JPH03168441A - Fluid-sealed type power unit mount - Google Patents
Fluid-sealed type power unit mountInfo
- Publication number
- JPH03168441A JPH03168441A JP30973289A JP30973289A JPH03168441A JP H03168441 A JPH03168441 A JP H03168441A JP 30973289 A JP30973289 A JP 30973289A JP 30973289 A JP30973289 A JP 30973289A JP H03168441 A JPH03168441 A JP H03168441A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- fluid chamber
- orifice
- rubber elastic
- power unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 121
- 230000036316 preload Effects 0.000 claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 241001342895 Chorus Species 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- HAORKNGNJCEJBX-UHFFFAOYSA-N cyprodinil Chemical compound N=1C(C)=CC(C2CC2)=NC=1NC1=CC=CC=C1 HAORKNGNJCEJBX-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/14—Units of the bushing type, i.e. loaded predominantly radially
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combined Devices Of Dampers And Springs (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、車両に搭載されるパワーユニットを車体に支
持するのに用いられる流体封入式パワユニットマウント
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fluid-filled power unit mount used to support a power unit mounted on a vehicle on a vehicle body.
(従来の技術)
般に、エンジン,トランスミッション等の総合体で構成
されるパワーユニットは、パワーユニットマウントを介
して車体に支持させ、パワーユニットからの振動が車体
へ伝達するのを低減するようにしている。(Prior Art) Generally, a power unit composed of an engine, a transmission, etc. is supported on a vehicle body via a power unit mount to reduce transmission of vibrations from the power unit to the vehicle body.
かかるパワーユニットマウントの一例としては、特開昭
61−65935号公報に記載されたものが知られてい
て、この従来出典には、内筒及び外筒と、内外筒間に装
填されたゴム弾性体と、内筒及び外筒の相対変位に伴っ
て容積変化する主流体室と、前記内筒外周に嵌着される
ブロックに形成されたオリフィスと、該オリフィスを介
して主流体室に連通する副流体室とを備えたパワーユニ
ットマウントが示されている。As an example of such a power unit mount, the one described in Japanese Patent Application Laid-open No. 61-65935 is known, and this conventional source describes an inner cylinder, an outer cylinder, and a rubber elastic body loaded between the inner cylinder and the outer cylinder. a main fluid chamber whose volume changes with relative displacement of the inner cylinder and the outer cylinder; an orifice formed in a block fitted to the outer periphery of the inner cylinder; and a secondary fluid chamber communicating with the main fluid chamber through the orifice. A power unit mount with a fluid chamber is shown.
(発明が解決しようとする課題)
しかしながら、上記従来の流体封入式パワーユニットマ
ウントでは、下記に列挙するような問題がある。(Problems to be Solved by the Invention) However, the conventional fluid-filled power unit mount described above has the following problems.
■ 主流体室と副流体室との間の流体移動か一本のオリ
フィスを通してのみ行なわれる為、流体の移動経路が1
経路しかなくて、1つの振動現象、例えば、アイドル振
動とエンジンシエイクのうち一方にしか対応出来ない。■ Fluid movement between the main fluid chamber and the auxiliary fluid chamber only takes place through one orifice, so there is only one fluid movement path.
There is only one path, and it can only respond to one vibration phenomenon, for example, one of idle vibration and engine shake.
■ 内筒側に形成されたオリフィスでは、オリフィス長
が短くなる為、オリフィス内流体を質量とし流体室の拡
張弾性をばねとする流体ダイナミックダンバーの共振点
が高周波数域にあらわれ、例えば、エンジンシエイク(
+01−1z前後)等の低周波数域入力振動をダイナ
ミックダンバー効果で制振することができない。■ In the orifice formed on the inner cylinder side, the orifice length is short, so the resonance point of the fluid dynamic damper, which uses the fluid in the orifice as mass and the expansion elasticity of the fluid chamber as a spring, appears in the high frequency range. Eike (
It is not possible to dampen input vibrations in a low frequency range such as (around +01-1z) using the dynamic damper effect.
■ ゴム弾性体のうち流体室の室壁となっている部分は
室容積変化量を十分に確保するべく薄く形成され、振動
入力時に大きな伸縮を繰り返す為、ゴム弾性体の耐久寿
命が早期にあらわれる。■ The part of the rubber elastic body that forms the chamber wall of the fluid chamber is formed thin to ensure a sufficient amount of chamber volume change, and because it repeatedly expands and contracts when vibration is input, the durable life of the rubber elastic body appears early. .
