[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH03163709A - Manufacture of conductive fiber base material - Google Patents

Manufacture of conductive fiber base material

Info

Publication number
JPH03163709A
JPH03163709A JP17125690A JP17125690A JPH03163709A JP H03163709 A JPH03163709 A JP H03163709A JP 17125690 A JP17125690 A JP 17125690A JP 17125690 A JP17125690 A JP 17125690A JP H03163709 A JPH03163709 A JP H03163709A
Authority
JP
Japan
Prior art keywords
fiber
solution
base material
monomer
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17125690A
Other languages
Japanese (ja)
Other versions
JP2986857B2 (en
Inventor
Ikuo Mizoguchi
郁夫 溝口
Mamoru Ito
守 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2171256A priority Critical patent/JP2986857B2/en
Publication of JPH03163709A publication Critical patent/JPH03163709A/en
Application granted granted Critical
Publication of JP2986857B2 publication Critical patent/JP2986857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To efficiently manufacture an equally conductive fiber base material by making a solution containing a conductive polymer-forming monomer and an oxidizer to pass through the fiber gaps of a fiber base material and coating the fiber surface with a conductive polymer. CONSTITUTION:A solution containing a conductive polymer-forming monomer and an oxidizer is made to pass through the fiber gaps of a fiber base material for coating the fiber surface with a conductive polymer. Aniline, thiophene, pyrrole or their derivatives are desirably used as a conductive polymer-forming monomer. In order to epitaxially grow a conductive polymer on the fiber surface, a conductive treating liquid is required to be passed through the fiber gaps. For that sake, a method of previously preparing a treating liquid, which contains a prescribed amount of monomers and an oxidizer, and making this treating liquid to pass through the fiber gaps, and a method of separately preparing a monomer solution and an oxidizer solution to pass the monomer solution through the fiber gaps and then to pass the oxidizer solution are used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は均一な導電性を有する導電性繊維基材の大量生
産を可能とした導電性繊維基材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a conductive fiber base material that enables mass production of conductive fiber base materials having uniform conductivity.

〔従来の技術〕[Conventional technology]

アニリン、チオフエン、ピロール或いはその誘導体等の
導電性高分子形或モノマーを酸化重合して形成される導
電性高分子の生戒過程はエビタキシャル生長と言われ、
しかも形成される導電性高分子の性能からみて導電性高
分子形成モノマーの酸化重合はできるだけ水溶液を静置
して低温でゆっくりと行うのが良いとされてきた。
The growth process of conductive polymers formed by oxidative polymerization of conductive polymer forms or monomers such as aniline, thiophene, pyrrole or their derivatives is called epitaxial growth.
Moreover, in view of the performance of the conductive polymer to be formed, it has been thought that it is best to carry out the oxidative polymerization of the conductive polymer-forming monomer as slowly as possible at a low temperature while leaving the aqueous solution still.

このため従来、織布、編布、不織布、糸等の繊維基材に
導電性高分子形成モノマーを酸化重合して導電性高分子
被膜を形成する場合には、単にモノマーと酸化剤とを含
有する導電化処理液に繊維基材を浸漬して静置するだけ
の方法が採用されていた. しかしながら、このような従来法では初期における処理
液中のモノマー及び酸化剤の濃度が高くしかも処理液が
静置されているので槽内に濃度むらを生じるため、酸化
重合反応が急激に進行したり水相中で局部的に進行して
重合物が繊維に有効に付着することなく水相中に懸濁さ
れ易く、最終的には粒子状の付着物となって繊維から脱
落し易い摩擦堅牢度の悪いものとなり、均一な導電性を
有する繊維基材が得られ難かった。
For this reason, conventionally, when forming a conductive polymer coating by oxidative polymerization of a conductive polymer-forming monomer on a fiber base material such as woven fabric, knitted fabric, non-woven fabric, or thread, it is necessary to simply contain the monomer and an oxidizing agent. The method used was to simply immerse the fiber base material in a conductive treatment solution and leave it to stand still. However, in such conventional methods, the concentration of monomers and oxidizing agent in the treatment solution is high at the initial stage, and since the treatment solution is left still, concentration unevenness occurs in the tank, resulting in rapid progress of the oxidative polymerization reaction. Fastness to friction, where the polymer progresses locally in the aqueous phase and tends to be suspended in the aqueous phase without effectively adhering to the fibers, and eventually forms particulate deposits that easily fall off from the fibers. Therefore, it was difficult to obtain a fiber base material having uniform conductivity.

本発明者は上記課題を解決すべく鋭意研究した結果、処
理液を静置する従来法とは全く異なり、処理液を積極的
に繊維基材に接触させる方法を採用することにより、驚
くほど均一な導電性を有する繊維基材を効率良く製造で
きることを見出し本発明を完或するに到った。
As a result of intensive research to solve the above problems, the inventors of the present invention have discovered that the process is completely different from the conventional method of leaving the treatment liquid still, and by adopting a method in which the treatment liquid is actively brought into contact with the fiber base material, the process is surprisingly uniform. The present invention was completed by discovering that it is possible to efficiently produce a fiber base material having high conductivity.

〔課題を解決するための手段〕[Means to solve the problem]

即ち本発明の導電性繊維基材の製造方法は、導電性高分
子形或モノマーと酸化剤とを含む溶液を、繊維基材の繊
維間隙を通過させ、少なくとも繊維表面を導電性高分子
で被覆することを特徴とするものである。また本発明で
は繊維基材の繊維間隙に、導電性高分子形成モノマー溶
液を通過させた後に酸化剤溶液を通過させるか、または
酸化剤溶液を通過させた後に七ノマー溶液を通過させ、
少なくとも繊維表面を導電性高分子で被覆する方法を採
用しても良く、導電性高分子形或モノマー溶液中に酸化
剤を添加しつつ該溶液を繊維基材の繊維間隙を通過させ
、少なくとも繊維表面を導電性高分子で被覆する方法を
採用しても良い。本発明方法において導電性高分子形成
モノマーとしてはアニリン、チオフェン、ピロール又は
これらの誘導体が好ましく用いられる。
That is, the method for producing a conductive fiber base material of the present invention involves passing a solution containing a conductive polymer or a monomer and an oxidizing agent through the fiber gaps of the fiber base material, and coating at least the fiber surface with the conductive polymer. It is characterized by: In addition, in the present invention, an oxidizing agent solution is passed through the fiber gaps of the fiber base material after passing a conductive polymer forming monomer solution, or a heptanomer solution is passed after passing an oxidizing agent solution,
A method may be adopted in which at least the surface of the fibers is coated with a conductive polymer, in which an oxidizing agent is added to a conductive polymer or monomer solution and the solution is passed through the fiber gaps of the fiber base material. A method of coating the surface with a conductive polymer may also be adopted. In the method of the present invention, aniline, thiophene, pyrrole, or derivatives thereof are preferably used as the conductive polymer-forming monomer.

