JPH03176623A - Temperature controller for semiconductor element and temperature sensor used for the same - Google Patents
Temperature controller for semiconductor element and temperature sensor used for the sameInfo
- Publication number
- JPH03176623A JPH03176623A JP31564489A JP31564489A JPH03176623A JP H03176623 A JPH03176623 A JP H03176623A JP 31564489 A JP31564489 A JP 31564489A JP 31564489 A JP31564489 A JP 31564489A JP H03176623 A JPH03176623 A JP H03176623A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- temperature sensor
- thin film
- response speed
- amorphous semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 52
- 239000010409 thin film Substances 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 24
- 238000001514 detection method Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 238000009529 body temperature measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 239000002470 thermal conductor Substances 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229920006334 epoxy coating Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電子デバイス、特にフォトダイオード、レ
ーザーダイオードのような半導体素子を一定、かつ高精
度に動作させるための半導体素子の温度制御装置と、そ
れに用いる温度センサに関する。例えば、温度を敏感に
、かつ正確に測定するためには速い熱応答速度が必要で
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temperature control device for semiconductor elements, which operates electronic devices, particularly semiconductor elements such as photodiodes and laser diodes, with constant and high precision. , and a temperature sensor used therein. For example, a fast thermal response rate is required to sensitively and accurately measure temperature.
また、半導体素子を用いた寸法測定器、光フアイバ破断
点測定器等の光学的測定装置においては受光素子、発光
素子の温度による受光感度、発振周波数のゆらぎなどが
測定精度の劣化につながるので、半導体素子を温度的に
一定の状態で動作させる必要がある。この発明はこれら
の目的のために使用させるものである。In addition, in optical measuring devices such as dimension measuring instruments using semiconductor elements and optical fiber break point measuring instruments, fluctuations in light receiving sensitivity and oscillation frequency due to the temperature of the light receiving element and light emitting element lead to deterioration of measurement accuracy. It is necessary to operate a semiconductor element in a constant temperature state. This invention is intended to be used for these purposes.
温度センサとしては白金測温体、サーミスタ、熱電対、
IC化温度センサ、SiCおよびダイヤモンドを用いた
温度センサ等が、従来から使われたりあるいは提案され
てきたが、それぞれ次のような欠点があった。Temperature sensors include platinum thermometers, thermistors, thermocouples,
IC temperature sensors, temperature sensors using SiC and diamond, and the like have been used or proposed, but each has the following drawbacks.
(1)白金測温体
■ 抵抗素子の構造が複雑であり、形状が大きく小型化
できない。例えば、薄膜白金温度センサでも、白金の導
電率が約9 X 10’(S−c川−1)と大きいため
に、平板タイプで縦10×横3×高さ0.6(単位間)
、円柱タイプで直径1.6×長さ13(単位n+m )
程度の小型化しかできない。(1) Platinum thermometer ■ The structure of the resistance element is complicated and the shape is large, making it impossible to miniaturize. For example, even with a thin-film platinum temperature sensor, since platinum has a high conductivity of about 9 x 10' (S-c river-1), a flat plate type sensor has a size of 10 length x 3 width x 0.6 height (between units).
, cylindrical type, diameter 1.6 x length 13 (unit: n+m)
Only a small amount of miniaturization is possible.
■ 白金測温体から測定器までの間に補償導線が必要で
ある。これは、白金測温体がブリッジ回路の1つの抵抗
体で測温部にあるのに対し他の3つの基準用の抵抗体が
測定器内にあるためである。■ A compensating conductor is required between the platinum thermometer and the measuring device. This is because the platinum temperature measuring element is one of the resistors in the bridge circuit and is located in the temperature measuring section, while the other three reference resistors are located within the measuring device.
■ 応答速度が遅い。これは、白金を被覆しているテフ
ロンあるいはガラスの熱伝導率が小さく、しかも形状が
大きいことにより熱容量が大きいためである。■ Response speed is slow. This is because the thermal conductivity of Teflon or glass covering platinum is low, and the heat capacity is large due to the large shape.
(2)サーミスタ ■ 薄膜化できず、小型化できない。(2) Thermistor ■ Cannot be made thinner or smaller.
■ 応答速度が遅い。これは、サーミスタを被覆してい
るガラスあるいはエポキシの熱伝導率が小さく、しかも
形状が大きいことにより熱容量が大きいためである。■ Response speed is slow. This is because the thermal conductivity of the glass or epoxy coating the thermistor is low, and the heat capacity is large due to the large shape.
■ 熱放散が小さく測定温度誤差を生じやすい。■ Heat dissipation is small and measurement temperature errors are likely to occur.
(3)熱電対
■ 基準接点を同一温度センサ内に集積化することは困
難であった。(3) Thermocouple■ It was difficult to integrate the reference junction in the same temperature sensor.
■ 基準接点及び補償導線の誤差を考える必要があった
。■ It was necessary to consider errors in the reference junction and compensation conductor.
■ 常温付近での測定が困難であった。■ Measurement near room temperature was difficult.
(4)IC化温度センサ
■ ベース・エミッタ間に流れる電流の温度特性を利用
しており、非線形性が大きく、これを補正するための回
路を必要とし、従って小型化が困難であった。(4) IC-based temperature sensor ■ The temperature characteristics of the current flowing between the base and emitter are utilized, and the non-linearity is large, requiring a circuit to correct this, making it difficult to miniaturize.