本発明は、上述のような従来の問題に着目してなされた
もので、複数の流体室かオリフイスにより連通される流
体封入式パワーユニットマウントにおいて、低周波数域
の入力振動を含む2通りの振動現象を有効に低減する対
応性を持つと共に、ゴム弾性体の耐久性を向上させるこ
とを課題としている。The present invention has been made by focusing on the conventional problem as described above, and in a fluid-filled power unit mount that communicates with a plurality of fluid chambers or orifices, there are two types of vibration phenomena including input vibration in the low frequency range. The objective is to have the ability to effectively reduce the amount of carbon dioxide and to improve the durability of the rubber elastic body.
(課題を解決するための手段)
上記の課題を解決するために、本発明の流体封入式パワ
ーユニットマウントでは、流体室を3室用意してダブル
オリフィス構造にすると共に、ゴム弾性体を軸方向に予
圧を与えた状態で圧入固定する手段とした。(Means for Solving the Problems) In order to solve the above problems, in the fluid-filled power unit mount of the present invention, three fluid chambers are provided, a double orifice structure is provided, and the rubber elastic body is oriented in the axial direction. This is a means of press-fitting and fixing with preload applied.
即ち、パワーユニットと車体のいずれか一方及び他方に
それぞれ連結される円筒及び外筒と、前記内筒に接着さ
れ、別体である前記外筒に軸径方向に予圧を与えた状態
で圧入固定されるゴム弾性体と、前記内筒及び外筒の相
対変位に伴って容積変化する主流体室と、前記外筒の一
方の端縁部に沿って形成される長オリフィスを介して前
記主流?室と連通ずる第1副流体室と、前記外筒の他方
の端縁部に沿って形成される短オリフィスを介して前記
主流体室と連通ずる第2副流体室と、を備えている事を
特徴とする。That is, a cylinder and an outer cylinder are connected to one or the other of the power unit and the vehicle body, respectively, and are bonded to the inner cylinder and press-fitted into the outer cylinder, which is a separate body, with preload applied in the radial direction of the shaft. A main fluid chamber whose volume changes with relative displacement of the inner cylinder and the outer cylinder, and a long orifice formed along one end edge of the outer cylinder, and the main flow fluid flows through the main flow chamber through a long orifice formed along one end edge of the outer cylinder. A first sub-fluid chamber communicating with the main fluid chamber, and a second sub-fluid chamber communicating with the main fluid chamber via a short orifice formed along the other end edge of the outer cylinder. It is characterized by
(作 用)
パワーユニットからの振動か入力されると、振動入力に
伴って内筒と外筒とが相対変位し、ゴム弾性体が変形し
て主流体室の容積が変化する。(Function) When vibration is input from the power unit, the inner tube and the outer tube are displaced relative to each other due to the vibration input, the rubber elastic body is deformed, and the volume of the main fluid chamber is changed.
この主流体室の容積変化時には、長オリフィスを介して
第1副流体室と連通ずる流体移動経路と,短オリフィス
を介して第2副流体室と連通する流体移動経路との2つ
の経路が形成される。When the volume of the main fluid chamber changes, two paths are formed: a fluid movement path that communicates with the first sub-fluid chamber via the long orifice, and a fluid movement path that communicates with the second sub-fluid chamber via the short orifice. be done.
従って、例えば、防振対象振動をアイドル振動とエンジ
ンシェイクとした場合、10H2前後で振幅が比較的大
きい(±Inn程度)のエンジンシエイクに対しては、
長オリフィス内の流体を質量とし主流体室及び第1副流
体室の拡張弾性をばねとする流体ダイナミックダンバー
の共振点を1011■前後こ設定しておくと、10H7
前後の入力振動で長オリフィス内の流体が激しく往復動
する共振現象があらわれ入力振動を減衰することができ
る。即ち、長オリフィス内を流体が激しく往復動する時
の流動抵抗により入力振動エネルギが吸収される。Therefore, for example, if the target vibrations to be vibration-proofed are idle vibration and engine shake, for an engine shake that is around 10H2 and has a relatively large amplitude (approximately ±Inn),
If the resonance point of the fluid dynamic damper, in which the fluid in the long orifice is the mass and the expansion elasticity of the main fluid chamber and the first sub-fluid chamber is the spring, is set around 1011■, then 10H7
A resonance phenomenon occurs in which the fluid in the long orifice violently reciprocates due to the input vibrations back and forth, and the input vibrations can be damped. That is, the input vibration energy is absorbed by the flow resistance when the fluid reciprocates violently within the long orifice.