本発明において繊維基材としては織布、編布、不織布、
糸等が用いられ、その繊維材質としては特に限定されず
綿、麻、ビニロン、アセテート、ポリアミド、アクリル
、ポリエチレン、ポリプロピレン、絹、レーヨン、芳香
族イミド等の天然繊維や合或繊維が区別なく使用できる
In the present invention, the fiber base material includes woven fabric, knitted fabric, nonwoven fabric,
Thread, etc. are used, and the fiber material is not particularly limited, and natural fibers and synthetic fibers such as cotton, hemp, vinylon, acetate, polyamide, acrylic, polyethylene, polypropylene, silk, rayon, and aromatic imide are used without distinction. can.

本発明において導電性高分子形成モノマーとしてはアニ
リン及び0−クロルアニリン、m−クロルアニリン、p
−クロルアニリン、0−メトキシアニリン、m−メトキ
シアニリン、p−メトキシアニリン、0〜エトキシアニ
リン、m一エトキシアニリン、p一エトキシアニリン、
O−メチルアニリン、m−メチルアニリン、p−メチル
アニリン等のアニリン誘導体、チオフェン及び3−メチ
ルチオフェン、3−メトキシチオフエン等のチオオフェ
ン誘導体、ピロール及び3.5−ジメチルピロール等の
3.5一置換ピロール、 1I 11 11 1I 等の3.4一置換ピロール(但し上記式中φはフエニル
基を示す。
In the present invention, the conductive polymer forming monomers include aniline, 0-chloroaniline, m-chloroaniline, p
- Chloraniline, 0-methoxyaniline, m-methoxyaniline, p-methoxyaniline, 0-ethoxyaniline, m-ethoxyaniline, p-ethoxyaniline,
Aniline derivatives such as O-methylaniline, m-methylaniline and p-methylaniline; thiophene derivatives such as thiophene and 3-methylthiophene and 3-methoxythiophene; Substituted pyrrole, 3.4 monosubstituted pyrrole such as 1I 11 11 1I (However, in the above formula, φ represents a phenyl group.

) 等(7)n−ipピロール(但し上記式中R1はカルバ
ゾール基、フェノチアジン基、ビレン基のいずれか、R
2はアントラセン基、R3はカルバゾール基、フェノチ
アジン基、ジベンゾフエナジン基のいずれかを示す。)
、3−メチルピロール、3−オクチルピロール等の3一
置換ピロール等が挙げられる。
) etc. (7) n-ip pyrrole (However, in the above formula, R1 is either a carbazole group, a phenothiazine group, or a birene group, R
2 represents an anthracene group, and R3 represents any one of a carbazole group, a phenothiazine group, and a dibenzophenazine group. )
, 3-monosubstituted pyrrole such as 3-methylpyrrole and 3-octylpyrrole.

酸化剤としては上記モノマーの重合を促進するいかなる
ものでも使用でき、例えば過マンガン酸或いは過マンガ
ン酸カリウム等の過マンガン酸塩類、三酸化クロム酸等
のクロム酸類、硝酸銀等の硝酸塩類、塩素、臭素、ヨウ
素等のハロゲン類、過酸化水素、過酸化ベンゾイル等の
過酸化物類、ペルオクソニ硫酸、ベルオクソニ硫酸カリ
ウム等のべルオクソ酸類やベルオクソ酸塩類、次亜塩素
酸、次亜塩素酸カリウム等の酸素酸類や酸素酸塩類、過
塩素酸第二鉄、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、
クエン酸第二鉄等の三価の鉄化合物類、塩化刷等の遷移
金属塩化物、金属酸化物が挙げられ、これらは単独また
は2種以上混合して用いられるが、導電性、透明性の点
から三価の鉄化合物が好ましい。酸化剤はモノマー1モ
ル当たり通常2モル以上使用されるが、特に2〜3モル
使用することが好ましい。
As the oxidizing agent, any substance that promotes the polymerization of the above monomers can be used, such as permanganic acid or permanganates such as potassium permanganate, chromic acids such as chromic acid trioxide, nitrates such as silver nitrate, chlorine, Halogens such as bromine and iodine, peroxides such as hydrogen peroxide and benzoyl peroxide, peroxo acids and salts such as peroxonisulfuric acid and potassium peroxonisulfate, hypochlorous acid, potassium hypochlorite, etc. Oxygen acids and acid salts, ferric perchlorate, ferric chloride, ferric sulfate, ferric nitrate,
Examples include trivalent iron compounds such as ferric citrate, transition metal chlorides such as chloride, and metal oxides.These may be used alone or in a mixture of two or more, but they have good conductivity and transparency. From this point of view, trivalent iron compounds are preferred. The oxidizing agent is generally used in an amount of 2 moles or more per mole of monomer, and preferably 2 to 3 moles.