■ センサ部を小型化できないので、容量が大きく、従
って応答速度が遅かった。■ Since the sensor section could not be made smaller, the capacitance was large and the response speed was slow.
(5) S i C及びダイヤモンドを用いた温度セン
サ■ 良質なSiC及びダイヤモンドは、Si単結晶基
板等の限られた基板上にしか堆積されず、しかもこれら
基板はウェーハプロセス上に薄膜化が困難であり、従っ
て熱応答速度を速くすることができなかった。(5) Temperature sensor using SiC and diamond ■ High quality SiC and diamond can only be deposited on limited substrates such as Si single crystal substrates, and these substrates are difficult to thin film during wafer process. Therefore, it was not possible to increase the thermal response speed.
■ SiC及びダイヤモンドは、堆積速度が遅く大面積
化ができず、面内均一性が悪いため、低コスト化が困難
であった。(2) SiC and diamond have slow deposition rates, cannot be made into large areas, and have poor in-plane uniformity, making it difficult to reduce costs.
以上、述べたように、熱応答速度が速く、小型化されて
おり、温度検出電圧が大きく、高精度でかつ、安価な温
度センサを得ることは、困難であった。一方、非晶質半
導体の抵抗温度特性を利用した温度センサについての技
術は特開昭第52−58579号公報(温度検知器)、
特開昭第53−44072号公報(感知素子)、特開昭
第58−170001号公報(感温装置)に開示されて
いる。As described above, it has been difficult to obtain a temperature sensor that has a fast thermal response speed, is compact, has a large temperature detection voltage, is highly accurate, and is inexpensive. On the other hand, a technology for a temperature sensor that utilizes the resistance-temperature characteristics of an amorphous semiconductor is disclosed in Japanese Patent Application Laid-Open No. 52-58579 (Temperature Detector).
It is disclosed in JP-A-53-44072 (sensing element) and JP-A-58-170001 (temperature sensing device).
しかし、これらの公報には温度センサの熱応答速度を高
速化するための技術を具体的に開示しているところは発
受けられなかった。例えば、特開昭第52−58579
号公報では、熱容量の大きなサーミスタと小さなサーミ
スタの直列接続における、接続点での出力電圧温度依存
性を利用した温度センサについてのみの開示であり、温
度センサの熱応答速度の高速化による、温度の敏感かつ
、精密な測定についての開示はない。また、特開昭第5
3−44072号公報においても、非晶質半導体電極間
電圧が温度に依存することを利用した温度センナについ
てのみの開示である。さらに、同一出願人による特開昭
第58−170001号公報(感温装置)においても、
非晶質半導体を用いた、橋絡接続の温度センサについて
のみの開示である。However, none of these publications specifically discloses a technique for increasing the thermal response speed of a temperature sensor. For example, JP-A No. 52-58579
The publication only discloses a temperature sensor that utilizes the output voltage temperature dependence at the connection point when a thermistor with a large heat capacity and a thermistor with a small heat capacity are connected in series. There is no disclosure of sensitive and precise measurements. Also, Tokukai Showa 5th
3-44072 also discloses only a temperature sensor that utilizes the fact that the voltage between amorphous semiconductor electrodes depends on temperature. Furthermore, in Japanese Patent Application Laid-open No. 58-170001 (temperature sensing device) by the same applicant,
This disclosure only relates to a bridge-connected temperature sensor using an amorphous semiconductor.
以上、述べたように、いずれの発明も、温度センサの熱
応答速度を高速化するための技術については、開示して
いない、また、半導体素子の動作温度を安定にするため
の技術として従来からペルチェ素子のような電子冷却素
子を用いたものが使われできた、電子冷却素子は、素子
の表面温度を表わす信号で電子冷却素子の電流を制御し
、半導体素子の温度を制御するものである。表面温度を
測定するための温度センサとしては、熱応答速度が速く
、かつ小型化されており、温度検出電圧が大きく、高精
度で、かつ安価な温度センサが要求されていた。また、
温度測定部に抵抗値温度係数の大きい抵抗体を設置し、
測定器内に基準用の抵抗ja A度係数の小さい抵抗体
を設置しているために測定器内の温度変化による温度測
定誤差や、温度測定部と測定器との間の配線間ノイズの
問題があった。この問題を解決するために、温度センサ
と基準用の抵抗体とを集積化することも要求されていた
。しかし、従来の発明では、温度センサの熱応答速度を
速くすること及び温度センサと基型用の抵抗体とを集積
化することにより得られる安定な温度制御から、半導体
素子の高精度な動作を得る、という具体的な技術の開示
はなかった。As mentioned above, none of the inventions discloses a technology for increasing the thermal response speed of a temperature sensor. A thermoelectric cooling element such as a Peltier element was used.The thermoelectric cooling element controls the current of the thermoelectric cooling element using a signal representing the surface temperature of the element, thereby controlling the temperature of the semiconductor element. . As a temperature sensor for measuring surface temperature, there has been a demand for a temperature sensor that has a fast thermal response speed, is compact, has a large temperature detection voltage, is highly accurate, and is inexpensive. Also,
A resistor with a large resistance temperature coefficient is installed in the temperature measurement part,
Because a reference resistor with a small degree coefficient is installed inside the measuring device, there are problems with temperature measurement errors due to temperature changes within the measuring device and noise between the wiring between the temperature measuring part and the measuring device. was there. In order to solve this problem, it has also been required to integrate the temperature sensor and the reference resistor. However, in conventional inventions, high-precision operation of semiconductor elements has been achieved through stable temperature control obtained by increasing the thermal response speed of the temperature sensor and integrating the temperature sensor and the resistor for the base. There was no disclosure of specific technology for obtaining this information.