尚、主流体室の室壁は耐圧能力が高いので主流体室の室
容積変化はほとんど発生せず、短オリフィス内はほとん
ど流体が流通しない。Note that since the walls of the main fluid chamber have high pressure resistance, the volume of the main fluid chamber hardly changes, and almost no fluid flows within the short orifice.
また、20〜30H2で振幅が比較的小さい(±0.3
mm程度)アイドル振動に対しては、流体通過抵抗が大
きくなる長オリフィスは閉塞状態となることから,流体
移動は短オリフィスを介して主流体室と第2副流体室と
の間で行われ、この短オリフィスを介して流体が移動す
ることでゴム弾性体の変形が助長され、動ばね定数の低
下により振動を減衰することができる。Also, the amplitude is relatively small (±0.3
mm) For idle vibrations, the long orifice, where the fluid passage resistance becomes large, becomes closed, so fluid movement is performed between the main fluid chamber and the second sub-fluid chamber via the short orifice. The movement of the fluid through this short orifice promotes deformation of the rubber elastic body, and vibrations can be damped by lowering the dynamic spring constant.
又、ゴム弾性体は別体である外筒に軸径方向に予圧を与
えた状態で圧入固定される為、ゴム弾性体の拡張に対し
ては、予圧による内部応力が減じる方向となり、室容積
の変化に伴なって大幅に変形するゴム弾性体の負荷が軽
減されてその耐久性が向上する。In addition, since the rubber elastic body is press-fitted and fixed into a separate outer cylinder with preload applied in the axial radial direction, the internal stress due to the preload will decrease as the rubber elastic body expands, and the chamber volume will decrease. The load on the rubber elastic body, which deforms significantly due to changes in , is reduced and its durability is improved.
(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図〜第3図は本発明実施例の流体封入式パワーユニ
ットマウントを示している。1 to 3 show a fluid-filled power unit mount according to an embodiment of the present invention.
この流体封入式パワーユニットマウントは、ほぼ同軸に
配置される内筒1と外筒2を備え、この内筒1と外筒2
の間にゴム弾性体3が装填されている。This fluid-filled power unit mount includes an inner cylinder 1 and an outer cylinder 2 that are arranged approximately coaxially.
A rubber elastic body 3 is loaded between them.
前記内筒1は、内部に挿通されるボルトによってパワー
ユニット(又は車体)に固定され、かっ外筒2は車体(
又はパワーユニット)に固定され、該パワーユニットの
静荷重は前記ゴム弾性体3を介して車体に支持される。The inner cylinder 1 is fixed to the power unit (or vehicle body) by a bolt inserted inside, and the outer cylinder 2 is fixed to the vehicle body (or the vehicle body).
or a power unit), and the static load of the power unit is supported by the vehicle body via the rubber elastic body 3.
前記ゴム弾性体3の下側部分には、主流体室4が形成さ
れると共に、該主流体室4の上側にはダイヤフラム40
を介して空間部41が形成されている。A main fluid chamber 4 is formed in the lower part of the rubber elastic body 3, and a diaphragm 40 is formed above the main fluid chamber 4.
A space 41 is formed through the space.
又、ゴム弾性体3の上側部分は軸径方向中央部に形成さ
れたスリット30によって左右に分割され、その一方に
は長オリフィス50を介して主流体室4に連通する第1
副流体室5か形成され、他方には短オリフィス60を介
して主流体室4に連遇する第2副流体室6が形成されて
いる。Further, the upper part of the rubber elastic body 3 is divided into left and right parts by a slit 30 formed at the center in the axial radial direction, and one of the upper parts is divided into left and right parts.
A sub-fluid chamber 5 is formed, and a second sub-fluid chamber 6 communicating with the main fluid chamber 4 via a short orifice 60 is formed on the other side.
尚、前記第1,第2副流体室5,6の内側にはダイヤフ
ラム5L6+を介して空間部52、62が形成され、か
つ前記主流体室4,第1,第2副流体室5,6及び長,
短オリフィス50.60内には流体Lが封入されている
。Note that space portions 52 and 62 are formed inside the first and second sub-fluid chambers 5 and 6 via a diaphragm 5L6+, and the main fluid chamber 4 and the first and second sub-fluid chambers 5 and 6 and long,
A fluid L is sealed within the short orifice 50,60.
又、前記ゴム弾性体3は内周が内筒1の外周に加硫接着
され、かつ外周が左右の補強環70.71を介して外筒
2の内周に圧入固定されている。The inner periphery of the rubber elastic body 3 is vulcanized and bonded to the outer periphery of the inner cylinder 1, and the outer periphery is press-fitted and fixed to the inner periphery of the outer cylinder 2 via left and right reinforcing rings 70, 71.
