where fI (here "6") is located is defined as the center position C of the bonding ball 5.

ここでは、第8図に斜線で示す検出最大め“6”の画素
は同一行に2つあるので、その2画素の境界をボンディ
ングボール5の中心位NCとし、その検出量大値RHA
Xは6.5とされる。なお、ボンディングボール5のワ
イヤ4に対向する位置からワイヤ4への検出方向は、I
l&装置8に対するICCフッ2.バッド3.ワイヤ4
及びポンディングボール50位置及び方向が予めわかっ
ていることから識別できる。
Here, since there are two pixels in the same row with the maximum detection value "6" indicated by diagonal lines in FIG.
X is assumed to be 6.5. Note that the detection direction from the position of the bonding ball 5 facing the wire 4 to the wire 4 is I
l & ICC foot for device 8 2. Bad 3. wire 4
Since the position and direction of the pounding ball 50 are known in advance, it can be identified.

次に、画像処理プロセッサ24は距離変換後の画像にお
いて、上記中心位dCから値が“1”である輪郭を構成
している各画素までの距離を算出することにより、ボン
ディングボール5の形状を検査する(第3図中、ステッ
プ46〉。すなわち、このステップ46では第9図に矢
印で示した中心位置Cと輪郭画素との閤の距離を算出し
、そのうちの最小1aRを求める。この最小値RH1N
は41N ボンディングボール5の最小半径を表わしている。
Next, the image processing processor 24 determines the shape of the bonding ball 5 by calculating the distance from the center position dC to each pixel forming the contour whose value is "1" in the image after distance conversion. Inspect (step 46 in FIG. 3). That is, in step 46, the distance between the center position C shown by the arrow in FIG. Value RH1N
represents the minimum radius of the bonding ball 5 of 41N.

しかる後に、画像処理プロセッサ24はボンディングボ
ール5の良否判定を行なう。この良否判定U、ス?ツ1
45で検出したボンディングボール5の中心位1iff
Cとパッド3の中心位置とのずれからボンディングボー
ル50位置ずれを検査し、その位置fれが許容範囲内に
あるかどうかの判定と、ステップ46で検出した最小値
(R小ボール半径)R,、Nと、ステップ45で検出し
た最大値(最大ボール半径)RHAXと基準ボール径R
310(例えば35μm〜65μl)の比から求めたボ
ール変形が許容範囲内にあるかどうかの判定からなる。
Thereafter, the image processor 24 determines whether the bonding ball 5 is good or bad. This pass/fail judgment U, S? Tsu1
Center position 1iff of bonding ball 5 detected at 45
The positional deviation of the bonding ball 50 is inspected based on the deviation between C and the center position of the pad 3, and it is determined whether the position f is within the allowable range, and the minimum value (R small ball radius) R detected in step 46 is determined. ,,N, the maximum value (maximum ball radius) RHAX detected in step 45, and the reference ball diameter R
310 (for example, 35 μm to 65 μl), it is determined whether the ball deformation determined from the ratio is within an allowable range.

1者のボール変形に閏する71定は、例えば最小ボール
゛r径RHIMが基準ボール径R81Dの70%以上で
、最大ボール半径RHAXが基準ボールt¥R3TDの
130%以下の許容範囲内にあるか否かのマ4定である
The 71 constant that affects the ball deformation of one player is, for example, that the minimum ball radius RHIM is 70% or more of the reference ball diameter R81D, and the maximum ball radius RHAX is within the allowable range of 130% or less of the reference ball t\R3TD. It is definite whether or not it is.

従って、本実施例によれば、ワイヤ4やボール変形の影
響を受けることなく、精度良くボンディングボール5の
中心位ICを検出することができる。
Therefore, according to this embodiment, the center IC of the bonding ball 5 can be detected with high accuracy without being affected by the wire 4 or the ball deformation.