上記モノマーや酸化剤を溶解するための溶媒としては通
常水性溶媒が用いられる。水性溶媒としては水や水と混
和性を有する有機溶媒、或いは該有機溶媒と水との混合
物等が挙げられる。水と混和性を有する有機溶媒として
はメチルアルコール、エチルアルコール、n−プロビル
アルコール、iso−プロビルアルコール、n−ブチル
アルコール、iso−ブチルアルコール、tert−プ
チルアルコール、n−アミルアルコール、130−アミ
ルアルコール等のアルコール類、エチレングリコール、
ジプロピレングリコール、1,4−ブチレングリコール
、1.3−ブチレングリコール、エチレングリコールモ
ノメチルエーテル、エチレングリコー.ルモノアセテー
ト等のグリコール類及びその誘導体、アセトン、メチル
エチルケトン、メチルイソブチルケトン、ジオキサン、
シクロヘキサノン等のケトン頻、ジメチルフォルムアミ
ド、ジメチルスルフォキシド、ジメチルアセトアミド、
テトラヒドロフラン、アセトニトリル等が挙げられる。
An aqueous solvent is usually used as a solvent for dissolving the monomer and oxidizing agent. Examples of the aqueous solvent include water, an organic solvent miscible with water, and a mixture of the organic solvent and water. Organic solvents that are miscible with water include methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, 130- Alcohols such as amyl alcohol, ethylene glycol,
Dipropylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, ethylene glycol monomethyl ether, ethylene glycol. glycols and their derivatives such as monoacetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, dioxane,
Ketones such as cyclohexanone, dimethylformamide, dimethyl sulfoxide, dimethylacetamide,
Examples include tetrahydrofuran and acetonitrile.

これらは単独若しくは適宜併用することができる。These can be used alone or in combination as appropriate.

繊維表面に導電性高分子を垂直結晶析出(エビタキシャ
ル生長)−させるには、繊維間隙に導電化処理液を通過
させる必要がある。本発明では、■予めモノマーと酸化
剤とを所定量含む処理液を調整しておき、繊維間隙にこ
の処理液を通過させる方法、■モノマー溶液と酸化剤溶
液を別々に用意し、繊維間隙にモノマー溶液を通過させ
た後に酸化剤溶液を通過させるか、酸化剤溶液を通過さ
せた後にモノマー溶液を通過させる方法、■モノマ一溶
液に酸化剤を添加しながらこの溶液を繊維間隙を通過さ
せる方法が採用される。■の方法では■の方法に比べて
水相中に懸濁する導電性高分子の析出量が少なくなり効
率的なことが多い。またこの方法では繊維素材に対する
モノマー、酸化剤等の吸着力にもよるが、得ようとする
導電性等によりモノマー、酸化剤による処理を交互に複
数回繰り返しても良い。この時、モノマー溶液、酸化剤
溶液の繊維基材に対する通過回数を必ずしも同一にする
必要はない。■の方法では浴比の小さい場合の酸化剤濃
度を低下させて、より均一にモノマーを酸化重合でき、
均一な導電性を付与することができる。この方法の場合
、酸化剤の全量又は一部をモノマー溶液に後から添加す
るが、一部を後から添加する場合、モノマー溶液に予め
添加しておく酸化剤量は、全酸化剤量の172〜2/3
程度とすることが好ましい。また酸化剤の全量を後から
添加する場合、繊維基材の間隙にモノマー溶液を通過さ
せると同時にモノマー溶液への酸化剤の添加を開始しな
くとも良く、−モノマー溶液のみを適宜時間通過させた
後に酸化剤の添加を開始しても良い。
In order to cause vertical crystal precipitation (evitaxial growth) of a conductive polymer on the fiber surface, it is necessary to pass a conductive treatment liquid through the gaps between the fibers. In the present invention, there are two methods: (1) preparing a treatment liquid containing a predetermined amount of a monomer and an oxidizing agent in advance, and passing this treatment liquid through the fiber gaps; and (2) preparing a monomer solution and an oxidizing agent solution separately and passing the treatment liquid through the fiber gaps. A method of passing the oxidizing agent solution after passing the monomer solution, or a method of passing the monomer solution after passing the oxidizing agent solution, and a method of passing the solution through the fiber gap while adding an oxidizing agent to the monomer solution. will be adopted. In method (2), the amount of conductive polymer suspended in the aqueous phase precipitated is smaller than in method (2) and is often more efficient. In addition, in this method, depending on the adsorption power of the monomer, oxidizing agent, etc. to the fiber material, the treatment with the monomer and oxidizing agent may be alternately repeated multiple times depending on the desired conductivity. At this time, it is not necessary that the monomer solution and the oxidizing agent solution pass through the fiber base material the same number of times. In method (2), the oxidizing agent concentration is lowered when the bath ratio is small, and the monomer can be oxidized and polymerized more uniformly.
Uniform conductivity can be imparted. In this method, all or a portion of the oxidizing agent is added to the monomer solution later, but when adding a portion later, the amount of oxidizing agent added in advance to the monomer solution is 172% of the total amount of oxidizing agent. ~2/3
It is preferable to set it as approximately. In addition, when the entire amount of the oxidizing agent is added later, it is not necessary to start adding the oxidizing agent to the monomer solution at the same time as the monomer solution is passed through the gap in the fiber base material. Addition of the oxidizing agent may be started later.

繊維間隙に処理液を通過させる手段としては、例えば繊
維基材上に処理液を連続的にむらなく散布し、処理液の
自重により繊維間隙を通過させたり、処理液をフィルタ
ーに通す如く加圧、減圧して繊維基材の間隙を通過させ
る等、繊維基材に対して処理液を流動させながら接触さ
せ得れる手段から、上記■〜■の方法に適した手段が適
宜採用されるが、繊維基材に対して処理液を10d/g
・分以上の速度で流動させるのが均一な処理を行う上で
効果的である。
As a means of passing the treatment liquid through the fiber gaps, for example, the treatment liquid can be continuously and evenly spread on the fiber base material and the treatment liquid can be passed through the fiber gaps by its own weight, or the treatment liquid can be pressurized so as to pass through a filter. Means suitable for the above-mentioned methods (1) to (2) are adopted as appropriate from among means that can bring the treatment liquid into contact with the fiber base material while flowing it, such as passing through the gap between the fiber base materials under reduced pressure. 10d/g of treatment liquid to fiber base material
・Flowing at a speed of 1 minute or more is effective for uniform treatment.