この圧入に際し、ゴム弾性体3は軸径方向に圧縮される
もので、この場合、第3図に示すように、軸径方向(矢
印方向)に予圧をかけながら、スリット30が閉じる状
態で軸方向に圧入するようにしている。During this press-fitting, the rubber elastic body 3 is compressed in the radial direction of the shaft, and in this case, as shown in FIG. It is press-fitted in the direction.
又、上述したゴム弾性体3の圧入時に、同時に長オリフ
ィス50及び短オリフィス60を形成するようにしてい
る。即ち、前記補強環70.71の端縁にL字溝部72
.73を形成すると共に、圧入方向(矢印方向)に対し
て奥側となる外筒2の端縁部に内向きのフランジ部20
を形成し、そして第3図に示すようにゴム弾性体3を外
商2の内部に挿入した後、前記フランジ部20をL字溝
部73に対してカシメることにより、フランジ部20と
L字溝部72とで囲まれる空間を長オリフィス50とし
て形成する。Furthermore, when the rubber elastic body 3 is press-fitted, the long orifice 50 and the short orifice 60 are simultaneously formed. That is, an L-shaped groove 72 is formed on the edge of the reinforcing ring 70.71.
.. 73, and an inward flange portion 20 at the end edge of the outer cylinder 2 on the back side with respect to the press-fitting direction (arrow direction).
is formed, and after inserting the rubber elastic body 3 into the inside of the Gaisho 2 as shown in FIG. A space surrounded by 72 is formed as a long orifice 50.
次に、ゴム弾性体3に軸方向の予圧をかけて第2図で示
す位置まで圧大した後、外筒2の端縁部に内向きのフラ
ンジ部21を形成し、このフランジ部21をL字溝部7
3に対してカシメることにより、フランジ部21とL字
溝部ア3とで囲まれる空間を短オリフィス60として形
成するものである。Next, after applying preload in the axial direction to the rubber elastic body 3 and compressing it to the position shown in FIG. L-shaped groove 7
3, a space surrounded by the flange portion 21 and the L-shaped groove portion A3 is formed as a short orifice 60.
尚、前記長オリフィス50を形成するL字溝部72には
、主流体室4に臨む開口部50a及び第1副流体室5に
臨む開口部50bが切欠形成され、かつ、短オリフィス
60を形成するL字溝部73には、主流体室4に臨む開
口部60a及び第2副流体室6に臨む開口部60bが切
欠形成されている。Note that an opening 50a facing the main fluid chamber 4 and an opening 50b facing the first sub-fluid chamber 5 are cut out in the L-shaped groove 72 forming the long orifice 50, and a short orifice 60 is formed. An opening 60 a facing the main fluid chamber 4 and an opening 60 b facing the second sub-fluid chamber 6 are cut out in the L-shaped groove 73 .
次に、作用を説明する。Next, the effect will be explained.
パワーユニットからの振動入力時には、内筒1と外筒2
とが相対変位し、これに伴ってゴム弾性体3が変形して
主流体室4の容積が変化し、この主流体室4の容積変化
によって副流体室5,6との間で流体移動が行なわれる
。When inputting vibration from the power unit, inner cylinder 1 and outer cylinder 2
The rubber elastic body 3 deforms and the volume of the main fluid chamber 4 changes, and this change in the volume of the main fluid chamber 4 causes fluid movement between the auxiliary fluid chambers 5 and 6. It is done.
この場合、本実施例では、長オリフィス60を介して主
流体室4と第1副流体室5との間で流体移動が行なわれ
る移動経路と、短オリフィス60を介して主流体室4と
第2副流体室6との間で流体移動が行われる移動経路と
の2通りの移動経路が形成される。In this case, in this embodiment, there is a movement path in which fluid is moved between the main fluid chamber 4 and the first sub-fluid chamber 5 via the long orifice 60, and a movement path in which the fluid is moved between the main fluid chamber 4 and the first sub-fluid chamber 5 via the short orifice 60. Two movement paths are formed, including a movement path in which fluid is moved between the second sub-fluid chamber 6 and the second sub-fluid chamber 6 .
そして、本実施例では、長オリフィス50による流体移
動がエンジンシエイク対策用として利用され(第4図及
び第5図)、短オリフィス60による流体移動がアイド
ル振動対策用として利用される(第6図及び第7図)。In this embodiment, the fluid movement by the long orifice 50 is used as a countermeasure against engine shake (Figs. 4 and 5), and the fluid movement by the short orifice 60 is used as a countermeasure against idle vibration (Fig. 6). (Fig. and Fig. 7).