熱抵抗と熱容量を共に小さくすることにより得られた速
い熱応答速度と、薄膜型でがっ小型化であることを兼ね
備えた、非晶質半導体薄膜および抵抗値温度係数の小さ
な薄膜抵抗体との橋絡接続による温度検出電圧が大きく
、かつ高精度で安価な温度センサを得ること、及びその
温度センサを用いた半導体素子の温度制御装置を構成す
ることが、この発明の課題である。The combination of amorphous semiconductor thin film and a thin film resistor with a small temperature coefficient of resistance, which combines a fast thermal response speed obtained by reducing both thermal resistance and heat capacity, and a thin film type that is significantly smaller. It is an object of the present invention to obtain a high-precision, inexpensive temperature sensor that has a large temperature detection voltage due to a bridge connection, and to configure a temperature control device for a semiconductor element using the temperature sensor.
この発明は、高い熱伝導率を有する基板が極めて薄いに
もかかわらず、フォトエツチングに代表される3膜半導
体プロセスを可能にしたために、小さな熱抵抗と熱容量
を得ることができ、その結果、速い熱応答速度が得られ
ること、および温度制御装置の温度測定用温度センサと
しての性能を満足する、非晶質半導体薄膜および抵抗値
温度係数の小さな薄膜抵抗体との橋絡接続による温度セ
ンサが得られるという発明者の発見した事実に基づく。This invention enables a three-layer semiconductor process, typically photoetching, even though the substrate with high thermal conductivity is extremely thin, making it possible to obtain low thermal resistance and heat capacity, resulting in fast A temperature sensor can be obtained by connecting an amorphous semiconductor thin film and a thin film resistor with a small temperature coefficient of resistance, which provides a high thermal response speed and satisfies the performance as a temperature sensor for temperature measurement of a temperature control device. Based on the fact discovered by the inventor that
この事実を利用して、「熱の良伝導体で作られた絶縁性
基板あるいは絶縁膜で覆われた金属基板上に、上記の非
晶質半導体薄膜と抵抗値温度係数の小さな薄膜抵抗体と
で作られた、小形で熱応答速度が従来に見られなかった
程速い、橋絡構造の温度センサを実現し、かつこの温度
センサを用いた半導体素子の温度制御装置」を実現する
。Taking advantage of this fact, ``the above-mentioned amorphous semiconductor thin film and a thin film resistor with a small resistance temperature coefficient are placed on an insulating substrate made of a good thermal conductor or a metal substrate covered with an insulating film. We have realized a bridge-structured temperature sensor that is small and has a thermal response speed that is unprecedentedly fast, and a temperature control device for semiconductor devices that uses this temperature sensor.
この発明において、非晶質半導体薄膜および抵抗温度係
数の小さな薄膜抵抗体との橋絡接続による温度センサを
形成する基板の熱伝導率は、少なくとも 20 (J/
III・5−K)以上であり、その熱抵抗は、少なくと
もI XIO” <K/J−s )以下である。In this invention, the thermal conductivity of the substrate forming the temperature sensor formed by the bridge connection of the amorphous semiconductor thin film and the thin film resistor with a small resistance temperature coefficient is at least 20 (J/
III.5-K) or more, and its thermal resistance is at least IXIO''<K/J-s) or less.
しかも、その熱容量は少なくともlXl0〜’(J#)
以下である。その結果、温度センサの熱応答速度は、少
なくともI X 10−’ (s)以下である。また、
橋絡接続を形成する、非晶質半導体薄膜の抵抗値温度依
存性は、少なくとも導電率30 (S−cm−’ )以
上において0.4(X/K)以上あり、温度センサの検
出電圧は、少なくとも1 (mV/K)以上ある。橋絡
接続による抵抗値は、少なくとも約0.25(kΩ)以
上で、消費電力は少なくともl (mW)以下である。Moreover, its heat capacity is at least lXl0~'(J#)
It is as follows. As a result, the thermal response speed of the temperature sensor is at least I x 10-' (s) or less. Also,
The temperature dependence of the resistance value of the amorphous semiconductor thin film that forms the bridge connection is at least 0.4 (X/K) at conductivity of 30 (S-cm-') or more, and the detection voltage of the temperature sensor is , at least 1 (mV/K) or more. The resistance value due to the bridge connection is at least about 0.25 (kΩ) or more, and the power consumption is at least l 2 (mW) or less.
また、その抵抗値は、少なくとも約10(kΩ)以下で
あり、アンプでのノイズの影響を受は難い。Further, the resistance value thereof is at least about 10 (kΩ) or less, and is hardly affected by noise in the amplifier.
第1図は、本発明による温度センサの概念図である。こ
の発明は、熱応答速度の極めて速い絶縁性基板、あるい
は絶縁膜を被覆した金属基板1上に、抵抗値温度特性の
大きい、非晶質半導体3膜2の一対と、抵抗値温度依存
性の小さい薄+1i状の物質を用いた薄膜抵抗体3の一
対とが、4つのオーミック電極4a、 4b、 4c、
4dを介して、橋絡接続され、熱応答速度が極めて速
いのが特徴である。FIG. 1 is a conceptual diagram of a temperature sensor according to the present invention. This invention provides a pair of amorphous semiconductor three films 2 having a large resistance value temperature characteristic and a resistance value temperature dependence on an insulating substrate 1 having an extremely fast thermal response speed or a metal substrate 1 coated with an insulating film. A pair of thin film resistors 3 made of a small thin +1i material are connected to four ohmic electrodes 4a, 4b, 4c,
4d, and is characterized by an extremely fast thermal response speed.