本発明方法の実施には例えばチーズ染色機を用いること
ができる。第1図はチーズ染色機を用いた例を示し、装
置では処理槽1内に一端aが処理槽1外に導出され、他
端bが閉止された筒状のボビン2が設けられている。ボ
ビン2はその周面に直径3〜lo一程度の液通過孔3が
3〜10++n程度のピッチで形成された内径25〜1
00飢、外径30〜110aan程度の大きさのステン
レス、ポリプロピレン等からなるもので、その周面には
繊維基材Sが孔3を覆うように巻かれている。この装置
によって処理を行うには予め処理槽l内に処理液Wを入
れておき、この処理液Wをポンプ等によって、ボビン2
の一端aから吸引して排出することにより処理液Wを矢
印A方向に繊維基材Sを通過させるか、逆にボビン2の
一端aから処理液Wをポンプ等によって供給し処理液を
矢印B方向に繊維基材Sを通過させる方法、及びこれら
を組み合わせた方法等が採用される。上記処理液Wとし
ては、■の方法を採用する場合にはモノマーと酸化剤と
を含む溶液であり、■の方法ではモノマー溶液か酸化剤
溶液のいずれかである。また■の方法を採用する場合、
処理槽1内にモノマーのみを含む溶液を入れておき、こ
の溶液を上記の、■の方法と同様に排出、圧入させなが
ら処理槽l内に酸化剤供給口4から酸化剤溶液を添加す
るか、特に図示しないが別にモノマー溶液を蓄えた処理
液槽を設けておき、この処理液槽内に酸化剤を添加しな
がら処理液槽内の処理液をポンプ等によってボビン2の
一端aから供給する方法等が挙げられるが、酸化剤は処
理液が流動している箇所で添加することが好ましい。上
記チーズ染色機を用いた処理では処理液を循環させなが
ら処理槽1内から排出又は処理槽1内に供給するように
することが好ましい. 酸化重合反応は通常の重合反応と異なり、低温であって
もきわめて迅速に反応が進行するので、ジャケット5に
冷媒循環等を行って処理液をできるだけ低温に維持する
ことが好ましく、その温度範囲としては5〜30゜C、
特に15〜25゜Cが好ましい。約30゜Cを超えると
重合速度が著しく早くなり、特に■の方法の場合には水
相中での酸化重合反応速度が繊維表面における垂直方向
結晶析出速度よりも大きくなってしまうため好ましくな
い。低温では重合速度が遅くなるために、より安定した
高い導電性が付与されるが、例えば0℃以下では溶液の
凍結等の問題が生じるため5℃未満の温度は実用上好ま
しくない。またモノマーは空気によっても重合するので
、できるだけ空気(酸素)の影響を断つように窒素ガス
等の不活性ガス雰囲気下で処理を行うか、溶存酸素を除
去した状態で酸化重合を行うことが好ましい。
For example, a cheese dyeing machine can be used to carry out the method of the invention. FIG. 1 shows an example using a cheese dyeing machine, in which a cylindrical bobbin 2 is provided in a processing tank 1, with one end a led out of the processing tank 1 and the other end b closed. The bobbin 2 has an inner diameter of 25 to 1 in which liquid passage holes 3 with a diameter of 3 to 1 lo are formed at a pitch of 3 to 10++n on its circumferential surface.
It is made of stainless steel, polypropylene, etc., and has an outer diameter of about 30 to 110 aan, and a fiber base material S is wound around the circumferential surface so as to cover the hole 3. To perform processing with this device, a processing liquid W is placed in a processing tank l in advance, and this processing liquid W is pumped into the bobbin 2 by a pump or the like.
Either the processing liquid W is caused to pass through the fiber base material S in the direction of arrow A by suctioning and discharging from one end a, or conversely, the processing liquid W is supplied from one end a of the bobbin 2 by a pump or the like and the processing liquid is passed through the fiber substrate S in the direction of arrow B. A method of passing the fiber base material S in the direction, a method of combining these methods, etc. are adopted. The treatment liquid W is a solution containing a monomer and an oxidizing agent when method (1) is employed, and is either a monomer solution or an oxidizing agent solution when method (2) is employed. In addition, when adopting method ■,
Either put a solution containing only monomer in the processing tank 1, and add the oxidizing agent solution into the processing tank 1 from the oxidizing agent supply port 4 while discharging and pressurizing this solution in the same manner as in method (2) above. Although not particularly shown, a processing liquid tank storing a monomer solution is separately provided, and while an oxidizing agent is added to the processing liquid tank, the processing liquid in the processing liquid tank is supplied from one end a of the bobbin 2 by a pump or the like. Although various methods may be mentioned, it is preferable to add the oxidizing agent at a point where the treatment liquid is flowing. In the process using the above-mentioned cheese dyeing machine, it is preferable to circulate the process liquid while discharging it from the process tank 1 or supplying it to the process tank 1. The oxidative polymerization reaction is different from a normal polymerization reaction, and the reaction proceeds extremely quickly even at low temperatures. Therefore, it is preferable to circulate a refrigerant through the jacket 5 to maintain the treatment liquid at as low a temperature as possible. is 5~30°C,
Particularly preferred is 15 to 25°C. If the temperature exceeds about 30°C, the polymerization rate becomes extremely high, and especially in the case of method (2), the oxidative polymerization reaction rate in the aqueous phase becomes higher than the vertical crystal precipitation rate on the fiber surface, which is not preferable. At low temperatures, the polymerization rate slows down, so more stable and high conductivity is imparted, but at temperatures below 0°C, problems such as freezing of the solution occur, so temperatures below 5°C are practically unfavorable. Furthermore, since the monomer is polymerized by air, it is preferable to perform the treatment in an inert gas atmosphere such as nitrogen gas to cut off the influence of air (oxygen) as much as possible, or to perform oxidative polymerization with dissolved oxygen removed. .

均一な導電性を付与するために水への溶解性が低いモノ
マー、酸化剤や重合生或物(特に低分子量の初期重合生
戒物)が均一に繊維表面に吸着されるように処理液中の
モノマー、酸化剤を低濃度として用い、モノマーが消失
するか、酸化剤の酸化能力が消失するまで液を流動させ
ておくことが好ましい。このため処理液を循環させて繰
り返し繊維間隙を通過させて処理することが好ましい.
処理液の流量、繊維間隙における流速は、モノマーや酸
化剤の濃度、液温、得ようとする導電性等により適宜選
択される。繊維基材の染料染色の場合と同様に浴比、即
ち繊維基材重量に対する処理液重量の比が大きくなれば
なる程、導電化速度(重合反応速度)は遅くなり、処理
液の部留りは若干悪くなるものの、極めて良好に均一な
導電性が付与される. モノマー、酸化剤の濃度は上記■、■の方法の場合、溶
媒100重量部当たり、七ノマーの場合0.001〜3
重量部、酸化剤の場合0. O O 1〜30重量部程
度とすることが好ましい。また■の方法の場合も、モノ
マー溶液中のモノマー濃度は上記の、■の場合と同様、
溶媒100重量部当たり、0. 0 0 1〜3重量部
程度で良く、このモノマー溶液に添加する酸化剤はその
まま添加しても、モノマー溶液の溶媒と同様の溶媒に溶
解した溶液として添加しても良い。■の方法の場合、酸
化剤の添加速度は処理液の繊維基材に対する流量、繊維
基材間隙における流速、モノマー溶液のモノマー濃度、
添加する酸化剤の濃度、浴比等によっても異なるが、通
常3〜301.7分程度とすることが好ましく、例えば
浴比5:1〜30:1の範囲で、モノマー濃度0. 1
〜5%、酸化剤濃度0.3〜10%程度の濃度の溶液と
し、30〜360分程度に亘って微量ずつ添加すること
が好ましい。酸化剤はボンブ等によって添加するが、添
加方法としては断続的な滴下でも、連続的な添加でも良
い.また酸化剤の添加は常に一定量ずつ行わなくても良
く、例えば1回の滴下量又は単位時間当たりの添加量が
、徐々に減少(又は増加)するように添加したり、滴下
の間隔が徐々に長く(又は短く)なるように滴下したり
する方法を採用することもできる。
In order to impart uniform conductivity, monomers with low solubility in water, oxidizing agents, and polymerization products (especially low molecular weight initial polymerization products) are added to the treatment solution so that they are evenly adsorbed onto the fiber surface. It is preferable to use the monomer and oxidizing agent at low concentrations and keep the liquid flowing until the monomer disappears or the oxidizing ability of the oxidizing agent disappears. For this reason, it is preferable to circulate the treatment liquid and repeatedly pass it through the fiber gaps.
The flow rate of the treatment liquid and the flow rate in the fiber gaps are appropriately selected depending on the concentration of the monomer and oxidizing agent, the liquid temperature, the desired conductivity, and the like. As in the case of dye dyeing of fiber base materials, the larger the bath ratio, that is, the ratio of the weight of the treatment liquid to the weight of the fiber base material, the slower the conductivity rate (polymerization reaction rate), and the less the treatment liquid remains. Although the conductivity is slightly worse, extremely good and uniform conductivity is provided. The concentration of the monomer and oxidizing agent is 0.001 to 3 per 100 parts by weight of the solvent in the case of the above method
Part by weight, 0 for oxidizing agent. O O It is preferable to set it as about 1-30 parts by weight. Also, in the case of method (■), the monomer concentration in the monomer solution is the same as in the case of (■) above.
Per 100 parts by weight of solvent, 0. The amount of the oxidizing agent may be about 1 to 3 parts by weight, and the oxidizing agent to be added to this monomer solution may be added as is or as a solution dissolved in the same solvent as the monomer solution. In the case of method (2), the rate of addition of the oxidizing agent is determined by the flow rate of the treatment liquid to the fiber base material, the flow rate in the gap between the fiber base materials, the monomer concentration of the monomer solution,
Although it varies depending on the concentration of the oxidizing agent to be added, the bath ratio, etc., it is usually preferable to set the time to about 3 to 301.7 minutes, for example, when the bath ratio is in the range of 5:1 to 30:1 and the monomer concentration is 0.7 minutes. 1
It is preferable to prepare a solution with a concentration of about 5% and an oxidizing agent concentration of about 0.3 to 10%, and add it in small amounts over about 30 to 360 minutes. The oxidizing agent is added using a bomb or the like, but the addition method may be either intermittent dropwise addition or continuous addition. In addition, the oxidizing agent need not always be added in a fixed amount; for example, the oxidizing agent may be added so that the amount of one drop or the amount added per unit time gradually decreases (or increases), or the interval between drops is gradually increased. It is also possible to adopt a method of dropping the liquid so that it becomes longer (or shorter).

本発明において導電性高分子は繊維基材の表面を被覆す
る如く形成される場合と、繊維内部で繊維と複合化して
形成される場合とがあるが、実際には両方が同時に進行
すると考えらられ明確には区別することはできない。ま
た、導電化処理後の繊維表面を走査型電子顕微鏡で分析
すると、極めて微細なヒビ割れが見られることが多いこ
とから、酸化剤による繊維高分子の酸化とモノマーの酸
化重合反応とがほぼ同時に進行するものと考えられ、こ
のヒビ割れが、七ノマー及び重合体の吸着、導電性に大
きく影響する場合があると考えられる。
In the present invention, the conductive polymer is formed in some cases to cover the surface of the fiber base material, and in other cases it is formed in a composite manner with the fibers inside the fibers, but in reality, it is thought that both occur simultaneously. cannot be clearly distinguished. In addition, when analyzing the fiber surface after conductivity treatment with a scanning electron microscope, extremely fine cracks are often seen, indicating that the oxidation of the fiber polymer by the oxidizing agent and the oxidative polymerization reaction of the monomer occur almost simultaneously. It is thought that the cracking progresses, and it is thought that this cracking may greatly affect the adsorption of the heptanomer and polymer and the conductivity.

本発明においては導電性を更に向上させるために、塩素
、臭素、ヨウ素等のハロゲン類、五酸化リン等のルイス
酸、塩酸、硫酸、p一トルエンスルホン酸、l,5−ナ
フタレンスルホン酸、サリチル酸、酢酸、安息香酸等の
プロトン酸等の如き酸頻やこれらの可溶性塩をドーパン
トとして添加することができ、また導電性の耐久性を向
上させるために抗酸化剤、紫外線吸収剤を併用しても良
い。また繊維の風合及び導電性を損なわない範囲で導電
処理後、スプレー法、浸漬法、コーティング法、転写法
等により1〜2n程度のボリマー層を繊維基材表面に形
成しても良い。
In the present invention, in order to further improve conductivity, halogens such as chlorine, bromine, and iodine, Lewis acids such as phosphorus pentoxide, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, l,5-naphthalenesulfonic acid, and salicylic acid are used. Acids such as protonic acids such as acetic acid and benzoic acid, and their soluble salts can be added as dopants, and antioxidants and ultraviolet absorbers can be added in combination to improve the durability of conductivity. Also good. Further, a polymer layer of about 1 to 2 nm may be formed on the surface of the fiber base material by a spray method, dipping method, coating method, transfer method, etc. after conductive treatment within a range that does not impair the texture and conductivity of the fibers.

〔実施例〕〔Example〕

以下、実施例、比較例を挙げて本発明を更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例1 繊維基材として直径2 0 0ttm, 2 5 0m
m長のビニロン糸600gを第1図に示す処理装置のボ
ビンに巻き、水20f、ピロール1 3. 4 g、塩
化第二鉄6 4. 9 gとからなる導電化処理液とと
もに処理槽内に入れて処理液の温度を18゛Cに維持し
、処理槽内で糸が処理液表面に露出しないように一定量
の処理液を追加しながらボビンの一端aよりポンプにて
吸引し、201の処理液を繊維間隙を通過させながら(
矢印A方向)処理槽外へ排出した。次いでボビンの一端
aより逆に201の処理液を圧入することにより、矢印
B方向に処理液を通過させた。この操作を1サイクルと
し、1サイクル当たり15〜20分として3時間繰り返
し通過させたところ、黒色のビニロン糸が得られた。
Example 1 Diameter of 200ttm and 250m as fiber base material
3. Wound 600 g of m-long vinylon yarn around the bobbin of the processing device shown in Fig. 1, and add 20 f of water and 1 pyrrole. 4 g, ferric chloride 6 4. 9 g of conductive treatment liquid, and the temperature of the treatment liquid was maintained at 18°C, and a certain amount of treatment liquid was added to prevent the yarn from being exposed to the surface of the treatment liquid in the treatment tank. At the same time, suction is applied with a pump from one end a of the bobbin, and while passing the processing liquid of 201 through the fiber gap (
direction of arrow A) was discharged to the outside of the treatment tank. Next, the processing liquid 201 was forced into the bobbin from one end a in the opposite direction, thereby passing the processing liquid in the direction of arrow B. This operation was one cycle, and when each cycle was repeated for 15 to 20 minutes for 3 hours, a black vinylon thread was obtained.

得られたビニロン糸を乾燥させ、表面抵抗値を測定した
ところ、ボビンに巻かれたどの部分を測定しても10’
〜10’Ω/口の範囲にあり、均一な導電性を有してい
た。
When the obtained vinylon yarn was dried and the surface resistance was measured, it was found that no matter which part of the yarn wound around the bobbin was measured, the resistance was 10'.
It was in the range of ~10'Ω/mouth and had uniform conductivity.

実施例2 実施例1のビニロン糸に代えて、210デニール、70
フィラメントの6ナイロン糸を用い、実施例1と同様に
して導電化処理を行い、導電性ナイロン糸を得た。得ら
れた導電性ナイロン糸の表面抵抗値は103〜10’Ω
/口で略均一な導電性を有していた。
Example 2 In place of the vinylon yarn of Example 1, 210 denier, 70
Using 6-filament nylon thread, conductive treatment was performed in the same manner as in Example 1 to obtain a conductive nylon thread. The surface resistance value of the conductive nylon thread obtained was 103 to 10'Ω.
/ It had approximately uniform conductivity at the mouth.

実施例3 実施例1と同様の装置を用い、同様にしてボビンに巻い
たビニロン糸を、水20N、ピロールl3.4gからな
るモノマー水溶液を共に処理槽に入れ、モノマー水溶液
の排出、圧入操作を15〜20分/サイクルで2時間繰
り返し、繊維間隙にモノマー水溶液を通過させた。処理
槽内のモノマー水溶液を排液した後、水201に塩化第
二鉄64.9gを溶解させた酸化剤水溶液を上記と同様
にして繊維間隙を通過させ、導電性ビニロン糸を得た。
Example 3 Using the same apparatus as in Example 1, a vinylon yarn wound around a bobbin in the same manner as above was put into a treatment tank together with a monomer aqueous solution consisting of 20N water and 3.4 g of pyrrole, and the monomer aqueous solution was discharged and press-fitted. The aqueous monomer solution was passed through the interstices of the fibers at a rate of 15 to 20 minutes/cycle for 2 hours. After draining the monomer aqueous solution in the treatment tank, an oxidizing agent aqueous solution in which 64.9 g of ferric chloride was dissolved in water 201 was passed through the fiber gaps in the same manner as above to obtain a conductive vinylon thread.

得られた導電性ビニロン糸もまた表面抵抗値が105〜
10#′Ω/口であり、ボビンに巻かれたどの部分を測
定しても均一な導電性を有していた。
The obtained conductive vinylon yarn also has a surface resistance value of 105~
The conductivity was 10#'Ω/hole, and the conductivity was uniform no matter which part of the bobbin was measured.

実施例4 実施例3の処理液通過順序を替え、まず酸化剤水溶液を
繊維間隙に通過させた後、排液し、次いでモノマー水溶
液を通過させて導電性ビニロン糸を得たが、これもまた
均一な導電性を有するものであった。
Example 4 The order of passage of the treatment liquid in Example 3 was changed, and the oxidizing agent aqueous solution was first passed through the fiber gaps, the liquid was drained, and then the monomer aqueous solution was passed through to obtain a conductive vinylon yarn. It had uniform conductivity.