*エンジンシエイク時
10H2前後で振幅が比較的大きい(±1mm程度)の
エンジンシェイクに対しては、長オリフィス50内の流
体Lを質量とし主流体室4及び第1副流体室5の拡張弾
性をばねとする流体ダイナミックダンバーの共振点を1
002前後に設定しておくと、10Hz前後の入力振動
で長オリフィス50内の流体Lがj敷しく往復動する共
振現象があらわれエンジンシエイクを減衰することがで
きる。*For an engine shake with a relatively large amplitude (approximately ±1 mm) around 10H2 during engine shake, the expansion elasticity of the main fluid chamber 4 and the first sub-fluid chamber 5 is determined by using the fluid L in the long orifice 50 as a mass. The resonance point of the fluid dynamic damper with spring is 1
When the value is set to around 002, a resonance phenomenon occurs in which the fluid L in the long orifice 50 reciprocates in a wide range due to an input vibration of around 10 Hz, and engine shake can be damped.
即ち、長オリフィス50内を流体Lが激しく往復動する
時の流動抵抗により入力振動エネルギが吸収される。That is, the input vibration energy is absorbed by the flow resistance when the fluid L reciprocates violently within the long orifice 50.
尚、主流体室4のダイヤフラム40は耐圧能力が高いの
で主流体室4の室容積変化はほとんど発生せず、短オリ
フィス60内はほとんど流体が流通しない。Since the diaphragm 40 of the main fluid chamber 4 has a high pressure resistance, the volume of the main fluid chamber 4 hardly changes, and almost no fluid flows through the short orifice 60.
*アイドル振動時
20〜30H2で振幅が比較的小さい(±0. 3mm
程度)アイドル振動に対しては、流体通過抵抗が大きく
なる長オリフィス50は閉塞状態となることから、流体
移動は短オリフィス60を介して主流体室4と第2副流
体室6との間で行われ、この短オリフィス60を介して
流体Lが移動することでゴム弾性体3の変形が助長され
、動はね定数の低下により振動を減衰することができる
。*During idle vibration, the amplitude is relatively small at 20-30H2 (±0.3mm)
degree) For idle vibrations, the long orifice 50, where fluid passage resistance increases, is closed, so fluid movement is performed between the main fluid chamber 4 and the second sub-fluid chamber 6 via the short orifice 60. As the fluid L moves through the short orifice 60, deformation of the rubber elastic body 3 is promoted, and vibrations can be damped by lowering the dynamic spring constant.
即ち、短オリフィス60内の流体Lを質量とし主流体室
4及び第2副流体室6の拡張弾性をばねとする流体ダイ
ナミックダンパーの共振点を30H2以上の周波数域に
設定しておくと、この共振点以下の周波数領域では、主
流体室4と第2副流体室6との容積変化に応じて短オリ
フィス60内を流体Lが流通する作用を示し、ゴム弾性
体3の変形を助長し、動ばね定数を低下させることにな
る。That is, if the resonance point of the fluid dynamic damper, which uses the fluid L in the short orifice 60 as a mass and the expansion elasticity of the main fluid chamber 4 and the second sub-fluid chamber 6 as a spring, is set in a frequency range of 30H2 or higher, this In the frequency range below the resonance point, the fluid L exhibits an effect of flowing within the short orifice 60 according to the volume change of the main fluid chamber 4 and the second sub-fluid chamber 6, promoting deformation of the rubber elastic body 3, This will reduce the dynamic spring constant.
又、ゴム弾性体3は別体である外筒2に軸径方向に予圧
を与えた状態で圧入固定される為、ゴム弾性体3の拡張
に対しては、予圧による内部応力が減じる方向となり、
室容積の変化に伴なって大幅に変形するゴム弾性体3の
負荷が軽減されてその耐久性が向上する。In addition, since the rubber elastic body 3 is press-fitted and fixed into the external cylinder 2, which is a separate body, with preload applied in the axial radial direction, the internal stress due to the preload will decrease as the rubber elastic body 3 expands. ,
The load on the rubber elastic body 3, which deforms significantly as the chamber volume changes, is reduced and its durability is improved.
以上のように、本実施例では、下記に列挙する特長を有
する。As described above, this embodiment has the features listed below.