なお、本発明は上記の実施例に限定されるものではなく
、例えば第3図のステップ42のサブビクセル生成処理
は、より高精度な検査結果を1!!るうえで望ましい処
理であるが、原理的には省略しても差し支えない。
Note that the present invention is not limited to the above-mentioned embodiment. For example, the sub-vixel generation process in step 42 in FIG. 3 can produce more accurate inspection results than 1! ! Although this is a desirable process in terms of performance, it can be omitted in principle.

〔発明の効果〕〔Effect of the invention〕

上述の姐く、本発明によれば、ワイヤ像やボール変形に
影響されずにボール形状を検査することができるため、
従来に比べより′a精度なボンディングボールの状態検
査を行なうことができる等の特長を有するものである。
In contrast to the above, according to the present invention, the ball shape can be inspected without being affected by the wire image or ball deformation.
This method has the advantage of being able to inspect the condition of the bonding ball with a higher accuracy than the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の一実施例の構成図、 第3図は本発明の一実施例の動作説明用゛ノローチャー
ト、 第4図は画素sNa補諷0説明図、 第5図は画素問南講補間前後の画像例を示す図、第6図
虹ボンディングボール2値化像を示す図、第7図はボン
ディングボール距離変換11!i像を示す図、 第8図はボンディングボール中心位置の検出説明図、 第9図はボンディングボール形状検査説明図、第10図
q従来V装置の一例の構成図である。 図において、 2 Lt I Cチップ、 3はパッド、 4uワイヤ、 5はボンディングボール、 1(HJ[m手段、 11はi!ii素生戒手生成 12L1濃淡晰調南像メモリ、 13は閾値粋出手段、 14は距離変換手段、 15は中心検出手段、 16LL形状検査手段、 24は画像処理プロセッサ を示す。
FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a flow chart for explaining the operation of an embodiment of the present invention, and FIG. 4 is a pixel sNa Figure 5 is a diagram showing an example of images before and after pixel interpolation, Figure 6 is a diagram showing a binary image of a rainbow bonding ball, and Figure 7 is a diagram showing bonding ball distance conversion 11! FIG. 8 is an explanatory diagram for detecting the bonding ball center position, FIG. 9 is an explanatory diagram for bonding ball shape inspection, and FIG. 10 (q) is a configuration diagram of an example of a conventional V device. In the figure, 2 is the Lt IC chip, 3 is the pad, 4u wire, 5 is the bonding ball, 1 (HJ [m means, 11 is i! ii elementary school kaite generation 12L1 density clear tone southern image memory, 13 is the threshold value 14 is a distance conversion means, 15 is a center detection means, 16 is an LL shape inspection means, and 24 is an image processing processor.

Claims (1)

【特許請求の範囲】 パッドにボンディングされたワイヤの先端のボンディン
グボールを撮像する撮像手段(10)と、該撮像手段(
10)の出力映像信号をディジタル処理して画素を生成
する画素生成手段(11)と、 該画素生成手段(11)により生成された画素のうち所
定サイズの検査領域における画素を記憶する濃淡階調画
像メモリ(12)と、 該濃淡階調画像メモリ(12)から読み出した全画素か
ら自動2値化算出法により閾値を算出し、該閾値で前記
検査領域における画像を2値化する閾値算出手段(13
)と、 該閾値算出手段(13)により得られた2値画像を距離
変換する距離変換手段(14)と、該距離変換された画
像の各画素の値を前記ワイヤと反対の方向からサーチし
て最初に検出した最大値の画素位置の中心を前記ボンデ
ィングボールの中心位置として検出する中心検出手段(
15)と、 該中心検出手段(15)で検出された中心位置と該距離
変換された画素の各画素のうち所定値の画素位置との距
離を計算してボンディングボール形状を検査する形状検
査手段(16)と、 を具備したことを特徴とするワイヤボンディング状態検
査装置。
[Claims] An imaging means (10) for imaging a bonding ball at the tip of a wire bonded to a pad;
pixel generation means (11) for digitally processing the output video signal of step 10) to generate pixels; and a gray scale for storing pixels in an inspection area of a predetermined size among the pixels generated by the pixel generation means (11). an image memory (12); and a threshold calculation means for calculating a threshold from all pixels read from the gray scale image memory (12) by an automatic binarization calculation method and binarizing the image in the inspection area using the threshold. (13
), distance converting means (14) for distance converting the binary image obtained by the threshold value calculating means (13), and searching for the value of each pixel of the distance-converted image from the direction opposite to the wire. center detection means (
15), and shape inspection means for inspecting the bonding ball shape by calculating the distance between the center position detected by the center detection means (15) and a pixel position of a predetermined value among each pixel of the distance-converted pixels. (16) A wire bonding condition inspection device comprising:
JP1316997A 1989-12-06 1989-12-06 Wire bonding condition inspection device Expired - Fee Related JP2843388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316997A JP2843388B2 (en) 1989-12-06 1989-12-06 Wire bonding condition inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316997A JP2843388B2 (en) 1989-12-06 1989-12-06 Wire bonding condition inspection device