第1表は、温度センサの熱応答速度を示した表で、従来
のものと、本発明のものとを示した。なお、あわせて熱
応答速度の式も示しである。Table 1 is a table showing the thermal response speed of temperature sensors, and shows the conventional one and the one of the present invention. The formula for thermal response speed is also shown.
第1表
熱応答速度−熱抵抗×熱容量
この第1表かられかるように、本発明による温度センサ
の熱応答速度は他のそれよりも大幅に速くなっている。Table 1 Thermal Response Speed - Thermal Resistance x Heat Capacity As can be seen from Table 1, the thermal response speed of the temperature sensor according to the present invention is significantly faster than other sensors.
また、従来の温度センサは白金測温体に代表されるよう
に大きく、微小部分の温度を測定することはできなかっ
た。しかし、本発明では、フォトリソグラフィに代表さ
れる半導体薄膜プロセスを用いることにより、0.85
X O,85(単位lll111)以下までに小型化し
、微小部分の温度測定を可能にした。Furthermore, conventional temperature sensors, such as platinum thermometers, are large and cannot measure the temperature of minute parts. However, in the present invention, by using a semiconductor thin film process typified by photolithography, 0.85
It has been miniaturized to less than X O,85 (unit 111), making it possible to measure the temperature of minute parts.
次に、温度センサの製造法を説明する。絶縁性基板ある
いは絶縁膜で表面を覆われた金属基板1(以下、両者を
まとめて絶縁性基板という、)の材料としては、熱伝導
率が20 (J/++−s・に)以上と高く、厚さが5
0(μa+)程度と極めて薄いものが望ましい。金属基
板を用いる場合は表面を絶縁膜で覆う、基板の厚さを薄
くするのは、温度センサの熱応答速度を高めるためであ
る。Next, a method for manufacturing the temperature sensor will be explained. The material for the insulating substrate or the metal substrate 1 whose surface is covered with an insulating film (hereinafter collectively referred to as the insulating substrate) has a high thermal conductivity of 20 (J/++-s) or more. , thickness 5
It is desirable that it be extremely thin, about 0 (μa+). When using a metal substrate, the reason why the surface is covered with an insulating film and the thickness of the substrate is made thin is to increase the thermal response speed of the temperature sensor.
また、半導体薄膜プロセスに耐えられるようにするため
に、酸化還元雰囲気及び酸アルカリへの耐性と耐熱性が
なくてはならない。このため、アルミナ基板、 BN基
板、SiC基板、5iJ4基板、AIN基板及びBeO
基板等が用いられる。この絶縁性基板1は、有機溶剤等
で十分に洗浄したあと、清浄な雰囲気で乾燥させる。Furthermore, in order to withstand the semiconductor thin film process, it must have resistance to redox atmospheres and acids and alkalis, and heat resistance. Therefore, alumina substrate, BN substrate, SiC substrate, 5iJ4 substrate, AIN substrate and BeO
A substrate or the like is used. After thoroughly cleaning the insulating substrate 1 with an organic solvent or the like, it is dried in a clean atmosphere.
次に31841 GeH4等のガスを用い、プラズマC
VD法により、a−3i : H5a−Ge : H、
a−3i : Ge等の非晶質半導体薄膜を堆積する。Next, using a gas such as 31841 GeH4, plasma C
By the VD method, a-3i: H5a-Ge: H,
a-3i: Deposit an amorphous semiconductor thin film such as Ge.
この際、堆積される薄膜の導電率を制御するために放電
パワー、基板温度を変化させたり、あるいはn型半導体
にはPHs、 AsH3、またp型半導体にはBffi
H6等のドーピングガス供給量を変化させたりする方法
が一般的である。At this time, in order to control the conductivity of the thin film deposited, the discharge power and substrate temperature are changed, or PHs and AsH3 are used for n-type semiconductors, and Bffi is used for p-type semiconductors.
A common method is to change the supply amount of doping gas such as H6.
この堆積された非晶質薄膜半導体を、フォトエツチング
技術を用いて不要部を除去し、所定の抵抗体(非晶質半
導体薄膜2)を形成する。この抵抗体が可変抵抗体であ
る。Unnecessary portions of the deposited amorphous thin film semiconductor are removed using photoetching technology to form a predetermined resistor (amorphous semiconductor thin film 2). This resistor is a variable resistor.
続いて、スパッタ法、真空蒸着法あるいはCVD法によ
り堆積した、窒化タンタルあるいはニクロム、シリコン
・ゲルマニウム等の薄膜も同様に不要部を除去し、所定
の抵抗体(薄膜抵抗体3)を形成する。この抵抗体が抵
抗温度係数の小さな薄膜状の固定抵抗体である。さらに
、金等の電極用金属薄膜を堆積し、同様に不要部を除去
し、所定の電極4a、 4b、 4c、 4d (オ
ーミック電極)を形成する。なお、表面保護膜としては
、Si0g薄膜、s+J4薄膜等を用いる。その結果、
第1図に示す非晶質半導体薄膜を用いて橋絡接続した回
路による温度センサが得られる。Subsequently, unnecessary portions of the thin film of tantalum nitride, nichrome, silicon germanium, etc. deposited by sputtering, vacuum evaporation, or CVD are similarly removed to form a predetermined resistor (thin film resistor 3). This resistor is a thin film fixed resistor with a small temperature coefficient of resistance. Further, a metal thin film for electrodes such as gold is deposited, and unnecessary portions are similarly removed to form predetermined electrodes 4a, 4b, 4c, and 4d (ohmic electrodes). Note that as the surface protective film, a Si0g thin film, an s+J4 thin film, or the like is used. the result,
A temperature sensor with a bridge-connected circuit using the amorphous semiconductor thin film shown in FIG. 1 is obtained.
本発明の温度センサを実現するためには、次に挙げる3
つの大きな技術課題の解決が必要であった。そこで、上
記説明した温度センサではそれらを解決した。すなわち
、第1は、温度を敏感にかつ正確に測定するために、温
度センサ自体の速い熱応答速度を得られたことである。In order to realize the temperature sensor of the present invention, the following three
Two major technical issues needed to be solved. Therefore, the above-described temperature sensor solves these problems. That is, the first is that the temperature sensor itself has a fast thermal response speed in order to measure temperature sensitively and accurately.
熱応答速度は第1表に示される式で求められる。この式
かられかる通り熱応答速度は、熱抵抗と熱容量の積で求
められる。これらの中で特に熱伝導率は、物質によって
大きく異なり、熱応答速度は「長さ」、つまり基板の膜
厚の2乗に比例していることから、この熱伝導率を大き
く、かっ膜厚を薄くすることが重要である。The thermal response speed is determined by the formula shown in Table 1. As can be seen from this equation, the thermal response speed is determined by the product of thermal resistance and heat capacity. Among these, thermal conductivity in particular varies greatly depending on the material, and the thermal response speed is proportional to the "length", that is, the square of the film thickness of the substrate. It is important to make it thin.
このことから、基板に熱伝導率が20 (J/a+−s
・K)と高く、密度が3〜4 X 10”(g/rrr
) 、比熱が0.5〜l (J/g−K) をもつア
ル果す基板、BN基板+SiC基板、5i3Nn基板、
AIN基板及びBeO基板等を用い、温度センサを形成
したところ、従来の白金測温体に比較し熱応答速度が速
いことが実験で確かめられ、熱応答速度の計算値では0
.1 (S) (s)以下であった。また、最も速い熱
応答速度としては3 X 10−’ (s)が得られた
。From this, the thermal conductivity of the substrate is 20 (J/a+-s
・High K) with a density of 3 to 4 x 10” (g/rrr
), an aluminum substrate with a specific heat of 0.5 to 1 (J/g-K), a BN substrate + SiC substrate, a 5i3Nn substrate,
When a temperature sensor was formed using an AIN substrate, a BeO substrate, etc., it was experimentally confirmed that the thermal response speed was faster than that of a conventional platinum temperature sensor, and the calculated value of the thermal response speed was 0.
.. 1 (S) (s) or less. Furthermore, the fastest thermal response speed was 3 x 10-' (s).
このように基板材料、及び形状を計算式から選定するこ
とにより、従来より大幅に速い熱応答速度を得た。By selecting the substrate material and shape from the calculation formula in this way, we were able to obtain a significantly faster thermal response speed than before.
第2は、橋絡接続バイアス電圧が0.5(V)と小さい
にもかかわらず、白金測温体の検出電圧0.8(mV/
K)を上回:61 (mV/K)以上もの検出電圧カ得
られることである。Second, although the bridge connection bias voltage is as low as 0.5 (V), the detection voltage of the platinum thermometer is 0.8 (mV/mV).
K): A detection voltage of 61 (mV/K) or more can be obtained.
第3図に本発明に用いた橋絡接続の回路図と温度検出電
圧V2O丁の式を示す。バイアス電圧V。FIG. 3 shows a circuit diagram of the bridge connection used in the present invention and an equation for the temperature detection voltage V2O. Bias voltage V.
0.5(V)時において、少なくとも温度検出電圧1
(mV/K)以上を実現するためには、可変抵抗体であ
る非晶質半導体薄Hりの抵抗値温度係数が0.4(χ/
K)以上なくてはならないが、本発明ではプラズマCV
D法により導電率が30(S−cm −’ )以上と高
いにもかかわらず、0.4(χ/K)以上の膜を得るこ
とができた。At 0.5 (V), at least the temperature detection voltage 1
(mV/K) or more, the temperature coefficient of resistance of the amorphous semiconductor thin film that is the variable resistor must be 0.4 (χ/
K) Although above is necessary, in the present invention, plasma CV
Even though the conductivity was as high as 30 (S-cm −' ) or more by method D, a film with a conductivity of 0.4 (χ/K) or more could be obtained.
第4図に抵抗値温度特性の一例を示す。横軸は絶対温度
の逆数を線形目盛で、縦軸は抵抗値Rを対数目盛で示し
た。第5図は、第4図で示される抵抗値/Iq度特度合
性する抵抗体を用いた温度センサの温度Tと検出電圧V
。uLのグラフである。電極4a、4dに定電圧をバイ
アスし、電極4b、4c間の起電圧を温度検出電圧とし
ている。このグラフから示されるように、温度検出電圧
1 (mV /K)以上で、かつほぼ直線の特性がある
こと、及び再現性があることが実験から確かめられた。FIG. 4 shows an example of resistance temperature characteristics. The horizontal axis shows the reciprocal of the absolute temperature on a linear scale, and the vertical axis shows the resistance value R on a logarithmic scale. FIG. 5 shows the temperature T and detection voltage V of a temperature sensor using a resistor that matches the resistance value/Iq characteristic shown in FIG.