実施例5 150デニール、4日フィラメントのポリエチレンテレ
フタレートウーリー加工糸1. 2 kgを、密度0.
 3 5 g / ccとなるように実施例1で用いた
と同様のボビンに巻き、このボビンを内容積1042の
チーズ染色機の処理槽に、ピロールモノマ−26.8g
,teri−ブチルアルコール2 4 0 g,メチル
アルコール240g、水6000gからなるモノマー溶
液とともに入れ、モノマー溶液温度を18℃に維持して
モノマー溶液の処理槽からの排出、処理槽への圧入の1
サイクルを2分としてモノマー溶液をlO分間循環させ
た後、塩化第二鉄1モルを溶解した液温20゜Cの酸化
剤水溶液1500gを10g/分の速度でモノマー溶液
中に添加し、添加終了後、更に処理液を2時間循環させ
た。処理終了後、糸を充分に水洗し、60゜Cで通風乾
燥した後、仕上げ巻き用ワイングーで巻き返したところ
、芯まで均一に導電化されており、その表面抵抗値は3
.5X10”Ω/口であった。
Example 5 150 denier, 4 day filament polyethylene terephthalate woolly textured yarn 1. 2 kg with a density of 0.
35 g/cc on a bobbin similar to that used in Example 1, and the bobbin was placed in a processing tank of a cheese dyeing machine with an internal volume of 1042 mm, and 26.8 g of pyrrole monomer was added thereto.
, 240 g of teri-butyl alcohol, 240 g of methyl alcohol, and 6000 g of water were added together with a monomer solution consisting of 240 g of teri-butyl alcohol, 240 g of methyl alcohol, and 6000 g of water, and the monomer solution was discharged from the processing tank and pressurized into the processing tank while maintaining the monomer solution temperature at 18°C.
After circulating the monomer solution for 10 minutes with a cycle of 2 minutes, 1500 g of an oxidizing agent aqueous solution with a liquid temperature of 20 ° C in which 1 mole of ferric chloride was dissolved was added to the monomer solution at a rate of 10 g/min, and the addition was completed. After that, the treatment solution was further circulated for 2 hours. After finishing the treatment, the thread was thoroughly washed with water, dried with ventilation at 60°C, and then wound back with a finish winding wine goo.It was found to be uniformly conductive all the way to the core, and its surface resistance value was 3.
.. It was 5×10”Ω/mouth.

実施例6 1.5デニール、51mm長のポリエチレンテレフタレ
ートステープルファイバー500gをルーズキャリアー
中に入れ、ピロールモノマ−11.2g,ter−7’
チルアルコール1 6 0 g,メチルアルコール16
0g、水6000gよりなるモノマー溶液を実施例5と
同様の条件で10分間循環させた後、塩化第二鉄6 7
. 8 gを含む液温15゜Cの酸化剤水溶液1800
gをlO g/分の速度で添加し、添加終了後更に処理
液を2時間循環させた。処理終了後、糸を充分に水洗し
、60゜Cで通風乾燥した後、仕上げ巻き用ワイングー
で巻き返したところ、芯まで均一に導電化されており、
その表面抵抗値は8.5X10”Ω/口であった。
Example 6 500 g of 1.5 denier, 51 mm long polyethylene terephthalate staple fiber was placed in a loose carrier, and 11.2 g of pyrrole monomer, ter-7'
160 g of methyl alcohol, 16 g of methyl alcohol
After circulating a monomer solution consisting of 0 g and 6000 g of water for 10 minutes under the same conditions as in Example 5, ferric chloride 6 7
.. 8 g of an oxidizing agent aqueous solution at a temperature of 15°C
g was added at a rate of 10 g/min, and after the addition was completed, the treatment solution was further circulated for 2 hours. After finishing the process, the thread was thoroughly washed with water, dried with ventilation at 60°C, and then rewound using wine goo for finishing winding, which revealed that the thread was evenly conductive down to the core.
Its surface resistance value was 8.5×10”Ω/hole.

比較例 実施例1で用いたビニロン糸と、実施例2で用いたナイ
ロン糸を使用し、直径1mmの孔が5Mピッチで形成さ
れた内径25ffIII1、外径27mmのステンレス
製円筒に実施例1と同様にして巻き、実施例1と同様の
処理液20ffiに浸漬し、液温を18゜Cに維持しな
からl6時間静置した。
Comparative Example The vinylon thread used in Example 1 and the nylon thread used in Example 2 were used to prepare a stainless steel cylinder with an inner diameter of 25ffIII1 and an outer diameter of 27 mm, in which holes of 1 mm in diameter were formed at a 5M pitch. It was wound in the same manner, immersed in 20ffi of the same treatment solution as in Example 1, and left standing for 16 hours while maintaining the solution temperature at 18°C.

得られたビニロン糸、ナイロン糸はともに巻かれた表面
及び円筒の孔付近は良好な表面抵抗値を有していたが、
内部側に位置する部分では表面抵抗値はいずれも極めて
悪い値を示していた。
Both the obtained vinylon yarn and nylon yarn had good surface resistance values on the wound surface and in the vicinity of the cylindrical hole.
All the surface resistance values in the inner portions were extremely poor.

〔発明の効果〕 本発明の導電性繊維基材の製造方法は、単に導電化処理
液に繊維基材を浸漬して静置するだけの従来法と異なり
、繊維間隙に積極的に処理液を通過させるものであるか
ら、導電性高分子が効率良く繊維表面に結晶析出され、
この結果浴比を小さくできるとともに、処理液が繊維基
材に均一に接触するので極めて均一な導電性繊維基材を
製造できる。しかも繊維間隙を通過させる処理液量を調
整するだけで容易に繊維基材の導電性をコントロールで
きる。
[Effects of the Invention] The method for producing a conductive fiber base material of the present invention differs from the conventional method in which the fiber base material is simply immersed in a conductive treatment liquid and left to stand, in which the treatment liquid is actively applied to the gaps between the fibers. Since the fiber is allowed to pass through, the conductive polymer is efficiently crystallized on the fiber surface.
As a result, the bath ratio can be reduced, and since the treatment liquid comes into uniform contact with the fiber base material, an extremely uniform conductive fiber base material can be produced. Moreover, the electrical conductivity of the fiber base material can be easily controlled simply by adjusting the amount of treatment liquid passed through the fiber gaps.

またモノマーと酸化剤とを別々の溶液として扱い、個々
に繊維間隙を通過させる方法を採用すれば、水溶液中に
懸濁される導電性高分子を極めて少なくすることができ
る。
Furthermore, if a method is adopted in which the monomer and the oxidizing agent are treated as separate solutions and individually passed through the fiber gaps, the amount of conductive polymer suspended in the aqueous solution can be extremely reduced.