■ 主流体室4と第1及び第2副流体室5,6との間の
流体移動が長オリフィス50及び短オリフィス60を通
して行なわれる為,流体の移動経路が2経路となり、エ
ンジンシェイクとアイドル振動との2つの振動現象に対
応出来る。■ Since fluid movement between the main fluid chamber 4 and the first and second sub-fluid chambers 5 and 6 is performed through the long orifice 50 and the short orifice 60, there are two paths for fluid movement, which reduces engine shake and idle vibration. It can cope with two vibration phenomena.
■ 長オリフィス50は外筒の端縁部に沿って形成され
ている為、オリフィス長を十分に長く設定することがで
き、オリフィス内流体を質量とし流体室の拡張弾性をば
ねとする流体ダイナミックダンバーの共振点をエンジン
シェイク領域である10Hz前後の低周波数域に設定す
ることができ、エンジンシェイクをダイナミックダンバ
ー効果で制振することができる。■ Since the long orifice 50 is formed along the edge of the outer cylinder, the orifice length can be set sufficiently long, and the fluid dynamic damper uses the fluid inside the orifice as a mass and the expansion elasticity of the fluid chamber as a spring. The resonance point of the engine can be set in a low frequency range of around 10 Hz, which is the engine shake region, and engine shake can be suppressed by the dynamic damper effect.
■ ゴム弾性体3は別体である外筒2に軸径方向に予圧
を与えた状態で圧入固定される為、ゴム弾性体3の拡張
に対しては、予圧による内部応力が減じる方向となり、
室容積の変化に伴なって大幅に変形するゴム弾性体3の
負荷が軽減されてその耐久性が向上する。■ Since the rubber elastic body 3 is press-fitted and fixed into the separate outer cylinder 2 with preload applied in the axial radial direction, the internal stress due to the preload will decrease as the rubber elastic body 3 expands.
The load on the rubber elastic body 3, which deforms significantly as the chamber volume changes, is reduced and its durability is improved.
■ 長.短オリフィス50.60を形成するにあたって
、ゴム弾性体3に設けた補強環γ0,71とカシメによ
り固定される外筒2を利用する構成とした為、オリフィ
ス形成のための別部材が不要となりコスト的に有利であ
る。■ Long. In forming the short orifice 50, 60, the reinforcing rings γ0, 71 provided on the rubber elastic body 3 and the outer cylinder 2 fixed by caulking are used, which eliminates the need for a separate member for forming the orifice, reducing costs. It is advantageous.
以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく本発明
の要旨を逸脱しない範囲の設計変更等があっても本発明
に含まれる。Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and even if there are design changes within the scope of the gist of the present invention, they are included in the present invention. It will be done.
例えば、長,短オリフィスは補強環とは別部材で形成し
てもよい。For example, the long and short orifices may be formed from separate members from the reinforcing ring.
又、アイドル振動及びエンジンシェイク以外の振動対策
としての適用もできる。Further, it can also be applied as a countermeasure against vibrations other than idle vibration and engine shake.
(発明の効果)
以上説明してきたように,本発明にあっては、複数の流
体室がオリフィスにより連通される流体封入式パワーユ
ニットマウントにおいて、流体室を3室用意してダブル
オリフィス構造にすると共に、ゴム弾性体を軸方向に予
圧を与えた状態で圧入固定する手段とした為、低周波数
域の入力振動を含む2通りの振動現象を有効に低減する
対応性を持つと共に、ゴム弾性体の耐久性を向上させる
ことが出来るという効果が得られる。(Effects of the Invention) As explained above, in the present invention, in a fluid-filled power unit mount in which a plurality of fluid chambers are communicated through an orifice, three fluid chambers are provided and a double orifice structure is provided. Since the rubber elastic body is press-fitted and fixed with preload applied in the axial direction, it has the ability to effectively reduce two types of vibration phenomena including input vibration in the low frequency range, and the rubber elastic body The effect of improving durability can be obtained.