. It is a graph of uL. A constant voltage is biased to the electrodes 4a and 4d, and the electromotive force between the electrodes 4b and 4c is used as the temperature detection voltage. As shown from this graph, it was confirmed through experiments that the temperature detection voltage was 1 (mV/K) or higher, had almost linear characteristics, and had reproducibility.
また、バイアス電圧が0.5mと小さいため、消費電力
は0.08(1)と小さく、温度センナの加熱による測
定誤差が少ない。温度センサの消費電力0.08(mW
)は、白金の消費電力0 、4 (mW)の175の値
である。Furthermore, since the bias voltage is as small as 0.5 m, power consumption is as low as 0.08(1), and measurement errors due to heating of the temperature sensor are small. Temperature sensor power consumption 0.08 (mW
) is the value of 175 of the platinum power consumption 0,4 (mW).
第3は、橋絡接続を形成する抵抗体の抵抗値を、温度セ
ンサとして使用するための適当な範囲番こ設定できるよ
うにしたことである。抵抗体の抵抗値が小さい場合、温
度センサの消費電力はバイアス電圧の2乗に比例し、抵
抗値に反比例する。バイアス電圧を0.5mとした場合
、例えば白金測温体の消費電力0.4 (mW)以下に
抑えるためには、抵(JI値は少なくとも0.625
(kΩ)以上でなくては捨らない。また、例えば消費電
力1 (n+W)以下にII′11えるためには、抵抗
値は少なくとも0.25(kΩ)以上でなくてはならな
い。一方、温度検出電圧を電気回路で使用する場合の、
アンプ増幅時のノイズの影響を考慮すると、抵抗値は約
10(kΩ)以下が望ましい。本発明で、これらの条件
を満たす温度センサができた。Third, the resistance value of the resistor forming the bridge connection can be set within an appropriate range for use as a temperature sensor. When the resistance value of the resistor is small, the power consumption of the temperature sensor is proportional to the square of the bias voltage and inversely proportional to the resistance value. When the bias voltage is 0.5 m, for example, in order to suppress the power consumption of the platinum thermometer to 0.4 (mW) or less, the resistance (JI value is at least 0.625) is required.
(kΩ) or more, it must be discarded. Further, in order to reduce the power consumption to less than 1 (n+W), for example, the resistance value must be at least 0.25 (kΩ) or more. On the other hand, when using the temperature detection voltage in an electric circuit,
Considering the influence of noise during amplifier amplification, the resistance value is preferably about 10 (kΩ) or less. The present invention has created a temperature sensor that satisfies these conditions.
以上の3点の技術的課題の解決により、熱応答速度の速
い温度センサが実現できた。By solving the above three technical issues, a temperature sensor with a fast thermal response speed was realized.
第2図に、本発明による半導体素子11の温度制御装置
2oの一実施例を示す。FIG. 2 shows an embodiment of a temperature control device 2o for a semiconductor device 11 according to the present invention.
本発明による温度制御装置20は、温度コントローラ1
3と、温度センサ10とを含み、電子冷却素子(ペルチ
ェ素子)12に制御された電流を流して、半導体素子1
1の温度を制御するものである。ここで、半導体素子1
1は、受光素子あるいは、発光素子等であり、よい温度
制御をすることにより、はしめて安定かつ高桔度な動作
を実現した。この温度センサ10は、熱応答速度が速い
ので、所定の温度における、温度制御はより精密かつ、
より安定にj〒なえるようになった。また、少なくとも
±10(mk)以下の温度安定度を得るためには、温度
センサの検出電圧は1 (mV /K)以上が必要とさ
れ、従って本発明で得られた温度センサによる検出信号
を用いて、温度制御は十分に行なえることが確認できた
。さらに、温度センサの消費電力が小さいため、温度測
定誤差が少なくできた。そして、温度検出電圧のアンプ
増幅時のノイズの影響が少ないので、温度制御はより正
確に行なえるものとなった。The temperature control device 20 according to the present invention includes a temperature controller 1
3 and a temperature sensor 10, and a controlled current is passed through an electronic cooling element (Peltier element) 12 to cool the semiconductor element 1.
This is to control the temperature of 1. Here, semiconductor element 1
1 is a light-receiving element or a light-emitting element, etc., and by controlling the temperature well, it has achieved extremely stable and high-speed operation. Since this temperature sensor 10 has a fast thermal response speed, temperature control at a predetermined temperature is more precise and
I am now able to bend more stably. Furthermore, in order to obtain temperature stability of at least ±10 (mK) or less, the detection voltage of the temperature sensor is required to be 1 (mV/K) or more. It was confirmed that the temperature could be controlled satisfactorily using this method. Furthermore, because the power consumption of the temperature sensor is low, temperature measurement errors can be reduced. Furthermore, since the influence of noise during amplifier amplification of the temperature detection voltage is small, temperature control can be performed more accurately.