更に酸化剤の全部又は一部をモノマー溶液に添加しなが
ら、この溶液を繊維間隙に通過させる方法を採用すると
、更に浴比を小さくしても均一に重合することができ、
均一で良好な導電性を付与することができる。
Furthermore, if a method is adopted in which all or part of the oxidizing agent is added to the monomer solution while this solution is passed through the fiber gaps, uniform polymerization can be achieved even if the bath ratio is further reduced.
Uniform and good conductivity can be imparted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の一例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an example of an apparatus used in the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)導電性高分子形成モノマーと酸化剤とを含む溶液
を、繊維基材の繊維間隙を通過させ、少なくとも繊維表
面を導電性高分子で被覆することを特徴とする導電性繊
維基材の製造方法。
(1) A conductive fiber base material characterized in that a solution containing a conductive polymer forming monomer and an oxidizing agent is passed through the fiber gaps of the fiber base material to coat at least the fiber surface with the conductive polymer. Production method.
(2)繊維基材の繊維間隙に、導電性高分子形成モノマ
ー溶液を通過させた後に酸化剤溶液を通過させるか、ま
たは酸化剤溶液を通過させた後にモノマー溶液を通過さ
せ、少なくとも繊維表面を導電性高分子で被覆すること
を特徴とする導電性繊維基材の製造方法。
(2) Pass the conductive polymer-forming monomer solution and then the oxidizing agent solution through the fiber gaps of the fiber base material, or pass the oxidizing agent solution and then the monomer solution to at least coat the fiber surface. A method for producing a conductive fiber base material, the method comprising coating it with a conductive polymer.
(3)導電性高分子形成モノマー溶液中に酸化剤を添加
しつつ該溶液を繊維基材の繊維間隙を通過させ、少なく
とも繊維表面を導電性高分子で被覆することを特徴とす
る導電性繊維基材の製造方法。
(3) A conductive fiber characterized in that an oxidizing agent is added to a conductive polymer-forming monomer solution and the solution is passed through gaps between fibers of a fiber base material, so that at least the fiber surface is coated with a conductive polymer. Method of manufacturing base material.
(4)導電性高分子形成モノマーがアニリン、チオフェ
ン、ピロール又はこれらの誘導体よりなる群から選ばれ
たモノマーであることを特徴とする請求項1〜3のいず
れかに記載の導電性繊維基材の製造方法。
(4) The conductive fiber base material according to any one of claims 1 to 3, wherein the conductive polymer-forming monomer is a monomer selected from the group consisting of aniline, thiophene, pyrrole, or derivatives thereof. manufacturing method.
JP2171256A 1989-08-29 1990-06-28 Method for producing conductive fiber substrate Expired - Lifetime JP2986857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171256A JP2986857B2 (en) 1989-08-29 1990-06-28 Method for producing conductive fiber substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-222501 1989-08-29
JP22250189 1989-08-29
JP2171256A JP2986857B2 (en) 1989-08-29 1990-06-28 Method for producing conductive fiber substrate

Publications (2)

Publication Number Publication Date
JPH03163709A true JPH03163709A (en) 1991-07-15
JP2986857B2 JP2986857B2 (en) 1999-12-06

Family

ID=26494047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171256A Expired - Lifetime JP2986857B2 (en) 1989-08-29 1990-06-28 Method for producing conductive fiber substrate

Country Status (1)

Country Link
JP (1) JP2986857B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010371A1 (en) * 1992-10-23 1994-05-11 Achilles Corporation Floc for electrostatic hair transplantation
JP2006286358A (en) * 2005-03-31 2006-10-19 Achilles Corp Conductive composite layered product and its manufacturing method
WO2007099889A1 (en) * 2006-02-28 2007-09-07 University Of Yamanashi Method of treating conductive polymer
JP2009275329A (en) * 2008-05-19 2009-11-26 Suminoe Textile Co Ltd Electroconductive yarn and method of producing the same
JP2010031399A (en) * 2008-07-25 2010-02-12 Suminoe Textile Co Ltd Conductive yarn and method for producing the same
US9108388B2 (en) 2008-04-30 2015-08-18 Tayca Corporation Broadband electromagnetic wave-absorber and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421351A4 (en) * 2009-04-16 2017-05-17 Tayca Corporation Broadband electromagnetic wave absorbent and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010371A1 (en) * 1992-10-23 1994-05-11 Achilles Corporation Floc for electrostatic hair transplantation
JP2006286358A (en) * 2005-03-31 2006-10-19 Achilles Corp Conductive composite layered product and its manufacturing method
WO2007099889A1 (en) * 2006-02-28 2007-09-07 University Of Yamanashi Method of treating conductive polymer
JP5256454B2 (en) * 2006-02-28 2013-08-07 国立大学法人山梨大学 Method for treating conductive polymer
US9108388B2 (en) 2008-04-30 2015-08-18 Tayca Corporation Broadband electromagnetic wave-absorber and process for producing same
JP2009275329A (en) * 2008-05-19 2009-11-26 Suminoe Textile Co Ltd Electroconductive yarn and method of producing the same
JP2010031399A (en) * 2008-07-25 2010-02-12 Suminoe Textile Co Ltd Conductive yarn and method for producing the same

Also Published As

Publication number Publication date
JP2986857B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US5552221A (en) Polybenzazole fibers having improved tensile strength retention
CN202666707U (en) Manufacturing device for porous hollow fiber membrane
JPH03163709A (en) Manufacture of conductive fiber base material
WO2019163971A1 (en) Polyamide-610 multifilament
CN202590642U (en) Manufacturing device for porous hollow fiber membrane
JPH0465577A (en) Production of conductive fiber
JPS62231014A (en) High-strength polymetaphenylene isophthalamide yarn and production thereof
JP4381295B2 (en) Polybenzazole polymer and fiber using the same
JP2019148016A (en) Polyamide 610 multifilament for fishing net
JP2009001917A (en) Method for producing lyotropic liquid crystal polymer multifilament
JPH03294580A (en) Electrically conductive fiber
JP4016318B2 (en) High durability polybenzazole composition
US4056598A (en) Process for forming filaments from polyamic acid
JPS6245726A (en) Production of aromatic polyester fiber
JPH0550247B2 (en)
JPS6354806B2 (en)
JPS6330432B2 (en)
JPH02216211A (en) Production of improved poly-p-phenylene terephthalamide fiber
JPH02145867A (en) High-tenacity polyester yarn
JP2005344232A (en) Method for producing colored polybenzazole fiber
JPS6081311A (en) Preparation of previously dyed yarn
JPS6317949B2 (en)
JPS62170581A (en) Production of organometal composite fiber
JPS61102412A (en) Production of spun undrawn yarn for polyethylene having high strength
JP2002194617A (en) Method for producing polyester fiber for industrial material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11