第1図は本発明実施例の流体封入式パワーユニットマウ
ントの外筒を除いた状態の斜視図、第2図は該流体封入
式パワーユニットマウントの断面図、第3図は流体封入
式パワーユニットマウントのゴム弾性体を外筒に圧入す
る状態の説明図、第4図は第2図I−I断面図、第5図
は長オリフィスの平面展開図、第6図は第2図■一■断
面図、第7図は短オリフィスの平面展開図である。
2・−・外筒
3・・・ゴム弾性体
4・・・主流体室
40・・・ダイヤフラム
41・・・空間部
30・・・スリット
50・・・長オリフィス
5・・・第1副流体室
60・・・短オリフィス
6・−・第2副流体室
54.61・・・ダイヤフラム
52,62・・・空間部
70.71・・・補強環
72.73・・−し字溝部
20・・・フランジ部
21・・・フランジ
50a.50b−−−開口部
60a.60b・・・開口部Fig. 1 is a perspective view of a fluid-filled power unit mount according to an embodiment of the present invention with the outer cylinder removed, Fig. 2 is a sectional view of the fluid-filled power unit mount, and Fig. 3 is a rubber of the fluid-filled power unit mount. An explanatory diagram of the state in which the elastic body is press-fitted into the outer cylinder, Fig. 4 is a sectional view taken along line II in Fig. 2, Fig. 5 is a plan development view of the long orifice, Fig. 6 is a sectional view in Fig. 2, FIG. 7 is a plan development view of the short orifice. 2.--Outer cylinder 3...Rubber elastic body 4...Main fluid chamber 40...Diaphragm 41...Space 30...Slit 50...Long orifice 5...First auxiliary fluid Chamber 60...Short orifice 6...Second auxiliary fluid chamber 54.61...Diaphragm 52, 62...Space 70.71...Reinforcement ring 72.73...Chorus groove 20. ...Flange portion 21...Flange 50a. 50b---opening 60a. 60b...opening
Claims (1)
れぞれ連結される内筒及び外筒と、 前記内筒に接着され、別体である前記外筒に軸径方向に
予圧を与えた状態で圧入固定されるゴム弾性体と、 前記内筒及び外筒の相対変位に伴って容積変化する主流
体室と、 前記外筒の一方の端縁部に沿って形成される長オリフィ
スを介して前記主流体室と連通する第1副流体室と、 前記外筒の他方の端縁部に沿って形成される短オリフィ
スを介して前記主流体室と連通する第2副流体室と、 を備えている事を特徴とする流体封入式パワーユニット
マウント。[Claims] 1) An inner cylinder and an outer cylinder connected to one or the other of the power unit and the vehicle body, respectively, and a preload applied to the outer cylinder, which is a separate body and is adhered to the inner cylinder, in the axial radial direction. a rubber elastic body press-fitted and fixed in a given state; a main fluid chamber whose volume changes with relative displacement of the inner tube and the outer tube; and a long orifice formed along one edge of the outer tube. a first sub-fluid chamber that communicates with the main fluid chamber via a second sub-fluid chamber that communicates with the main fluid chamber via a short orifice formed along the other end edge of the outer cylinder; A fluid-filled power unit mount characterized by the following.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309732A JP2616064B2 (en) | 1989-11-29 | 1989-11-29 | Fluid-filled power unit mount |
DE19904037891 DE4037891A1 (en) | 1989-11-29 | 1990-11-28 | Fluid filled elastomeric absorber - has inner and outer sleeve with between compartment divided by prestressed part into three |
FR9014882A FR2655113A1 (en) | 1989-11-29 | 1990-11-28 | ELASTOMER DAMPING DEVICE FILLED WITH A FLUID. |
GB9026007A GB2239507A (en) | 1989-11-29 | 1990-11-29 | Damping device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309732A JP2616064B2 (en) | 1989-11-29 | 1989-11-29 | Fluid-filled power unit mount |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03168441A true JPH03168441A (en) | 1991-07-22 |
JP2616064B2 JP2616064B2 (en) | 1997-06-04 |
Family
ID=17996628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1309732A Expired - Lifetime JP2616064B2 (en) | 1989-11-29 | 1989-11-29 | Fluid-filled power unit mount |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2616064B2 (en) |
DE (1) | DE4037891A1 (en) |
FR (1) | FR2655113A1 (en) |
GB (1) | GB2239507A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06280923A (en) * | 1993-02-25 | 1994-10-07 | Carl Freudenberg:Fa | Hydraulic damping type sleeve rubber spring |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4137977C2 (en) * | 1991-11-19 | 1995-06-14 | Freudenberg Carl Fa | Multi-chamber hydraulic bush |
FR2713731B1 (en) * | 1993-12-09 | 1996-02-09 | Hutchinson | Improvement to hydraulic anti-vibration supports and their manufacturing processes. |
US5397112A (en) * | 1994-05-05 | 1995-03-14 | The Pullman Company | Fluid-filled elastomeric suspension bushing |
FR2739669B1 (en) * | 1995-10-05 | 1998-09-04 | Hutchinson | HYDRAULIC ANTIVIBRATORY SUPPORT |
GB2317667A (en) * | 1996-09-25 | 1998-04-01 | Draftex Ind Ltd | An engine mount assembly having a one-piece moulded support |
FR2814521B1 (en) * | 2000-09-26 | 2003-06-06 | C F Gomma Barre Thomas | HYDROELASTIC ARTICULATION WITH HIGH FREQUENCY DYNAMIC BEHAVIOR |
GB0126978D0 (en) * | 2001-11-09 | 2002-01-02 | Avon Vibration Man Syst Ltd | Hydraulically damped mountain device |
DE102010015579B4 (en) * | 2010-04-19 | 2012-10-25 | Carl Freudenberg Kg | Decoupled hydraulic jack |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6446029A (en) * | 1987-07-23 | 1989-02-20 | Freudenberg Carl Fa | Sleeve type rubber buffer |
JPH01126451A (en) * | 1987-11-06 | 1989-05-18 | Kinugawa Rubber Ind Co Ltd | Fluid sealed-in vibration isolator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6288834A (en) * | 1985-10-15 | 1987-04-23 | Bridgestone Corp | Vibro-isolator |
FR2599450B1 (en) * | 1986-06-03 | 1990-08-10 | Hutchinson | IMPROVEMENTS ON HYDRAULIC ANTI-VIBRATION SUPPORT SLEEVES |
JP2625729B2 (en) * | 1987-06-23 | 1997-07-02 | 日産自動車株式会社 | Fluid-filled anti-vibration bush |
US4895353A (en) * | 1988-06-28 | 1990-01-23 | The Pullman Company | Fluid filled elastomeric damping device |
JP2793598B2 (en) * | 1988-08-02 | 1998-09-03 | 株式会社ブリヂストン | Anti-vibration device |
FR2650356B1 (en) * | 1989-07-31 | 1994-05-27 | Hutchinson | IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR |
-
1989
- 1989-11-29 JP JP1309732A patent/JP2616064B2/en not_active Expired - Lifetime
-
1990
- 1990-11-28 DE DE19904037891 patent/DE4037891A1/en not_active Ceased
- 1990-11-28 FR FR9014882A patent/FR2655113A1/en not_active Withdrawn
- 1990-11-29 GB GB9026007A patent/GB2239507A/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6446029A (en) * | 1987-07-23 | 1989-02-20 | Freudenberg Carl Fa | Sleeve type rubber buffer |
JPH01126451A (en) * | 1987-11-06 | 1989-05-18 | Kinugawa Rubber Ind Co Ltd | Fluid sealed-in vibration isolator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06280923A (en) * | 1993-02-25 | 1994-10-07 | Carl Freudenberg:Fa | Hydraulic damping type sleeve rubber spring |
Also Published As
Publication number | Publication date |
---|---|
GB9026007D0 (en) | 1991-01-16 |
DE4037891A1 (en) | 1991-06-06 |
GB2239507A (en) | 1991-07-03 |
FR2655113A1 (en) | 1991-05-31 |
JP2616064B2 (en) | 1997-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6663090B2 (en) | Hydraulic engine mount | |
US8308147B2 (en) | Vibration damper | |
US7416173B2 (en) | Pneumatically switchable type fluid-filled engine mount | |
US5509643A (en) | Hydraulically damping bearing bush | |
US7296650B2 (en) | Vibration isolating proof device | |
EP1870613B1 (en) | Vibration isolator | |
JP4110567B2 (en) | Fluid filled cylindrical vibration isolator | |
US4907786A (en) | Fluid-filled elastic mount having partition member which includes a double-layered section | |
JPS62224746A (en) | Fluid seal type vibrationproof supporting body | |
US5887844A (en) | Fluid-sealed vibration isolating device | |
US6435488B1 (en) | Switchable, hydraulically damping bearing | |
JPH03168441A (en) | Fluid-sealed type power unit mount | |
JP3427593B2 (en) | Fluid-filled cylindrical mount | |
JP2000337426A (en) | Fluid sealing type cylindrical mount | |
JP2877940B2 (en) | Cylindrical mount and method of manufacturing the same | |
JPH03194237A (en) | Fluid sealing type power unit mount device | |
JPH11141595A (en) | Vibration control device | |
JP2877941B2 (en) | Cylindrical mount and manufacturing method thereof | |
JPS61184244A (en) | Fluid-sealed type vibrationproof assembly | |
JPH0724675Y2 (en) | Fluid-filled cylinder mount device | |
JPH03186630A (en) | Fluid filled power unit mount | |
JPH09133176A (en) | Liquid-sealing type vibro-isolating support unit | |
JPH05272579A (en) | Liquid-sealed vibration-proof mount | |
JP2004138191A (en) | Fluid-sealed type vibration controller | |
JPH0434A (en) | Fluid seal type cylindrical mount device |