本発明は、熱の良伝導体で作られた絶縁性基板あるいは
絶縁膜で表面を覆われた金属基板上に、非晶質半導体の
抵抗と、低温度係数の抵抗体とで作られた、小形で熱応
答速度が従来に見られなかった程速い橋絡構造の温度セ
ンサとしたから、次に示すような固有の効果を有する。The present invention provides an insulating substrate made of a good thermal conductor or a metal substrate whose surface is covered with an insulating film, and which is made of an amorphous semiconductor resistor and a low temperature coefficient resistor. Since the temperature sensor is small and has a bridged structure with a thermal response speed that is faster than ever seen before, it has the following unique effects.
(1)温度センサの熱応答速度を0.1 (s)以下と
高速にできたので、より精密な、かつ敏感な温度測定が
できる。(1) Since the thermal response speed of the temperature sensor can be made as fast as 0.1 (s) or less, more precise and sensitive temperature measurements can be made.
(2)温度センサ橋絡接続の非晶質半導体薄膜が導電率
30(S−cm −’ )以上と高いにもかかわらず、
抵抗値温度係数が0.4(X/K)以上と大きいので、
温度検出電圧が1 (mV /K)以上と大きく、正確
な温度測定ができる。(2) Despite the fact that the amorphous semiconductor thin film used to bridge the temperature sensor has a high electrical conductivity of 30 (S-cm −') or more,
Since the temperature coefficient of resistance value is as large as 0.4 (X/K) or more,
The temperature detection voltage is as high as 1 (mV/K) or more, allowing accurate temperature measurement.
(3)温度センサの抵抗値が、0.25(kΩ)〜10
(kΩ)の範囲にあるので、消費電力が小さく、かつア
ンプのノイズによる影響を受けにくいので、正確な温度
の測定ができる。(3) The resistance value of the temperature sensor is 0.25 (kΩ) to 10
(kΩ), the power consumption is small, and the temperature is not easily affected by amplifier noise, allowing accurate temperature measurement.
(4)温度センサの形状が最小で0.85X O,85
(単位はM)以下と、小型化されているため、−微小部
分の温度測定ができる。(4) The minimum shape of the temperature sensor is 0.85X O, 85
(Unit: M) Because it is compact, it is possible to measure the temperature of minute parts.
(5)非晶質半導体薄膜は、簡易でかつ安価な装置で堆
積され、堆積速度が速く、大面積化でき、面内均一性に
優れているため、より安価な温度センサが作製できる。(5) An amorphous semiconductor thin film can be deposited using a simple and inexpensive device, has a fast deposition rate, can be made into a large area, and has excellent in-plane uniformity, so a cheaper temperature sensor can be manufactured.
(6)?5度センサプロセスは、半導体素子プロセスと
両立し得るので、半導体素子の一部に組み込んで、温度
測定できる。(6)? The 5 degree sensor process is compatible with the semiconductor device process, so it can be incorporated into a part of the semiconductor device to measure temperature.
(7)以上に述べた発明の効果により得られた、安定な
温度制御により、半導体素子の温度を安定化させるより
±10(mk)という高精度な動作が可能となった。(7) Due to the stable temperature control obtained as a result of the effects of the invention described above, a highly accurate operation of ±10 (mk) has become possible by stabilizing the temperature of the semiconductor element.
第1図は温度センサの概念図を、第2図は半導体素子の
温度制御装置の一実施例を、第3図は温度センサの検出
電圧の式と開回路゛図、第4図は非晶質半導体薄膜の抵
抗値温度依存性、第5図は温度センサの温度Tと検出電
圧のグラフである。
図において、lは絶縁性基板(あるいは表面が絶縁膜で
覆われた金属基板)、2は非晶質半導体薄膜で成る抵抗
体、3は抵抗抗係数を有する薄膜抵抗体、4a、4b+
4c、4dは橋絡接続を形成するオーミック電極、10
は温度センサ、11は半導体素子、12は電子冷却素子
をそれぞれ示す。Fig. 1 is a conceptual diagram of a temperature sensor, Fig. 2 is an example of a temperature control device for semiconductor elements, Fig. 3 is an expression of the detection voltage of the temperature sensor and an open circuit diagram, and Fig. 4 is an amorphous FIG. 5 is a graph of the temperature T of the temperature sensor and the detected voltage. In the figure, l is an insulating substrate (or a metal substrate whose surface is covered with an insulating film), 2 is a resistor made of an amorphous semiconductor thin film, 3 is a thin film resistor having a drag coefficient, 4a, 4b+
4c, 4d are ohmic electrodes forming a bridge connection, 10
11 represents a temperature sensor, 11 represents a semiconductor element, and 12 represents an electronic cooling element.
Claims (1)
る辺を構成するように形成された、抵抗温度係数の大き
い一対の非晶質半導体薄膜(2)及び抵抗温度係数の小
さい一対の薄膜抵抗体(3)と、該非晶質半導体薄膜と
該薄膜抵抗体とを接続する一対のオーミック電極(4a
、4b、4c、4d)とからなる温度センサと;半導体
素子(11)と、熱伝導性素材を介して接触した電子冷
却素子(12)と;該温度センサの出力を受けて該電子
冷却素子に制御された電流を流して該半導体素子の温度
を制御する温度コントローラ(13)とを備えた半導体
素子の温度制御装置。 2)絶縁性基板(1)と;該基板上に橋絡接続の対向す
る辺を構成するように形成された、抵抗温度係数の大き
い一対の非晶質半導体薄膜(2)及び抵抗温度係数の小
さい一対の薄膜抵抗体(3)と;該非晶質半導体薄膜と
該薄膜抵抗体とを接続する二対のオーミック電極(4a
、4b、4c、4d)とを備えた温度センサであって; 前記温度センサの熱応答速度が0.1(s)以下である
ことを特徴とする温度センサ。[Scope of Claims] 1) An insulating substrate (1) and a pair of amorphous semiconductor thin films (2) having a large temperature coefficient of resistance formed on the substrate to form opposite sides of a bridge connection. ) and a pair of thin film resistors (3) with a small resistance temperature coefficient, and a pair of ohmic electrodes (4a) connecting the amorphous semiconductor thin film and the thin film resistor.
, 4b, 4c, 4d); a semiconductor element (11); and an electronic cooling element (12) that is in contact with the electronic cooling element through a thermally conductive material; A temperature control device for a semiconductor device, comprising: a temperature controller (13) that controls the temperature of the semiconductor device by flowing a controlled current. 2) an insulating substrate (1); a pair of amorphous semiconductor thin films (2) with a large temperature coefficient of resistance formed on the substrate to form opposite sides of a bridge connection; a pair of small thin film resistors (3); two pairs of ohmic electrodes (4a) connecting the amorphous semiconductor thin film and the thin film resistor;
, 4b, 4c, 4d), wherein the temperature sensor has a thermal response speed of 0.1 (s) or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31564489A JPH03176623A (en) | 1989-12-05 | 1989-12-05 | Temperature controller for semiconductor element and temperature sensor used for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31564489A JPH03176623A (en) | 1989-12-05 | 1989-12-05 | Temperature controller for semiconductor element and temperature sensor used for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03176623A true JPH03176623A (en) | 1991-07-31 |
Family
ID=18067847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31564489A Pending JPH03176623A (en) | 1989-12-05 | 1989-12-05 | Temperature controller for semiconductor element and temperature sensor used for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03176623A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1369915A2 (en) * | 2002-06-07 | 2003-12-10 | Heraeus Sensor-Nite GmbH | Semiconductor device with integrated circuit, heat sink and temperature sensor |
WO2014129052A1 (en) * | 2013-02-21 | 2014-08-28 | ダイキン工業株式会社 | Temperature estimation device and semiconductor device |
WO2019138729A1 (en) * | 2018-01-10 | 2019-07-18 | 株式会社村田製作所 | Temperature sensor |
CN113295292A (en) * | 2021-05-26 | 2021-08-24 | 北京京东方技术开发有限公司 | Temperature sensor and device |
-
1989
- 1989-12-05 JP JP31564489A patent/JPH03176623A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1369915A2 (en) * | 2002-06-07 | 2003-12-10 | Heraeus Sensor-Nite GmbH | Semiconductor device with integrated circuit, heat sink and temperature sensor |
EP1369915A3 (en) * | 2002-06-07 | 2006-08-09 | Heraeus Sensor Technology Gmbh | Semiconductor device with integrated circuit, heat sink and temperature sensor |
WO2014129052A1 (en) * | 2013-02-21 | 2014-08-28 | ダイキン工業株式会社 | Temperature estimation device and semiconductor device |
JP2014163679A (en) * | 2013-02-21 | 2014-09-08 | Daikin Ind Ltd | Temperature estimation device and semiconductor device |
WO2019138729A1 (en) * | 2018-01-10 | 2019-07-18 | 株式会社村田製作所 | Temperature sensor |
CN113295292A (en) * | 2021-05-26 | 2021-08-24 | 北京京东方技术开发有限公司 | Temperature sensor and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104316210B (en) | Electrical equipment, integrated circuit and equipment | |
KR101019076B1 (en) | Process condition sensing wafer and data analysis system | |
JP5874117B2 (en) | Thermal conductivity sensor that calibrates the effects of fluid temperature and type, thermal flow sensor and thermal pressure sensor using the same | |
Moser et al. | Silicon gas flow sensors using industrial CMOS and bipolar IC technology | |
US5347869A (en) | Structure of micro-pirani sensor | |
US4733559A (en) | Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates | |
JP3118459B2 (en) | Sensing system that measures the eigenvalue of the measured object using the change in thermal resistance | |
JPS63243885A (en) | Flow velocity detector | |
JP5590460B2 (en) | Dew point measuring device and gas characteristic measuring device | |
EP0353996B1 (en) | A flow sensor | |
JP2012078246A (en) | Electric element, integrated element and electronic circuit | |
JPH03176623A (en) | Temperature controller for semiconductor element and temperature sensor used for the same | |
JP5765609B2 (en) | Electrical device, integrated device, electronic circuit and temperature calibration device | |
JP3030337B2 (en) | Cryogenic thermometer | |
JPH03274708A (en) | Heat sensitive device | |
JP2952379B2 (en) | Temperature sensing device | |
JPH0584867B2 (en) | ||
JPH04235338A (en) | Humidity sensor | |
JP2619735B2 (en) | Heat flow sensor | |
JP2858156B2 (en) | Temperature sensor | |
JP2003098012A (en) | Temperature measuring device and gas concentration measuring device using it | |
JP3015857B2 (en) | Cryogenic temperature measuring device | |
JPH042967A (en) | Flow sensor | |
CN117147009A (en) | Device and method for calibrating solid-state quantum thermometer by thermoelectric voltage zero-pointing method | |
JPH04127012A (en) | Thickness sensor and measuring method of thickness of adhering layer |