Publications (2)

Publication Number Publication Date
JPH03178146A true JPH03178146A (en) 1991-08-02
JP2843388B2 JP2843388B2 (en) 1999-01-06

Family

ID=18083265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316997A Expired - Fee Related JP2843388B2 (en) 1989-12-06 1989-12-06 Wire bonding condition inspection device

Country Status (1)

Country Link
JP (1) JP2843388B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312317A (en) * 1996-05-23 1997-12-02 Nec Corp Flip chip junction inspection method and device
WO2010013564A1 (en) * 2008-07-28 2010-02-04 株式会社 日立ハイテクノロジーズ Defect review device, defect review method, and defect review execution program
CN112447537A (en) * 2019-09-03 2021-03-05 德律科技股份有限公司 Detection system and detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312317A (en) * 1996-05-23 1997-12-02 Nec Corp Flip chip junction inspection method and device
WO2010013564A1 (en) * 2008-07-28 2010-02-04 株式会社 日立ハイテクノロジーズ Defect review device, defect review method, and defect review execution program
JP2010032308A (en) * 2008-07-28 2010-02-12 Hitachi High-Technologies Corp Defect review device, defect review method, and defect review execution program
CN112447537A (en) * 2019-09-03 2021-03-05 德律科技股份有限公司 Detection system and detection method
CN112447537B (en) * 2019-09-03 2024-04-12 德律科技股份有限公司 Detection system and detection method

Also Published As

Publication number Publication date
JP2843388B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP5997039B2 (en) Defect inspection method and defect inspection apparatus
US6317512B1 (en) Pattern checking method and checking apparatus
JPH0160767B2 (en)
US5850467A (en) Image data inspecting method and apparatus providing for equal sizing of first and second image data to be compared
TWI234649B (en) Visual inspection apparatus and method
JP2005121546A (en) Defect inspection method
US6555836B1 (en) Method and apparatus for inspecting bumps and determining height from a regular reflection region
JPH03178146A (en) Inspecting equipment for wire bonding state
JPH0682377A (en) Appearance inspecting device of semiconductor
JPH05129397A (en) Foreign matter detection method and device
JPH063541B2 (en) Pattern inspection equipment
JP3093450B2 (en) Semiconductor chip recognition device
JP3198105B2 (en) Automatic visual inspection device
JPH05272945A (en) Apparatus for inspecting bent part of lead
JP2843389B2 (en) Bonding ball inspection device
JP2701872B2 (en) Surface inspection system
JP2720935B2 (en) Inspection device and inspection method
JPS6061604A (en) Pattern inspecting apparatus
JPH0224322B2 (en)
JP2529505B2 (en) Wiring pattern inspection device
JP2000294612A (en) Method and device for creating chip layout
JPH0772089A (en) Inspecting apparatus for defect of pattern
JPH04285802A (en) Inspecting apparatus for external appearance
JPS59127169A (en) Picture processor
JPH01255073A (en) Method and device for checking pattern

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees