JPH0316649A - Environment tester - Google Patents
Environment testerInfo
- Publication number
- JPH0316649A JPH0316649A JP14966189A JP14966189A JPH0316649A JP H0316649 A JPH0316649 A JP H0316649A JP 14966189 A JP14966189 A JP 14966189A JP 14966189 A JP14966189 A JP 14966189A JP H0316649 A JPH0316649 A JP H0316649A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- expansion mechanism
- cooling unit
- final stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 186
- 238000001816 cooling Methods 0.000 claims abstract description 100
- 230000007246 mechanism Effects 0.000 claims abstract description 100
- 238000009835 boiling Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 68
- 238000012360 testing method Methods 0.000 claims description 64
- 238000010438 heat treatment Methods 0.000 claims description 62
- 238000005057 refrigeration Methods 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 33
- 230000007613 environmental effect Effects 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 abstract description 4
- 230000001960 triggered effect Effects 0.000 abstract description 3
- 239000011877 solvent mixture Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000010257 thawing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000035939 shock Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Devices For Use In Laboratory Experiments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、試験室に試料を設匿し.その試験室に高温空
気と低温空気とを交互に供給し,試料に冷熱衝撃を与え
て耐久性試験を行う環境試験装置に係り、特に超低温発
生装置として冷凍サイクルを用い、広範囲の温度を作り
出すために好適な環境試験装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for storing a sample in a test chamber. This relates to an environmental test device that alternately supplies high-temperature air and low-temperature air to the test chamber and applies a thermal shock to the sample to perform a durability test.In particular, it uses a refrigeration cycle as an ultra-low temperature generator to generate a wide range of temperatures. The present invention relates to an environmental test device suitable for.
従来,超低温発生装置として冷凍サイクルを用いた環境
試験装置において、広範囲の温度を作り,また蒸発器の
空気側表面に付着する霜を除去し、さらには圧縮機から
冷媒とともに吐出される冷凍機抽が,冷凍サイクル内で
流路の狭い膨張機構に詰まるのを防止するため、蒸発器
の部分および膨張機構の部分の温度を高くする手段を備
えている。Conventionally, in environmental test equipment that uses a refrigeration cycle as an ultra-low temperature generator, it is necessary to generate a wide range of temperatures, remove frost adhering to the air side surface of the evaporator, and also perform refrigeration extraction, which is discharged from the compressor together with the refrigerant. However, in order to prevent the expansion mechanism, which has a narrow flow path, from clogging in the refrigeration cycle, means are provided for increasing the temperature of the evaporator section and the expansion mechanism section.
この型式の環境試験装置については、例えば特開昭61
− 89429号公報に記載の技術が知られている。Regarding this type of environmental test equipment, for example,
- A technique described in Japanese Patent No. 89429 is known.
すなわち、前掲公報に記載の環境試験装置では、超低温
発生装置として、2つ以上の冷凍サイクルをカスケード
的に組み合わせた多元冷凍サイクルが用いられており,
その蒸発器の部分の温度を高めるため、高温側サイクル
の圧縮機の吐出ガスを蒸9!器と並設されている熱交換
器へ流入させる構戊が採られている。また、一般に電気
ヒータで加熱する方法も用いられている。That is, in the environmental test device described in the above-mentioned publication, a multi-component refrigeration cycle in which two or more refrigeration cycles are combined in a cascade is used as the ultra-low temperature generator.
In order to raise the temperature of the evaporator part, the discharge gas of the compressor in the high temperature side cycle is evaporated 9! A structure is adopted in which the heat flows into a heat exchanger installed in parallel with the heat exchanger. Additionally, a method of heating with an electric heater is also generally used.
前記従来技術は、冷凍サイクルの蒸発器の部分の温度を
高くするための技術であるが、超低温から比較的高温ま
での広範囲の温度が得られるような配慮がされていなか
った。このため、1台の環境試験装置で超低温から比較
的高温まで、広範囲の低温条件が得にくいという問題が
あった.また、例えば蒸発器の表面に付着した霜を除去
する場合の、除霜速度を向上させる点についても配慮が
なされていなかった。このため、電子部品等の冷熱衝撃
に対する耐久性試験に使用される本来の環境試験装置の
使用目的から見て,不必要な除霜運転が長くなるという
問題があった。この点を改善するため、適切な容量l)
電気ヒータを用いl
る方法もあるが、運転経費高を招き、省エネルギ一の点
から見て,あまり好ましい方法ではない.本発明の第1
の目的は、超低温発生装置として冷凍サイクルを用い、
その蒸発器の部分で超低温から比較的高温までの広範囲
の温度を容易に作り出すことが可能な環境試験装置を提
供することにある.
また、本発明の第2の目的は、超低温運転で、蒸発器等
の機器に付着する霜を容易に除去し得る環k1t拭験装
置を提供することにある.さらに,本発明の第3の目的
は、蒸発器等への着霜を防止し、除N運転を不要となし
得る環境試験装置を提供することにある.
〔課題を解決するための手段〕
前記第1の目的は、試験室と、この試験室内の環境を作
る超低温発生装置および加熱装置を備え、前記超低温発
生装置を冷凍サイクルで構成し,この冷凍サイクルを、
沸点の異なるものを複数混合した冷媒を圧縮する単一の
圧縮機と、その圧縮された冷媒を凝縮する凝縮鼎と、多
段設置された冷却ユニットと、最終段の冷却ユニットの
高圧側に接続された最終段の膨張機構と、この膨張機構
に接続されかつ超低温を発生する蒸発器と、この蒸発器
から各段の冷却ユニットを経由して前記圧縮機に冷媒を
帰還させる配管とを備えて構成し、前記各段の冷却ユニ
ットを,凝縮されため媒をガス冷媒と液冷媒とに分離す
る気液分離器と、分離されたガス冷媒を一方の流路に導
きかつ他方の流路を流れる低圧低温の冷媒で冷却する中
間熱交換器と、分離された液冷媒を減圧する膨張機構と
、減圧された低圧低温の冷媒を前記中間熱交換器の他方
の流路に導く配管とで構成し、前記最終段の膨張機構を
最終段の冷却ユニットの中間熱交換器における一方の流
路の冷媒出口側に接続するとともに、少なくとも前記最
終段の膨張機構を,開度調節可能な膨張機構としたこと
により、達成される.前記第2の目的は、前記超低温発
生装置における圧縮機の吐出側と、蒸発器の冷媒入口側
とをホットガスバイパス配管により接続し、このホット
ガスバイパス配管に開閉弁と開度調節可能な弁のいずれ
かを設け,最終段の冷却ユニットの中間熱交換器の他方
の流路と蒸発器の冷媒出口側とを結ぶ配管に開閉弁と開
度調節可能な弁のいずれかを設け、この配管と並列に他
の配管を設けるとともに、該他の配管に膨張機構を設け
たことにより、達或される.
同第2の目的は、前記超低温発生装置における蒸発器の
空気入口側と空気出口側のいずれか一方に,加熱用熱交
換器を設直し,前記圧縮機の吐出側と加熱用熱交換器の
冷媒入口側とをホットガスバイパス配管により接続し、
このホットガスバイパス配管に開閉弁と開度調節可能な
弁のいずれかを設け、前記最終段の中間熱交換器の他方
の流路と蒸発器の冷媒出口側とを結ぶ配管に、前記加熱
用熱交換器の冷媒出口側を,バイパス配管を介して接続
するとともに,このバイパス配管に膨張機構を設けたこ
とによっても,達成される。The above-mentioned conventional technology is a technology for increasing the temperature of the evaporator portion of the refrigeration cycle, but no consideration has been given to obtaining a wide range of temperatures from extremely low temperatures to relatively high temperatures. For this reason, there was a problem in that it was difficult to obtain a wide range of low temperature conditions, from extremely low temperatures to relatively high temperatures, with a single environmental test device. Furthermore, no consideration has been given to improving the defrosting speed when removing frost adhering to the surface of the evaporator, for example. For this reason, there is a problem in that the defrosting operation becomes unnecessary, considering the intended purpose of the environmental testing apparatus used for testing the durability against thermal shock of electronic parts and the like. To improve this point, appropriate capacity l)
There is also a method of using an electric heater, but this increases operating costs and is not a very desirable method from the point of view of energy conservation. The first aspect of the present invention
The purpose of is to use a refrigeration cycle as an ultra-low temperature generator,
The object of the present invention is to provide an environmental test device that can easily generate a wide range of temperatures from extremely low temperatures to relatively high temperatures in the evaporator section. A second object of the present invention is to provide a ring k1t wiping device capable of easily removing frost adhering to equipment such as an evaporator while operating at extremely low temperatures. Furthermore, a third object of the present invention is to provide an environmental test device that can prevent frost formation on the evaporator, etc., and eliminate the need for N removal operation. [Means for Solving the Problems] The first object is to provide a test chamber, an ultra-low temperature generating device and a heating device for creating an environment in the test chamber, the ultra-low temperature generating device being constituted by a refrigeration cycle, and the refrigeration cycle of,
A single compressor that compresses a mixture of refrigerants with different boiling points, a condenser that condenses the compressed refrigerant, a cooling unit installed in multiple stages, and a unit connected to the high pressure side of the final stage cooling unit. A final stage expansion mechanism, an evaporator connected to the expansion mechanism and generating ultra-low temperature, and piping for returning refrigerant from the evaporator to the compressor via the cooling units of each stage. The cooling unit of each stage is divided into a gas-liquid separator that separates the condensed medium into gas refrigerant and liquid refrigerant, and a low-pressure separator that guides the separated gas refrigerant into one flow path and flows through the other flow path. An intermediate heat exchanger that cools with a low-temperature refrigerant, an expansion mechanism that reduces the pressure of the separated liquid refrigerant, and piping that guides the reduced pressure low-pressure low-temperature refrigerant to the other flow path of the intermediate heat exchanger, The final stage expansion mechanism is connected to the refrigerant outlet side of one flow path in the intermediate heat exchanger of the final stage cooling unit, and at least the final stage expansion mechanism is an expansion mechanism whose opening degree can be adjusted. This is achieved by The second purpose is to connect the discharge side of the compressor and the refrigerant inlet side of the evaporator in the ultra-low temperature generator through hot gas bypass piping, and to install an on-off valve and an adjustable valve in the hot gas bypass piping. Either an on-off valve or an adjustable opening valve is installed in the piping connecting the other flow path of the intermediate heat exchanger of the final stage cooling unit and the refrigerant outlet side of the evaporator, and this piping This can be achieved by providing another pipe in parallel with the pipe and providing an expansion mechanism in the other pipe. The second purpose is to reinstall a heating heat exchanger on either the air inlet side or the air outlet side of the evaporator in the ultra-low temperature generator, and to connect the heating heat exchanger to the discharge side of the compressor and the heating heat exchanger. Connect the refrigerant inlet side with hot gas bypass piping,
This hot gas bypass piping is provided with either an on-off valve or a valve whose opening degree can be adjusted, and the heating This can also be achieved by connecting the refrigerant outlet side of the heat exchanger via a bypass pipe and providing an expansion mechanism in the bypass pipe.
同第2の目的は、前記加熱用熱交換器の冷媒出口側を、
最終段の冷却ユニットの中間熱交換器の一方の流路と最
終段の膨張機構の冷媒入口側とを結んでいる配管に、他
の配管を介して接続したことによっても,達或される.
同第2の目的は,前記加熱用熱交換器の冷媒出口側を,
前記多段に設けられた冷却ユニットの少なくとも1つの
冷却ユニットの膨張機構の冷媒入口側に、配管を介して
接続したことによっても、達成される。The second purpose is to make the refrigerant outlet side of the heating heat exchanger
This can also be achieved by connecting, via another pipe, to the pipe connecting one flow path of the intermediate heat exchanger of the final stage cooling unit and the refrigerant inlet side of the final stage expansion mechanism. The second purpose is to make the refrigerant outlet side of the heating heat exchanger
This can also be achieved by connecting via piping to the refrigerant inlet side of the expansion mechanism of at least one cooling unit of the cooling units provided in multiple stages.
同第2の目的は,前記ホットガスバイパス配管に,各段
の冷却ユニットの膨張機構とその近傍を,前記ホットガ
スバイパス配管を流れる冷媒により加熱する加熱部を設
けたことによって、達或される。The second objective is achieved by providing the hot gas bypass piping with a heating section that heats the expansion mechanism of the cooling unit in each stage and its vicinity by the refrigerant flowing through the hot gas bypass piping. .
同第2の目的は、試験室と、高温室と、低温室とを設け
,前記高温室には加熱装置を設置し、低温室にはいずれ
かの超低温発生装置を接続し、前記試験室と高温室,お
よび試験室と低温室とをそれぞれ空気流路で結ぶととも
に、前記高温室と低温室をも空気流路で結び,各空気流
路にダンパを設けたことによって,より一層良好に達戊
される。The second purpose is to provide a test room, a high temperature room, and a low temperature room, install a heating device in the high temperature room, connect one of the ultralow temperature generators to the low temperature room, and connect the test room with a heating device. By connecting the high temperature chamber, the test chamber, and the low temperature chamber with air channels, and also connecting the high temperature chamber and the low temperature chamber with air channels, and providing a damper in each air channel, even better results can be achieved. be decapitated.
前記第3の目的は,前記超低温発生装置内を流動する流
体として、超低温発生装置により発生温度よりも沸点の
低い不活性ガスを用いたことにより、達成される.
〔作用〕
本発明では、試料室と、超低温発生装置と、加熱装置と
を備える環境試験装置の前記試料室内に,冷却/加熱に
より冷熱?#撃を与えて耐久性試験を行う電子部品等の
試料を設置する.
ついで、超低温発生装置と加熱装置とを起動し、試験室
へ超低温発生装置と加熱装置とから低温空気と高温空気
とを交互に似給し、試験室内に冷却環境と加熱環境とを
交互に作り、試料に冷却/加熱により冷熱衝撃を与えて
耐久性試験を行う.前記冷却環境は、超低温発生装置で
ある冷凍サイクルを運転し、次のようにして作る.まず
、冷媒として、例えば沸点の高い順にR12,R13,
R14を混合した混合冷媒を用いる。The third object is achieved by using an inert gas having a boiling point lower than the temperature generated by the ultra-low temperature generator as the fluid flowing in the ultra-low temperature generator. [Function] According to the present invention, cold heat is generated by cooling/heating into the sample chamber of an environmental test apparatus that includes a sample chamber, an ultralow temperature generator, and a heating device. # Set up samples such as electronic components to be subjected to shock and durability tests. Next, the ultra-low temperature generator and the heating device are started, and low-temperature air and high-temperature air are alternately supplied to the test chamber from the ultra-low temperature generator and the heating device, thereby creating an alternate cooling environment and a heating environment in the test chamber. , conduct a durability test by applying a thermal shock to the sample by cooling/heating. The cooling environment is created by operating a refrigeration cycle, which is an ultra-low temperature generator, as follows. First, as a refrigerant, for example, R12, R13,
A mixed refrigerant containing R14 is used.
そして、前記冷凍サイクルを起動すると、冷媒は圧縮機
で圧縮され、凝縮器で凝縮され、液化して多段に設置さ
れた冷却ユニットにおける初段の冷却ユニットに導かれ
る。Then, when the refrigeration cycle is started, the refrigerant is compressed by the compressor, condensed by the condenser, liquefied, and guided to the first stage of the cooling units installed in multiple stages.
初段の冷却ユニットに導かれた冷媒は、気液分離器でガ
ス冷媒と液冷媒とに分離される.分離されたガス冷媒は
、初段の冷却ユニットの中間熱交換器の一方の流路に導
かれ、この中間熱交換器の他方の流路を流れる低圧抵温
の冷媒と熱交換し、冷却された2段目の玲却ユニットの
気液分離器に導かれる.前記初段の冷却ユニットの気液
分離器で分離された液冷媒は、同じ初段の冷却ユニット
の膨張機構に導かれ、この膨張機構で減圧され、低圧低
温の冷媒となり,同じ初段の冷却ユニットの中間熱交換
器の他方の流路に導かれる.2段目以降の冷却ユニット
においても、冷媒は前記初段の冷却ユニットと同様の過
程を経由する。The refrigerant introduced into the first-stage cooling unit is separated into gas refrigerant and liquid refrigerant in a gas-liquid separator. The separated gas refrigerant is led to one flow path of the intermediate heat exchanger of the first stage cooling unit, and is cooled by exchanging heat with the low-pressure, low-temperature refrigerant flowing through the other flow path of the intermediate heat exchanger. It is guided to the gas-liquid separator of the second-stage cooling unit. The liquid refrigerant separated by the gas-liquid separator of the first-stage cooling unit is guided to the expansion mechanism of the same first-stage cooling unit, is depressurized by this expansion mechanism, becomes a low-pressure, low-temperature refrigerant, and is transferred to the middle of the same first-stage cooling unit. It is guided to the other flow path of the heat exchanger. In the second-stage and subsequent cooling units, the refrigerant passes through the same process as in the first-stage cooling unit.
ついで,最終段の冷却ユニットの中間熱交換器で冷却さ
れて液化した冷媒は、最終段の膨張機構に導かれ、この
膨張機構で減圧されて蒸発器に流入し,この冷凍サイク
ルの中で最も低い温度を発生させる.
前記蒸発器を出た冷媒は、最終段の冷却ユニットの中間
熱交換器から順次低段位の冷却ユニットの中間熱交換器
を通り,初段の冷却ユニットの中間熱交換器を経て圧縮
機に吸収される。Next, the refrigerant that has been cooled and liquefied in the intermediate heat exchanger of the final stage cooling unit is led to the final stage expansion mechanism, where the pressure is reduced and flows into the evaporator, which is the most liquefied refrigerant in this refrigeration cycle. Generates a low temperature. The refrigerant that has exited the evaporator passes through the intermediate heat exchanger of the final stage cooling unit, then the intermediate heat exchanger of the lower stage cooling unit, passes through the intermediate heat exchanger of the first stage cooling unit, and is absorbed by the compressor. Ru.
この冷凍サイクルでは,少なくとも最終段の膨張機構、
すなわち蒸発器の冷媒入口側の膨張機構を、開度調節可
能な膨張機構としている.その結果、この最終段の膨張
機構の開度を,例えば大きくした場合には、蒸発圧力の
上昇が引き金となった冷却ユニットの中間熱交換器の低
圧側温度が上昇するため、混合冷媒中の高沸点冷媒の凝
縮液化割合が小さくなり、蒸発器へ流入する冷媒は、高
沸点の冷媒の割合の大きい混合冷媒となるため,比較的
高温の低温状態が得られる.
したがって,この発明では最終段の膨張機構の開度を調
節することにより、超低温から比較的高温までの広範囲
の温度を容易に作り出すことが可能となる。In this refrigeration cycle, at least the final stage expansion mechanism,
In other words, the expansion mechanism on the refrigerant inlet side of the evaporator is an expansion mechanism whose opening degree can be adjusted. As a result, if the opening degree of this final stage expansion mechanism is increased, for example, the temperature on the low pressure side of the intermediate heat exchanger of the cooling unit, which is triggered by an increase in evaporation pressure, will rise, so the The condensation rate of the high boiling point refrigerant is reduced, and the refrigerant flowing into the evaporator becomes a mixed refrigerant with a high proportion of high boiling point refrigerant, resulting in a relatively high temperature and low temperature state. Therefore, in the present invention, by adjusting the opening degree of the final stage expansion mechanism, it is possible to easily create a wide range of temperatures from extremely low temperatures to relatively high temperatures.
また,本発明では前記超低温発生装置における圧縮機の
吐出側と、蒸発器の冷媒入口側とをホットガスバイパス
配管により接続し,このホットガスパスパス配管に開閉
弁または開度調節可能な弁を設け,前記ホットガスバイ
パス配管を通じて蒸発器に沸点の高い混合冷媒を、高温
状態で供給できるため、さらに広範囲の温度が得られる
.そして、この発明では圧縮機から吐出される混合冷媒
の温度を常温以上で、冷凍サイクル中でも高い温度レベ
ルであり,超低温運転で蒸発器へ付着する霜を除去する
ことができる.
さらに、本発明では前記超低温発生装置における蒸発器
の空気入口側または空気出口側に加熱用熱交換器を設置
し、圧縮機の吐出側と加熱用熱交換器の冷媒入口側とを
ホットガスバイパス配管により接続し、このホットガス
バイパス配管に開閉弁または開度調節可能な弁を設け、
前記加熱用熱交換器で空気を加熱するようにしているの
で、広範囲の温度が得られ,かつ蒸発器への霜の付着を
防止できる外、主回路中に開閉弁を設ける必要がなくな
り、その開閉弁による圧力損失をなくすことができるの
で,冷凍サイクルの効率を向上させることが可能となる
。Furthermore, in the present invention, the discharge side of the compressor in the ultra-low temperature generator is connected to the refrigerant inlet side of the evaporator by a hot gas bypass pipe, and the hot gas pass pipe is provided with an on-off valve or a valve whose opening degree can be adjusted. , Since a mixed refrigerant with a high boiling point can be supplied to the evaporator at a high temperature through the hot gas bypass piping, a wider range of temperatures can be obtained. In addition, in this invention, the temperature of the mixed refrigerant discharged from the compressor is higher than room temperature, which is a high temperature level even in the refrigeration cycle, and frost adhering to the evaporator can be removed by operating at an extremely low temperature. Furthermore, in the present invention, a heating heat exchanger is installed on the air inlet side or the air outlet side of the evaporator in the ultralow temperature generator, and the hot gas bypass is established between the discharge side of the compressor and the refrigerant inlet side of the heating heat exchanger. Connected by piping, this hot gas bypass piping is equipped with an on-off valve or a valve with adjustable opening.
Since the air is heated by the heating heat exchanger, a wide range of temperatures can be obtained and frost can be prevented from adhering to the evaporator, and there is no need to install an on-off valve in the main circuit. Since the pressure loss caused by the on-off valve can be eliminated, it is possible to improve the efficiency of the refrigeration cycle.
さらにまた、本発明では前記加熱用熱交換器の冷媒出口
側を、最終段の冷却ユニットの中間熱交換器の一方の流
路と最終段の膨張機構の冷媒入口側とを結んでいる配管
に、他の配管を介して接続し、圧縮機から吐出された高
い沸点の冷媒割合の大きいホットガス冷媒で加熱用熱交
換器により空気を加熱したうえで、この加熱用熱交換器
から流出する冷媒を、最終段の冷却ユニットの中間熱交
換器の高圧側から流出してくる冷媒と合流させた後、最
終段の膨張機構に導き,この膨張機構で減圧し、蒸発器
に流入するようにしているので,比較的高い温度が得ら
れ、したがってさらに広範囲の温度が得られる。Furthermore, in the present invention, the refrigerant outlet side of the heating heat exchanger is connected to a pipe connecting one flow path of the intermediate heat exchanger of the final stage cooling unit and the refrigerant inlet side of the final stage expansion mechanism. , the air is heated in a heating heat exchanger using a hot gas refrigerant with a large proportion of high boiling point refrigerant discharged from the compressor, and then the refrigerant flows out from the heating heat exchanger. The refrigerant is combined with the refrigerant flowing out from the high pressure side of the intermediate heat exchanger of the final stage cooling unit, and then guided to the final stage expansion mechanism, where the pressure is reduced and the refrigerant flows into the evaporator. Because of this, relatively high temperatures can be obtained, and therefore a wider range of temperatures can be obtained.
また、本発明では前記加熱用熱交換器の冷媒出口側を、
多段に設けられた冷却ユニットの少なくとも1つの冷却
ユニットの膨張機構の冷媒入口側に接続しており、最終
段の膨張機構、すなわち蒸発器の冷媒入口側の膨張機構
を全閑にし、ホットガスバイパス配管に設けられた開閉
弁または開度調節可能な弁を開状態にし、加熱用熱交換
器にホットガス冷媒を流すことにより、低温運転状態で
蒸発器に付着する霜を有効に除去することができる.
さらに、本発明では前記ホットガスバイパス配管に、各
段の冷却ユニットの膨張機構とその近傍を、前記ホット
ガスバイパス配管を流れる冷媒により加熱する加熱部を
設けているので、万一冷却ユニットの膨張機構に同化抽
が詰まった場合に、除霜運転モードなどの比較的高温発
生運転時を利用して前記同化油を融解して取り除くこと
ができる。Further, in the present invention, the refrigerant outlet side of the heating heat exchanger is
It is connected to the refrigerant inlet side of the expansion mechanism of at least one of the cooling units installed in multiple stages, and the expansion mechanism of the final stage, that is, the expansion mechanism on the refrigerant inlet side of the evaporator, is completely idle, and hot gas bypass is performed. By opening an on-off valve or an adjustable valve installed in the piping and allowing hot gas refrigerant to flow through the heating heat exchanger, it is possible to effectively remove frost that adheres to the evaporator during low-temperature operation. can. Furthermore, in the present invention, the hot gas bypass piping is provided with a heating section that heats the expansion mechanism of the cooling unit of each stage and its vicinity by the refrigerant flowing through the hot gas bypass piping, so that in case of expansion of the cooling unit, If the assimilation oil is clogged in the mechanism, the assimilated oil can be melted and removed using a relatively high temperature generating operation such as a defrosting operation mode.
さらにまた,本発明では試験室と.高温室と、低温室と
を設け,試験室と高温室、および試験室と低温室とをそ
れぞれ空気流路で結ぶとともに、前記高温室と低温室を
も空気流路で結び、各空気流路にダンパを設けており、
ダンパを選択的に開けることにより、試験中であっても
,高温室から低温室へ高温空気を供給することができ、
したがって低温運転時に蒸発器に付着する霜を高温室側
の高温空気を利用して除去することができる。Furthermore, in the present invention, a test room and a test room. A high-temperature chamber and a low-temperature chamber are provided, and the test chamber and the high-temperature chamber and the test chamber and the low-temperature chamber are connected by air channels, respectively, and the high-temperature chamber and the low-temperature chamber are also connected by an air channel. A damper is installed in the
By selectively opening the damper, high temperature air can be supplied from the high temperature chamber to the low temperature chamber even during testing.
Therefore, the frost that adheres to the evaporator during low-temperature operation can be removed using the high-temperature air from the high-temperature chamber side.
そして、本発明では超低温発生装置内を流動する流体と
して,超低温発生装置による発生温度よりも沸点の低い
不活性ガスを用いているので,蒸発器等の低温部への着
霜を防止できるため、除霜運転が不要となる。In addition, in the present invention, as the fluid flowing in the ultra-low temperature generator, an inert gas having a boiling point lower than the temperature generated by the ultra-low temperature generator is used, so frost formation on low-temperature parts such as the evaporator can be prevented. Defrosting operation becomes unnecessary.
以下、本発明の実施例を第1図〜第7図により説明する
。Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.
第l図は本発明の第1の実施例を示すもので、一部を断
面とした系統図である.
この第1の実施例では,試験室■と、高温室2と、低温
室3とを備えている。FIG. 1 shows the first embodiment of the present invention, and is a partially sectional system diagram. This first embodiment includes a test chamber (2), a high temperature chamber 2, and a low temperature chamber 3.
前記試験室1には、電子部品等の試料(図示せず)を設
置するようになっている.また、前記試験室lには外気
に連通ずる空気流路が互いに間隔をおいて2つ形成され
ており、各空気流路にはダンパ18a,18bが設けら
れている.前記高温室2には、加熱装置が設けられてい
る。In the test chamber 1, samples such as electronic components (not shown) are installed. Further, in the test chamber I, two air passages communicating with the outside air are formed at a distance from each other, and each air passage is provided with dampers 18a and 18b. The high temperature chamber 2 is provided with a heating device.
この加熱装置は,電気ヒータ等の加熱器15と,高温室
用送風機16とを有して構成されている。This heating device includes a heater 15 such as an electric heater and a blower 16 for a high temperature room.
前記試験室1と高温室2とは,互いに間隔をおいて形威
された2つの空気流路により結ばれており、各空気流路
にはダンパ18c,18dが設けられている。The test chamber 1 and the high temperature chamber 2 are connected by two air channels spaced apart from each other, and each air channel is provided with dampers 18c and 18d.
前記低温室3には,超低温発生装置が接続されており、
また低温室用送風機17が設けられてレ)る.前記試験
室lと低温室3とは、互いに間隔をおいて形威された2
つの空気流路で結ばれており、各空気流路にはダンパ1
8e,18fが設けられている。An ultra-low temperature generator is connected to the cold room 3,
A blower 17 for the cold room is also provided. The test chamber 1 and the cold room 3 are spaced apart from each other.
They are connected by two air channels, and each air channel has one damper.
8e and 18f are provided.
前記超低温発生装置として,本発明では冷凍サイクルが
用いられている。そして、この実施例では単元混合冷媒
・冷凍サイクルが用いられてレ1る.その単元混合冷媒
・冷凍サイクルは、単一の圧縮機4と,凝縮器5と,過
冷却器6と、初段の冷却ユニット1と、2段目の冷却ユ
ニット■と、最終段のa張機構14と、低温室3内に設
置された蒸発器9と,膨張タンク27とを配管により接
続して構成されている.
前記初段の冷却ユニットiは、過冷却器6の冷媒出口側
に接続されかつ凝縮された冷媒をガス冷媒と液冷媒とに
分離する気液分離器10と、この気液分離器10で分離
されたガス冷媒を一方の流路に導きかつ他方の流路を流
れる低圧低温の冷媒で冷却する中間熱交換器7と、前記
気液分離器10で分離された液冷媒を減圧しかつ前記中
間熱交換器7の他方の流路へ流す膨張機構12とを備え
て構成されている。前記膨張機構12には、この実施例
ではキャピラリチューブが使用されている。In the present invention, a refrigeration cycle is used as the ultra-low temperature generator. In this embodiment, a unitary mixed refrigerant/refrigeration cycle is used. The unit mixed refrigerant/refrigeration cycle consists of a single compressor 4, a condenser 5, a subcooler 6, a first-stage cooling unit 1, a second-stage cooling unit ■, and a tension mechanism in the final stage. 14, an evaporator 9 installed in the cold room 3, and an expansion tank 27 are connected by piping. The first stage cooling unit i includes a gas-liquid separator 10 that is connected to the refrigerant outlet side of the supercooler 6 and separates the condensed refrigerant into a gas refrigerant and a liquid refrigerant; an intermediate heat exchanger 7 that guides a gas refrigerant into one flow path and cools it with a low-pressure low-temperature refrigerant flowing through the other flow path; It is configured to include an expansion mechanism 12 that causes the flow to flow into the other flow path of the exchanger 7. The expansion mechanism 12 uses a capillary tube in this embodiment.
前記2段目の冷却ユニットnは、初段の中間熱交換器7
で冷却された冷媒の出口側に接続されかつ凝縮された冷
媒をガス冷媒と液冷媒とに分離する気液分離器11と、
この気液分離器11で分離されたガス冷媒を一方の流路
に導きかつ他方の流路を流れる低圧低温の冷媒で冷却す
る中間熱交換器8と,前記気液分離器l1で分離された
液冷媒を減圧しかつ前記中間熱交換器8の他方の流路へ
流す膨張機構13とを備えて構成されている.そして、
前記膨張機構13もこの実施例ではキャピラリチューブ
が用いられている.
少なくとも、前記最終段の膨張機構14は、開度調節可
能な膨張機構とされており、この実施例では電動膨張弁
が用いられている.この最終段の膨張機構14は、2段
目の冷却ユニット■の中間熱交換器8の高圧側,つまり
この中間熱交換器8で冷却された冷媒の出口側に配管を
介して接続されており,2段目の冷却ユニット■の中間
熱交換器8において冷却された液化した冷媒を減圧し,
蒸発器9に導くようになっている.
前記蒸発器9は,最終段の膨張機構14から流入した冷
媒により冷凍サイクルの中でノ&も低い温度を発生させ
,前記低温室3内で低温空気を生成するようになってい
る。また、蒸発器9の冷媒出口側は配管を通じて、冷媒
を2段目の冷却ユニット■の中間熱交換器8→初段の冷
却ユニットIの中間熱交換器7→過冷却器6を経由して
圧縮機4へ帰還させるように接続されている.
前記膨張タンク27は,冷凍サイクルの停止時に、一時
冷媒を回収するようになっている.前記第1の実施例の
環境試験装置は、次のように運転され、作用する。The second stage cooling unit n is the first stage intermediate heat exchanger 7.
a gas-liquid separator 11 connected to the outlet side of the cooled refrigerant and separating the condensed refrigerant into gas refrigerant and liquid refrigerant;
An intermediate heat exchanger 8 guides the gas refrigerant separated in the gas-liquid separator 11 to one channel and cools it with a low-pressure low-temperature refrigerant flowing in the other channel, and the gas-liquid separator 11 separates the gas refrigerant. The expansion mechanism 13 reduces the pressure of the liquid refrigerant and causes it to flow into the other channel of the intermediate heat exchanger 8. and,
The expansion mechanism 13 also uses a capillary tube in this embodiment. At least the final stage expansion mechanism 14 is an expansion mechanism whose opening degree can be adjusted, and in this embodiment, an electric expansion valve is used. This final stage expansion mechanism 14 is connected via piping to the high pressure side of the intermediate heat exchanger 8 of the second stage cooling unit (2), that is, to the outlet side of the refrigerant cooled by this intermediate heat exchanger 8. , the liquefied refrigerant cooled in the intermediate heat exchanger 8 of the second stage cooling unit ■ is depressurized,
It is designed to lead to evaporator 9. The evaporator 9 generates the lowest temperature in the refrigeration cycle with the refrigerant flowing from the expansion mechanism 14 at the final stage, and generates low-temperature air in the cold room 3. In addition, the refrigerant outlet side of the evaporator 9 passes through piping, and the refrigerant is compressed via the intermediate heat exchanger 8 of the second-stage cooling unit ■→the intermediate heat exchanger 7 of the first-stage cooling unit I→the supercooler 6. It is connected to return to aircraft 4. The expansion tank 27 is designed to temporarily recover refrigerant when the refrigeration cycle is stopped. The environmental test apparatus of the first embodiment is operated and functions as follows.
まず,試験室1内に電子部品等の試料(図示せず)を設
置し、高温室2内に設けられた加熱器15と、高温室用
送風機16と、低温室3に接続された超低温発生装置で
ある冷凍サイクルと,低温室用送風機17とを起動させ
、ダンパ18c,18dの組およびダンパ18e,18
fの組を交互に開き、試験室1と高温室2とを結ぶ空気
流路、試験室1と低温室3とを結ぶ空気流路とを通じて
,試験室1内に高温空気と低温空気とを交互に供給し、
試料に冷熱衝撃を与えてその耐久性試験を行う。First, a sample (not shown) such as an electronic component is installed in the test chamber 1, and a heater 15 provided in the high temperature chamber 2, a blower 16 for the high temperature chamber, and an ultra-low temperature generator connected to the low temperature chamber 3 are installed. The refrigeration cycle device and the cold room blower 17 are started, and the set of dampers 18c and 18d and the dampers 18e and 18 are activated.
F sets are opened alternately, and high-temperature air and low-temperature air are introduced into the test chamber 1 through the air flow path connecting the test chamber 1 and the high temperature chamber 2 and the air flow path connecting the test chamber 1 and the low temperature chamber 3. supply alternately,
A durability test is performed by subjecting the sample to thermal shock.
ところで、前記超低温発生装置である冷媒サイクルには
、冷媒として例えば沸点の高い順にRl2,R13,R
l4を混合した混合冷媒を用いる.ついで、冷凍サイク
ルを起動すると、前記冷媒は圧縮機4で圧縮され、凝縮
器5で凝縮され、過冷却器6で冷却され、一番沸点の高
いR12が凝縮液化し,初段の冷却ユニットIに導かれ
る。By the way, in the refrigerant cycle which is the ultra-low temperature generating device, for example, Rl2, R13, R
A mixed refrigerant containing l4 is used. Next, when the refrigeration cycle is started, the refrigerant is compressed by the compressor 4, condensed by the condenser 5, and cooled by the subcooler 6, and R12, which has the highest boiling point, is condensed and liquefied, and is sent to the first stage cooling unit I. be guided.
前記初段の冷却ユニットIに導かれた冷媒は、初段の冷
却ユニットIの気液分離器loでガス冷媒と液冷媒とに
分離される.前記初段の冷却ユ二ット■の気液分離器1
0で分離されたガス冷媒は、R13とR14が主成分で
あり、このガス冷媒は初段の冷却ユニットiの中間熱交
換器7の一方の流路に導かれ、同じ中間熱交換器7の他
方の流路を流れる低圧低温の冷媒と熱交換し,冷却され
て2番1]に沸点が高いR13が液化し、2段目の冷却
ユニット■の気液分1ii11に導かれる.前記初段の
冷却ユニット■の気液分離器1oで分離された液冷媒は
、初段の冷却ユニットIの膨張機構12で絞られ,低圧
低温の冷媒となって初段の冷却ユニット!の中間熱交換
器7の低圧側,つまり中間熱交換器7の他方の流路に流
入する.前記2段目の冷却ユニット■の気液分離器1l
に導かれた冷媒は、この気液分離器11でR14のガス
冷媒と,R13の液冷媒とに分離される.前記2段目の
冷却ユニット■の気液分離器11で分離されたR14の
ガス冷媒は,2段口の冷却ユニット■の中間熱交換器8
の一方の流路に導かれ,同じ中間熱交換器8の他方の流
路を流れる低圧低温の冷媒と熱交換し.R14のガス冷
媒は冷却されて液化し、最終段の膨張機4iI14に導
かれる.前記2段目の冷却ユニット■の気液分離器l1
で分離されたR13の液冷媒は52段目の冷却ユニット
I1の膨張機構13によって絞−られ、低圧低温の冷媒
となって2段目の冷却ユニット■の中間熱交換器8の他
方の流路に流入する。The refrigerant introduced to the first-stage cooling unit I is separated into gas refrigerant and liquid refrigerant by the gas-liquid separator lo of the first-stage cooling unit I. Gas-liquid separator 1 of the first stage cooling unit ■
The main components of the gas refrigerant separated at 0 are R13 and R14, and this gas refrigerant is led to one flow path of the intermediate heat exchanger 7 of the first-stage cooling unit i, and is led to the other flow path of the same intermediate heat exchanger 7. It exchanges heat with the low-pressure, low-temperature refrigerant flowing through the flow path, and is cooled to liquefy R13, which has a high boiling point, and is guided to the gas-liquid component 1ii11 of the second-stage cooling unit (2). The liquid refrigerant separated by the gas-liquid separator 1o of the first-stage cooling unit (2) is throttled by the expansion mechanism 12 of the first-stage cooling unit I, and becomes a low-pressure, low-temperature refrigerant that is used in the first-stage cooling unit! It flows into the low pressure side of the intermediate heat exchanger 7, that is, the other flow path of the intermediate heat exchanger 7. 1 liter of gas-liquid separator of the second stage cooling unit ■
The refrigerant introduced is separated into R14 gas refrigerant and R13 liquid refrigerant in this gas-liquid separator 11. The R14 gas refrigerant separated by the gas-liquid separator 11 of the second-stage cooling unit ■ is transferred to the intermediate heat exchanger 8 of the second-stage cooling unit ■.
The refrigerant is introduced into one flow path of the intermediate heat exchanger 8 and exchanges heat with the low-pressure low-temperature refrigerant flowing through the other flow path of the same intermediate heat exchanger 8. The R14 gas refrigerant is cooled, liquefied, and guided to the final stage expander 4iI14. Gas-liquid separator l1 of the second-stage cooling unit ■
The separated R13 liquid refrigerant is throttled by the expansion mechanism 13 of the 52nd-stage cooling unit I1, becomes a low-pressure, low-temperature refrigerant, and enters the other flow path of the intermediate heat exchanger 8 of the second-stage cooling unit (2). flows into.
前記最終段の膨張4e!14に導かれた冷媒は,この膨
張機構14で減圧されて蒸発器9に流入し、この冷凍サ
イクルの中で最も低い温度を発生させる.
前記蒸発器9から低い温度を発生させると,低温室3内
で低温空気が生成される.その低温空気を試験室1に導
入することによって、試験室■内に低温環境を作り出す
ことができる.
この冷凍サイクルによれば、最も沸点の低いR14が完
全に他の冷媒と分離されて蒸発器9へ導入された場合に
,そのときの低圧側運転圧力と同じ圧力におけるR14
の飽和温度の発生温度が得られる.しかし、蒸発m9へ
供給するR14中に沸点の高いR13,Rl4が混入さ
れると、低圧側圧力条件が前述の場合と同じであっても
,蒸発器9で得られる温度は高くなる.
したがって、初段の冷却ユニット1の膨張機構12と、
2段目の冷却ユニット■の膨張機構13と、最終段の膨
張機構l4のうちの,少なくとも最終段の膨張機構14
に電動膨張弁などの開度調節可能な膨張機構を用い、そ
の開度を変えてやることにより、低圧側圧力条件の変化
に伴って温度レベルが変わる。つまり,最終段の膨!1
I!機構14の開度を例えば大きくした場合には、蒸発
圧力の上昇が引き金となって初段および2段目の中間熱
交換器7,8の低圧側温度が上昇するため、中間熱交換
器7,8の駆動力となる高圧側温度との温度差が変化し
,前記中間熱交換器7,8での混合冷媒中のR12,R
l3の凝縮液化;¥11合が異なってくる.
このようにすれば、蒸発器9へ流入する冷媒混合割合を
変えることができるため、従来技術のごとく,単一冷媒
を用いた冷凍サイクルをカスケード的に複数組み合わせ
た多元冷凍サイクルのように蒸発器の部分に新たにホッ
トガスバイパス用の熱交換器を設置しなくとも、比較的
広範囲に低温条件が得られる.
なお、前記冷却ユニットは2段設置するものに限らず、
3段以上設置してもよい.また、膨張機構の開度調節に
ついても,最終段の膨張機構14の外に、各段の冷却ユ
ニットの膨張機構にも開度調節可能なものを用いてもよ
い。Said final stage expansion 4e! The refrigerant introduced into the refrigeration cycle 14 is depressurized by the expansion mechanism 14, flows into the evaporator 9, and generates the lowest temperature in the refrigeration cycle. When the evaporator 9 generates a low temperature, low temperature air is generated in the cold room 3. By introducing the low-temperature air into test chamber 1, a low-temperature environment can be created in test chamber 1. According to this refrigeration cycle, when R14 having the lowest boiling point is completely separated from other refrigerants and introduced into the evaporator 9, R14 at the same pressure as the low pressure side operating pressure at that time
The temperature at which the saturation temperature occurs can be obtained. However, if R13 and Rl4 having a high boiling point are mixed into R14 supplied to the evaporator m9, the temperature obtained in the evaporator 9 will become higher even if the low pressure side pressure conditions are the same as in the above case. Therefore, the expansion mechanism 12 of the first stage cooling unit 1,
At least the final stage expansion mechanism 14 of the second stage cooling unit 13 and the final stage expansion mechanism l4.
By using an expansion mechanism with adjustable opening, such as an electric expansion valve, and changing the opening, the temperature level changes as the pressure conditions on the low pressure side change. In other words, the final stage of swelling! 1
I! For example, when the opening degree of the mechanism 14 is increased, an increase in evaporation pressure is triggered and the low pressure side temperature of the first and second stage intermediate heat exchangers 7, 8 increases. The temperature difference between the high-pressure side temperature and the driving force of 8 changes, and the R12, R
Condensation and liquefaction of l3; ¥11 go is different. In this way, the mixing ratio of refrigerant flowing into the evaporator 9 can be changed, so the evaporator Low-temperature conditions can be obtained over a relatively wide range without installing a new hot gas bypass heat exchanger in the area. Note that the cooling unit is not limited to the one installed in two stages;
Three or more stages may be installed. Furthermore, regarding the adjustment of the opening degree of the expansion mechanism, in addition to the expansion mechanism 14 at the final stage, the expansion mechanism of the cooling unit at each stage may also be capable of adjusting the opening degree.
次に,第2図は本発明の第2の実施例を示すもので、一
部を断面とした系統図である。Next, FIG. 2 shows a second embodiment of the present invention, and is a system diagram partially shown in cross section.
この第2の実施例では,圧縮機4の吐出側と,最終段の
膨張機構14と蒸発器9の冷媒入口側とを結んでいる配
管とが、ホットガスバイパス配管19により接続されて
いる.前記ホットガスバイパス配管19には、開閉弁2
1が設けられている。In this second embodiment, the discharge side of the compressor 4 and the pipe connecting the final stage expansion mechanism 14 and the refrigerant inlet side of the evaporator 9 are connected by a hot gas bypass pipe 19. The hot gas bypass pipe 19 has an on-off valve 2.
1 is provided.
また、蒸発器9の冷媒出口側と,この実施例では最終段
の冷却ユニットである2段目の冷却ユニット■の中間熱
交換1i%9の他方の流路の冷媒入口側とを結んでいる
配管には、開閉弁22が設けられている.
さらに、前記蒸発器9の冷媒出口側と,2段目の冷却ユ
ニット■の中間熱交換器8の他方の流路の冷媒入口側と
を結んでいる配管に,バイパス配管20が設けられ、こ
のバイパス配管20には膨張機構23が設けられている
。この膨張機構23には、キャピラリチューブが用いら
れている。In addition, the refrigerant outlet side of the evaporator 9 is connected to the refrigerant inlet side of the other flow path of the intermediate heat exchanger 1i%9 of the second stage cooling unit (2), which is the final stage cooling unit in this embodiment. An on-off valve 22 is provided in the piping. Further, a bypass pipe 20 is provided in the pipe connecting the refrigerant outlet side of the evaporator 9 and the refrigerant inlet side of the other flow path of the intermediate heat exchanger 8 of the second stage cooling unit (2). The bypass piping 20 is provided with an expansion mechanism 23 . This expansion mechanism 23 uses a capillary tube.
この第2の実施例では、圧縮機4から蒸発器9ヘホット
ガスバイパス配管19を通じて,沸点の高いR12,R
13の混合冷媒を、しかも高温状態で供給することがで
きる。したがって,前記第1の実施例よりも,さらに広
範囲の温度が得られる,
また、この第2の実施例では圧縮機4から吐出される混
合冷媒の温度が常温以上で,冷団サイクル中でも最も高
いレベルである。したがって、この混合冷媒を蒸発器9
に導入することにより、超低温運転で蒸発器9に付着す
る霜を除去することができる.
なお、この第2の実施例において,開閉弁21.22に
代えて,電動弁等の開度調節可能な弁を用いてもよい.
また、この第2の実施例の他の構或,作用については、
前記第1の実施例と同様である.ついで,第3図は本発
明の第3の実施例を示すもので、一部を断面とした系統
図である。In this second embodiment, high boiling point R12, R
13 mixed refrigerants can be supplied at high temperatures. Therefore, a wider range of temperatures can be obtained than in the first embodiment. In addition, in this second embodiment, the temperature of the mixed refrigerant discharged from the compressor 4 is above room temperature, which is the highest in the refrigerant cycle. level. Therefore, this mixed refrigerant is transferred to the evaporator 9.
By introducing this into the evaporator 9, it is possible to remove frost adhering to the evaporator 9 during ultra-low temperature operation. In this second embodiment, instead of the on-off valves 21 and 22, a valve whose opening degree can be adjusted, such as an electric valve, may be used. Regarding other structures and functions of this second embodiment,
This is the same as the first embodiment. Next, FIG. 3 shows a third embodiment of the present invention, and is a system diagram partially cut away.
この第3の実施例では、蒸発器9の空気入口側または空
気出口側に、加熱用熱交換器24が設置されている.
前記加熱用熱交換器24の冷媒入口側と,圧縮機4の吐
出側とは、ホットガスバイパス配管l9により接続され
ている。このホットガスバイパス配管l9には、開閉弁
21が設けられている.また、前記加熱用熱交換器24
の冷媒出口側と、この実施例では最終段の冷却ユニット
である2段目の冷却ユニット■の中間熱交換器8の他方
の流路の冷媒入口側とが、配管により接続され、この配
管には膨張機構23が設けられている。この膨張機構2
3には,キャピラリチュープが用いられている。In this third embodiment, a heating heat exchanger 24 is installed on the air inlet side or the air outlet side of the evaporator 9. The refrigerant inlet side of the heating heat exchanger 24 and the discharge side of the compressor 4 are connected by a hot gas bypass pipe 19. This hot gas bypass piping 19 is provided with an on-off valve 21. In addition, the heating heat exchanger 24
The refrigerant outlet side of and the refrigerant inlet side of the other flow path of the intermediate heat exchanger 8 of the second stage cooling unit (2), which is the final stage cooling unit in this embodiment, are connected by a pipe. An expansion mechanism 23 is provided. This expansion mechanism 2
3, a capillary tube is used.
この第3の実施例では、圧縮機4から加熱用熱交換器2
4のホットガスバイパス配管19を通じて、冷凍サイク
ル中でも最も高い温度レベルのホットガス冷媒を供給し
、この加熱用熱交換器24により蒸発器9の空気入口側
または空気出口側を加熱するようにしている。したがっ
て、超低温発生装置の通常運転で、広範囲の温度が得ら
れる外、超低温運転時で,蒸発器9に付着する霜を除去
することができる。In this third embodiment, the compressor 4 is connected to the heating heat exchanger 2.
A hot gas refrigerant having the highest temperature level in the refrigeration cycle is supplied through the hot gas bypass pipe 19 of No. 4, and the air inlet side or the air outlet side of the evaporator 9 is heated by this heating heat exchanger 24. . Therefore, not only can a wide range of temperatures be obtained during normal operation of the ultra-low temperature generator, but also frost adhering to the evaporator 9 can be removed during ultra-low temperature operation.
しかも,この第3の実施例では前記第2の実施例で、主
回路中に設けられていた開閉弁22や開度調節可能な弁
を必要としないため、これらの弁による圧力損失をなく
すことができるので、超低温発生装置の効率を向上させ
ることが可能となる.この第3の実施例の他の構成,作
用については,前記第2の実施例と同様である.
続いて、第4図は本発明の第4の実施例を示すもので,
一部を断面とした系統図である。Moreover, in the third embodiment, the on-off valve 22 and the valve whose opening degree can be adjusted, which were provided in the main circuit in the second embodiment, are not required, so that the pressure loss caused by these valves can be eliminated. This makes it possible to improve the efficiency of ultra-low temperature generators. The other configurations and functions of this third embodiment are the same as those of the second embodiment. Next, FIG. 4 shows a fourth embodiment of the present invention.
It is a system diagram with a part cut away.
この第4の実施例では,加熱用熱交換器24の冷媒出口
側が配管を介して、この実施例の最終段の冷却ユニット
である2段目の冷却ユニット■の中間熱交換器8の一方
の流路と最終段の膨張機構14とを結んでいる配管に接
続されている。In this fourth embodiment, the refrigerant outlet side of the heating heat exchanger 24 is connected to one side of the intermediate heat exchanger 8 of the second-stage cooling unit (2), which is the final-stage cooling unit of this embodiment, via piping. It is connected to a pipe connecting the flow path and the final stage expansion mechanism 14.
この第4の実施例によれば、圧縮機4から吐出された沸
点の高いR12,Rl3の割合の大きいホットガス冷媒
で加熱用熱交換器24を介して空気を加熱したうえに、
この加熱用熱交換器24から流出する冷媒が2段目の冷
却ユニット■の中間熱交換器8の高圧側から流出してく
る冷媒と合流した後、最終段の膨張機構14で減圧され
、蒸発器9へ流入するため,蒸発器9で比較的高い温度
が得られ、したがって広範囲の温度を得ることができる
。According to this fourth embodiment, the air is heated via the heating heat exchanger 24 with the hot gas refrigerant having a high proportion of R12 and Rl3 having high boiling points discharged from the compressor 4, and
After the refrigerant flowing out from this heating heat exchanger 24 joins with the refrigerant flowing out from the high pressure side of the intermediate heat exchanger 8 of the second stage cooling unit (2), it is depressurized in the final stage expansion mechanism 14 and evaporated. Because of the flow into the vessel 9, relatively high temperatures are obtained in the evaporator 9 and therefore a wide range of temperatures can be obtained.
なお,この第4の実施例の他の構成,作用については、
前記第3の実施例と同様である。Regarding other configurations and functions of this fourth embodiment,
This is the same as the third embodiment.
さらに、第5図は本発明の第5の実施例を示すもので、
一部を断面とした系統図である.この第5の実施例では
、加熱用熱交換器24の冷媒出口側が配管を介して、初
段の冷却ユニットIの膨張機構12の冷媒入口側の配管
に接続されている。Furthermore, FIG. 5 shows a fifth embodiment of the present invention,
This is a partial cross-sectional diagram of the system. In this fifth embodiment, the refrigerant outlet side of the heating heat exchanger 24 is connected via piping to the refrigerant inlet side piping of the expansion mechanism 12 of the first-stage cooling unit I.
この第5の実施例によれば,最終段の膨張機構14を全
閑にし、ホットガスバイパス配管19に設けられた開閉
弁21を開状態にして加熱用熱交換器24にホットガス
冷媒を流すことにより、低温運転で蒸発1t9に付着す
る霜を除去することができる。According to this fifth embodiment, the expansion mechanism 14 at the final stage is completely idle, and the on-off valve 21 provided in the hot gas bypass pipe 19 is opened to allow hot gas refrigerant to flow into the heating heat exchanger 24. As a result, frost adhering to the evaporator 1t9 can be removed during low-temperature operation.
なお,この第5の実施例において、加熱用熱交換器24
の冷媒出口側を、2段目の冷却ユニット■の膨張機構1
3の冷媒入口側の配管に接続してもよく、各段の冷却ユ
ニットの膨張機構の冷媒入口側の配管に分岐して接続し
てもよい。In addition, in this fifth embodiment, the heating heat exchanger 24
The refrigerant outlet side of the expansion mechanism 1 of the second stage cooling unit ■
It may be connected to the piping on the refrigerant inlet side of No. 3, or it may be branched and connected to the piping on the refrigerant inlet side of the expansion mechanism of the cooling unit of each stage.
また、この第5の実施例の他の構成,作用は、前記第3
,第4の実施例と同様である。Further, other configurations and functions of this fifth embodiment are as follows.
, similar to the fourth embodiment.
次に、第6@は本発明の第6の実施例を示すもので、一
部を断面とした系統図である。Next, No. 6 @ shows the sixth embodiment of the present invention, and is a system diagram with a part of it in cross section.
この第6の実施例では,圧縮機4の吐出側と、最終段の
膨張機構14と蒸発器9とを結んでいる配管とに、ホッ
トガスバイパス配管19が接続され、このホットガスバ
イパス配管19に開閉弁21が設けられている.
そして、前記ホットガスバイパス配管19には、各段の
冷却ユニット夏,■の膨張機構12.13とその近傍を
熱的に接続し、前記膨張機構12,13およびこれらの
膨張機構12.13の冷媒入口や冷媒出口付近を加熱す
る加熱部12’,13’が設けられている。In this sixth embodiment, a hot gas bypass pipe 19 is connected to the discharge side of the compressor 4 and the pipe connecting the final stage expansion mechanism 14 and the evaporator 9. An on-off valve 21 is provided in the . The hot gas bypass piping 19 is thermally connected to the expansion mechanisms 12.13 of each stage of the cooling units and the vicinity thereof, and the expansion mechanisms 12, 13 and the expansion mechanisms 12.13 are Heating sections 12' and 13' are provided to heat the vicinity of the refrigerant inlet and refrigerant outlet.
この第6の実施例によれば、万一,各段の冷却ユニット
I,IIの膨張機構12.13に固化油が詰まった場合
に、最終段の膨張機構14を閉じ、ホットガスバイパス
配管19に設けられた開閉弁21を開けると、除tRi
l&!転モード時などの比較的高温発生運転時を利用し
て、前記固化油を融解して取り除くことができる。According to this sixth embodiment, if the expansion mechanisms 12 and 13 of the cooling units I and II of each stage become clogged with solidified oil, the expansion mechanism 14 of the final stage is closed and the hot gas bypass piping 19 is closed. When opening the on-off valve 21 provided in the
l&! The solidified oil can be melted and removed by utilizing a relatively high-temperature operation such as during rotation mode.
なお、最終段の膨張機構14は、除霜運転モード時には
全開とするために、蒸発器9へ供給するホットガス冷媒
の熱が配管を伝わって、最終段の膨張機構14と、その
付近に付着している固化油を融解し、除去することもで
きる。In addition, since the final stage expansion mechanism 14 is fully opened during the defrosting operation mode, the heat of the hot gas refrigerant supplied to the evaporator 9 is transmitted through the piping and adheres to the final stage expansion mechanism 14 and its vicinity. It is also possible to melt and remove solidified oil.
また,この第6の実施例について,図面では第2の実施
例に示すものに適用した場合を示しているが、第3,第
4および第5の実施例にも併せて適用することができる
。Further, regarding this sixth embodiment, although the drawing shows a case where it is applied to what is shown in the second embodiment, it can also be applied to the third, fourth, and fifth embodiments. .
ついで,第7図は本発明の第7の実施例を示すもので,
一部を断面とした系統図である.この第7の実施例では
、高温室2と低温室3とが空気流路25.26で結ばれ
ており、前記空気流路25.26にはダンパ18g,1
8hが設けられている。Next, FIG. 7 shows a seventh embodiment of the present invention.
This is a partial cross-sectional diagram of the system. In this seventh embodiment, the high temperature chamber 2 and the low temperature chamber 3 are connected by an air passage 25.26, and the air passage 25.26 includes dampers 18g, 1
8h is provided.
この第7の実施例によれば、ダンパ18g,18hを開
けることにより、高温室2で生成された高温空気を低温
室3へ直接供給することができる。したがって、試験室
1を利用しているときでも,高温空気を低温室3へ送り
、超低温発生装置の蒸発器9に付着している霜を除去す
ることができる。According to this seventh embodiment, by opening the dampers 18g and 18h, high-temperature air generated in the high-temperature chamber 2 can be directly supplied to the low-temperature chamber 3. Therefore, even when the test chamber 1 is in use, high-temperature air can be sent to the low-temperature chamber 3 to remove frost adhering to the evaporator 9 of the ultra-low temperature generator.
なお,この第7の実施例において,超低温発生装置とし
て,図面では第1の実施例のものを適用した場合を示し
ているが、これに限らず,第2〜第6の実施例のものも
適用することができる.そして,超低温発生装置として
第2〜第6の実施例のものを採用した場合、蒸発器9の
霜を除去するために最終段の膨張機構14を全開とレ、
蒸発器9のホットガス冷媒を供給する運転と、高温室2
から低温室3へ高温空気を供給することとを併用すれば
、蒸発器9の霜を融解することによっていったん冷えた
空気を、加熱用熱交換器24を介してホットガス冷媒に
より再加熱することができる。その結果、高温室2から
低温室3へ高温空気を送って加熱する加熱量を少なくす
ることができる。これは,冷凍サイクルの再起動時の立
ち上がり等の点から,冷凍サイクルの運転を停止したく
ない場合に、特に有効である。In addition, in this seventh embodiment, although the drawing shows the case where the ultra-low temperature generator of the first embodiment is applied, it is not limited to this, and the devices of the second to sixth embodiments may also be used. It can be applied. When the second to sixth embodiments are adopted as the ultra-low temperature generator, the final stage expansion mechanism 14 is fully opened to remove frost from the evaporator 9.
Operation of supplying hot gas refrigerant to evaporator 9 and high temperature chamber 2
If this is combined with supplying high-temperature air to the cold room 3 from the evaporator 9, the air that has been cooled once by melting the frost in the evaporator 9 can be reheated by the hot gas refrigerant via the heating heat exchanger 24. I can do it. As a result, it is possible to reduce the amount of heating by sending high-temperature air from the high-temperature chamber 2 to the low-temperature chamber 3. This is particularly effective when it is not desired to stop the operation of the refrigeration cycle due to the start-up when the refrigeration cycle is restarted.
また,前記第1〜第7の実施例に示した超低温発生装置
において、その装置内を流動する流体として、超低温発
生装置による発生温度よりも沸点の低い窒素ガスなどの
不活性ガスを用いることにより、蒸発器9等の低温部へ
の着霜を防止することができるため、除霜運転が不要と
なる。Furthermore, in the ultra-low temperature generator shown in the first to seventh embodiments, an inert gas such as nitrogen gas having a boiling point lower than the generation temperature by the ultra-low temperature generator is used as the fluid flowing in the apparatus. Since frost formation on low temperature parts such as the evaporator 9 and the like can be prevented, defrosting operation becomes unnecessary.
以上説明した本発明の請求項l記載の発明によれば、試
験室と、この試験室内の環境を作る超低温発生装置およ
び加熱装置とを備え、前記超低温発生装置を冷凍サイク
ルで構威し,この冷凍サイクルを、沸点の異なるものを
複数混合した冷媒を圧縮する単一の圧縮機と、その圧縮
された冷媒を凝縮する凝縮器と,多段設置された冷却ユ
ニットと、最終段の冷却ユニットの高圧側に接続された
最終段の膨張機構と、この膨張機構に接続されかつ超低
温を発生する蒸発器と、この蒸発器から各段の冷却ユニ
ットを経山して前記圧縮機に冷媒を帰還させる配管とを
備えて構成し,前記各段の冷却ユニットを、凝縮された
冷媒をガス冷媒と液冷媒とに分離する気液分離器と,分
離されたガス冷媒を一方の流路に導きかつ他方の流路を
流れる低圧低温の冷媒で冷却する中間熱交換器と,分離
された液冷媒を減圧する膨張機構と、減圧された低圧低
温の冷媒を前記中間熱交換器の他方の流路に導く配管と
で構成し、前記最終段の膨張機構を最終段の冷却ユニッ
トの中間熱交換器における一方の流路の冷媒出口側に接
続するとともに,少なくとも前記最終段の膨張機構を,
開度調節可能な膨張機構としており、少なくとも最終段
の膨張機構の開度を調節することにより、例えば開度を
大きくした場合には、蒸発圧力の上昇が引き金となって
冷却ユニットの中間熱交換器の低圧側温度が上昇するた
め、混合冷媒中の高沸点冷媒の凝縮液化割合が小さくな
り、蒸発器へ流入する冷媒は,高沸点の冷媒の割合の大
きい混合冷媒となるため、比較的高温が得られるので、
広範囲の温度を容易に作り出し得る効果がある。According to the invention recited in claim 1 of the present invention as described above, the test chamber is provided with an ultra-low temperature generator and a heating device for creating an environment in the test chamber, and the ultra-low temperature generator is configured with a refrigeration cycle. A refrigeration cycle consists of a single compressor that compresses a mixture of refrigerants with different boiling points, a condenser that condenses the compressed refrigerant, cooling units installed in multiple stages, and a high-pressure cooling unit in the final stage. A final stage expansion mechanism connected to the side, an evaporator connected to this expansion mechanism and generating ultra-low temperature, and piping that returns refrigerant from the evaporator to the cooling units of each stage and to the compressor. and a gas-liquid separator that separates the condensed refrigerant into a gas refrigerant and a liquid refrigerant; An intermediate heat exchanger that cools with a low-pressure low-temperature refrigerant flowing through a flow path, an expansion mechanism that reduces the pressure of the separated liquid refrigerant, and piping that guides the reduced-pressure low-pressure low-temperature refrigerant to the other flow path of the intermediate heat exchanger. The expansion mechanism of the final stage is connected to the refrigerant outlet side of one flow path in the intermediate heat exchanger of the cooling unit of the final stage, and at least the expansion mechanism of the final stage is connected to the refrigerant outlet side of the intermediate heat exchanger of the final stage cooling unit.
The expansion mechanism has an adjustable opening degree, and by adjusting the opening degree of at least the final stage expansion mechanism, for example, when the opening degree is increased, an increase in evaporation pressure will trigger an intermediate heat exchange of the cooling unit. As the temperature on the low pressure side of the evaporator increases, the condensation rate of the high boiling point refrigerant in the mixed refrigerant decreases, and the refrigerant flowing into the evaporator becomes a mixed refrigerant with a large proportion of high boiling point refrigerant, so the temperature is relatively high. is obtained, so
It has the effect of easily producing a wide range of temperatures.
また、本発明の請求項2記載の発明によれば,前記超低
温発生装置における圧縮機の吐出側と、蒸発器の冷媒入
口側とをホットガスバイパス配管により接続し、このホ
ットガスバイパス配管に開閉弁または開度調節可能な弁
を設け、前記ホットガスバイパス配管を通じて蒸発器に
沸点の高い混合冷媒を、高温状態で供給できるため、さ
らに広範囲の温度が得られる効果を有する外、圧縮機が
ら吐出される混合冷媒の温度が常温以上で、冷凍サイク
ル中でも高い温度レベルであり、超低@運転で蒸発器へ
付着する霜を除去し得る効果がある.さらに、本発明の
請求項3記載の発明によれば、前記超低温発生装置にお
ける蒸発器の空気入口側または仝気出口側に加熱用熱交
換器を設置し,圧縮機の吐出側と加熱用熱交換器の冷媒
入口側とをホツ1−ガスバイパス配管により接続し、こ
のホットガスバイパス配管に開閉弁または開度調節可能
な弁を設け、前記加熱用熱交換器で空気を加熱するよう
にしているので、広範囲の温度が得られ、かつ蒸発器ハ
.の霜の付着を防止できる外,主1i’l路中に開閉弁
を設けろ必要がなくなり、その開閉弁による圧力損失を
なくすことができるので、冷凍サイクルの効率の向上を
図り得る効果がある。According to the second aspect of the present invention, the discharge side of the compressor in the ultra-low temperature generator and the refrigerant inlet side of the evaporator are connected by a hot gas bypass piping, and the hot gas bypass piping is opened and closed. By providing a valve or a valve whose opening degree can be adjusted, a mixed refrigerant with a high boiling point can be supplied to the evaporator in a high temperature state through the hot gas bypass piping, which not only has the effect of obtaining a wider range of temperatures, but also reduces the discharge from the compressor. The temperature of the mixed refrigerant is above room temperature, which is a high temperature level even in the refrigeration cycle, and has the effect of removing frost that adheres to the evaporator in ultra-low @ operation. Furthermore, according to the third aspect of the present invention, a heating heat exchanger is installed on the air inlet side or the air outlet side of the evaporator in the ultralow temperature generator, and the The hot gas bypass piping is connected to the refrigerant inlet side of the exchanger, and the hot gas bypass piping is provided with an on-off valve or a valve whose opening degree can be adjusted, so that the air is heated by the heating heat exchanger. A wide range of temperatures can be obtained, and the evaporator c. In addition to preventing the formation of frost, it is no longer necessary to provide an on-off valve in the main path, and pressure loss due to the on-off valve can be eliminated, which has the effect of improving the efficiency of the refrigeration cycle.
さらにまた、本発明の謂求項4記載の発明によれば、前
記加熱用熱交換器の冷媒出口側を、最終段の冷却ユニッ
トの中間熱交換器の一方の流路と最終段の膨張機構の冷
媒入口側とを結んでいる配管に,他の配管を介して接続
し、圧縮機から吐出された高い沸点の冷媒割合の大きい
ホットガス冷媒で加熱用熱交換器により空気を加熱した
うえで,この加熱用熱交換器から流出する冷媒を、最終
段の冷却ユニットの中間熱交換器の高圧側がら流出して
くる冷媒と合流させた後、最終段の膨張機構に導き、こ
の膨張機構で減圧し,蒸発器に流入するようにしている
ので、比較的高い温度が得られ、したがってさらに広範
囲の温度が得られる効果がある.
また,本発明の請求項5記載の発明によれば、前記加熱
用熱交換器の冷媒出口側を、多段に設けられた冷却ユニ
ットの少なくとも1つの玲却ユニットの膨張機構の冷媒
入口側に接続しており、最終段の膨張機構を全閑にし,
ホットガスバイパス配管に設けられた開閉弁または開度
調節可能な弁を開状態にし、加熱用熱交換器にホットガ
ス冷媒を流すことにより、低温運転状態で蒸発器に付着
する霜を有効に除去し得る効果がある。Furthermore, according to the invention described in claim 4 of the present invention, the refrigerant outlet side of the heating heat exchanger is connected to one flow path of the intermediate heat exchanger of the final stage cooling unit and the final stage expansion mechanism. The air is connected via another pipe to the pipe connecting the refrigerant inlet side of the compressor, and the air is heated by a heating heat exchanger using a hot gas refrigerant with a large proportion of refrigerant with a high boiling point discharged from the compressor. , The refrigerant flowing out from this heating heat exchanger is combined with the refrigerant flowing out from the high pressure side of the intermediate heat exchanger of the final stage cooling unit, and then guided to the final stage expansion mechanism. Since the pressure is reduced and the gas flows into the evaporator, a relatively high temperature can be obtained, and therefore a wider range of temperatures can be obtained. According to the fifth aspect of the present invention, the refrigerant outlet side of the heating heat exchanger is connected to the refrigerant inlet side of the expansion mechanism of at least one cooling unit of the cooling unit provided in multiple stages. The final stage expansion mechanism is completely idle.
By opening the on-off valve or adjustable opening valve installed in the hot gas bypass piping and allowing hot gas refrigerant to flow through the heating heat exchanger, frost that adheres to the evaporator during low-temperature operation is effectively removed. There is a potential effect.
さらに,本発明の請求項6記載の発明によれば,前記ホ
ットガスバイパス配管に,各段の冷却ユニットの膨張機
構とその近傍を,前記ホッ1・ガスバイパス配管を流れ
る冷媒により加熱する加熱部を設けているので、万一冷
却ユニットの膨張機構に固化抽が詰まった場合に、除霜
運転モードなどの比較的高温発生運転侍を利用して前記
固化油を融解して除去し得る効果がある。Furthermore, according to the invention set forth in claim 6 of the present invention, a heating section is provided in the hot gas bypass piping for heating the expansion mechanism of the cooling unit of each stage and its vicinity by the refrigerant flowing through the hot gas bypass piping. As a result, in the event that the expansion mechanism of the cooling unit becomes clogged, the solidified oil can be melted and removed using a relatively high temperature generating mode such as a defrosting mode. be.
さらにまた,本発明のjiff求項7記載の発明によれ
ば、試験室と,高温室と、低温室とを設け、試験室と高
温室,および試験室と低温室とをそれぞれ空気流路で結
ぶとともに、前記高1fl 21と低温室をも空気流路
で結び、各空気流路にダンパを設けており、ダンパを選
択的に開けることにより、試験中であっても、高温室か
ら低温室へ高温空気を供給することができ、したがって
低@運転時に蒸発器に付着する霜を高温室側の高温空気
を利用して除表し得る効果がある。Furthermore, according to the invention described in jiff claim 7 of the present invention, a test chamber, a high temperature chamber, and a low temperature chamber are provided, and the test chamber and the high temperature chamber, and the test chamber and the low temperature chamber are connected by air channels, respectively. At the same time, the height 1 fl 21 and the cold room are also connected by an air flow path, and dampers are provided in each air flow path, and by selectively opening the dampers, even during the test, the high temperature room can be connected to the low temperature room. Therefore, there is an effect that the frost that adheres to the evaporator during low @ operation can be removed by using the high temperature air from the high temperature room side.
そして、本発明の請求項8記載の発明によれば、超低温
発生装置内を流動する流体として,超低温発生装置によ
る発生温度よりも沸点の低い不活性ガスを用いているの
で,蒸発器等の低温部への着雷を防止できるため,除箱
運転を不要となし得る効果がある。According to the invention described in claim 8 of the present invention, since an inert gas having a boiling point lower than the generation temperature of the ultra-low temperature generator is used as the fluid flowing in the ultra-low temperature generator, the low temperature of the evaporator, etc. This has the effect of eliminating the need for unboxing operations, as lightning can be prevented from striking the parts.
第l図,第2図,第3図,第4図,第5図,第6図およ
び第7図は,それぞれ本発明の第1,第2,第3,第4
,第5,第6および第7の実施例を示すもので、一部を
断面とした系統図である.1・・・試験室,2・・・高
温室,3・・・低温室、4・・・圧縮機,5・・・凝縮
器、6・・・過冷却器、■・・・初段の冷却ユニット,
■・・・2段目の冷却ユニット、7,8・・・中間熱交
換器、9・・・蒸発器、10.11・・・気液分離器、
12.13・・・膨張機構,14・・・最終段の膨張機
構、15・・・加熱器、16・・・高温室用送風機、1
7・・・低温室用送風機,18a〜18h・・・ダンパ
、19・・・ホットガスバイパス配管、20・・・バイ
パス配管、21.22・・・開閉弁、23・・・膨張機
構、24・・・加熱用熱交換器、12’ 13’・
・・膨張機猶
4
口
l2・膨張機構
l3−・一・ “Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7 are the first, second, third, and fourth figures of the present invention, respectively.
, 5th, 6th, and 7th examples, and is a system diagram with a part cut away. 1... Test chamber, 2... High temperature room, 3... Low temperature room, 4... Compressor, 5... Condenser, 6... Supercooler, ■... First stage cooling unit,
■... Second stage cooling unit, 7, 8... Intermediate heat exchanger, 9... Evaporator, 10.11... Gas-liquid separator,
12.13... Expansion mechanism, 14... Final stage expansion mechanism, 15... Heater, 16... High temperature room blower, 1
7... Blower for cold room, 18a-18h... Damper, 19... Hot gas bypass piping, 20... Bypass piping, 21.22... Opening/closing valve, 23... Expansion mechanism, 24 ...Heating heat exchanger, 12'13'・
・・Expansion machine 4 Port 12・Expansion mechanism 13−・1・“
Claims (1)
置および加熱装置とを備えた環境試験装置において、前
記超低温発生装置を冷凍サイクルで構成し、この冷凍サ
イクルを、沸点の異なるものを複合混合した冷媒を圧縮
する単一の圧縮機と、その圧縮された冷媒を凝縮する凝
縮器と、多段設置された冷却ユニットと、最終段の冷却
ユニットの高圧側に接続された最終段の膨張機構と、こ
の膨張機構に接続されかつ超低温を発生する蒸発器と、
この蒸発器から各段の冷却ユニットを経由して前記圧縮
機に冷媒を帰還させる配管とを備えて構成し、前記各段
の冷却ユニットを、凝縮された冷媒をガス冷媒と液冷媒
とに分離する気液分離器と、分離されたガス冷媒を一方
の流路に導きかつ他方の流路を流れる低圧低温の冷媒で
冷却する中間熱交換器と、分離された液冷媒を減圧する
膨張機構と、減圧された低圧低温の冷媒を前記中間熱交
換器の他方の流路に導く配管とで構成し、前記最終段の
膨張機構を最終段の冷却ユニットの中間熱交換器におけ
る一方の流路の冷媒出口側に接続するとともに、少なく
とも前記最終段の膨張機構を、開度調節可能な膨張機構
としたことを特徴とする境環試験装置。 2、前記超低温発生装置における圧縮機の吐出側と、蒸
発器の冷媒入口側とをホットガスバイパス配管により接
続し、このホットガスバイパス配管に開閉弁と開度調節
可能な弁のいずれかを設け、最終段の冷却ユニットの中
間熱交換器の他方の流路と蒸発器の冷媒出口側とを結ぶ
配管に開閉弁と開度調節可能な弁のいずれかを設け、こ
の配管と並列に他の配管を設けるとともに、該他の配管
に膨張機構を設けたことを特徴とする請求項1記載の環
境試験装置。 3、前記超低温発生装置における蒸発器の空気入口側と
空気出口側のいずれか一方に、加熱用熱交換器を設置し
、前記圧縮機の吐出側と加熱用熱交換器の冷媒入口側と
をホットガスバイパス配管により接続し、このホットガ
スバイパス配管に開閉弁と開度調節可能な弁のいずれか
を設け、前記最終段の中間熱交換器の他方の流路と蒸発
器の冷媒出口側とを結ぶ配管に、前記加熱用熱交換器の
冷媒出口側を、バイパス配管を介して接続するとともに
、このバイパス配管に膨張機構を設けたことを特徴とす
る請求項1記載の環境試験装置。4、前記加熱用熱交換
器の冷媒出口側を、最終段の冷却ユニットの中間熱交換
器の一方の流路と最終段の膨張機構の冷媒入口側とを結
んでいる配管に、他の配管を介して接続したことを特徴
とする請求項3記載の環境試験装置。 5、前記加熱用熱交換器の冷媒出口側を、前記多段に設
けられた冷却ユニットの少なくとも1つの冷却ユニット
の膨張機構の冷媒入口側に、配管を介して接続したこと
を特徴とする請求項3記載の環境試験装置。 6、前記ホットガスバイパス配管に、各段の冷却ユニッ
トの膨張機構との近傍を、前記ホットガスバイパス配管
を流れる冷媒により加熱する加熱部を設けたことを特徴
とする請求項2記載の環境試験装置。 7、試験室と、高温室と、低温室とを設け、前記高温室
には加熱装置を設置し、低温室には前記請求項1〜6記
載のいずれかの超低温発生装置を接続し、前記試験室と
高温室、および試験室と低温室とをそれぞれ空気流路で
結ぶとともに、前記高温室と低温室をも空気流路で結び
、各空気流路にダンパを設けたことを特徴とする環境試
験装置。 8、前記超低温発生装置内を流動する流体として、超低
温発生装置による発生温度よりも沸点の低い不活性ガス
を用いたことを特徴とする請求項1〜7のいずれかに記
載の環境試験装置。[Scope of Claims] 1. An environmental testing device comprising a test chamber, and an ultra-low temperature generator and a heating device for creating an environment within the test chamber, wherein the ultra-low temperature generator is configured with a refrigeration cycle, and the refrigeration cycle is A single compressor that compresses a complex mixture of refrigerants with different boiling points, a condenser that condenses the compressed refrigerant, a cooling unit installed in multiple stages, and a system connected to the high pressure side of the final stage cooling unit. a final stage expansion mechanism; an evaporator connected to this expansion mechanism and generating ultra-low temperature;
and piping that returns the refrigerant from the evaporator to the compressor via the cooling units at each stage, and the cooling unit at each stage separates the condensed refrigerant into gas refrigerant and liquid refrigerant. an intermediate heat exchanger that guides the separated gas refrigerant into one flow path and cools it with a low-pressure low-temperature refrigerant flowing through the other flow path; and an expansion mechanism that reduces the pressure of the separated liquid refrigerant. , and a pipe that guides a reduced pressure, low-pressure, low-temperature refrigerant to the other flow path of the intermediate heat exchanger, and the final stage expansion mechanism is configured of a pipe that leads the reduced pressure low-pressure low-temperature refrigerant to the other flow path of the intermediate heat exchanger of the final stage cooling unit. An environmental test device, characterized in that it is connected to a refrigerant outlet side and that at least the final stage expansion mechanism is an expansion mechanism whose opening degree can be adjusted. 2. The discharge side of the compressor in the ultra-low temperature generator and the refrigerant inlet side of the evaporator are connected by a hot gas bypass piping, and the hot gas bypass piping is provided with either an on-off valve or a valve whose opening degree can be adjusted. , install either an on-off valve or an adjustable valve in the piping connecting the other flow path of the intermediate heat exchanger of the final stage cooling unit and the refrigerant outlet side of the evaporator, and install other valves in parallel with this piping. 2. The environmental testing device according to claim 1, further comprising a pipe and an expansion mechanism provided in said other pipe. 3. A heating heat exchanger is installed on either the air inlet side or the air outlet side of the evaporator in the ultra-low temperature generator, and the discharge side of the compressor and the refrigerant inlet side of the heating heat exchanger are connected. The hot gas bypass piping is connected to the other flow path of the final stage intermediate heat exchanger and the refrigerant outlet side of the evaporator. 2. The environmental testing device according to claim 1, wherein the refrigerant outlet side of the heating heat exchanger is connected to the pipe connecting the heating heat exchanger via a bypass pipe, and an expansion mechanism is provided in the bypass pipe. 4. Connect the refrigerant outlet side of the heating heat exchanger to the pipe connecting one flow path of the intermediate heat exchanger of the final stage cooling unit and the refrigerant inlet side of the final stage expansion mechanism to another pipe. 4. The environmental testing device according to claim 3, wherein the environmental testing device is connected via a. 5. A refrigerant outlet side of the heating heat exchanger is connected via piping to a refrigerant inlet side of an expansion mechanism of at least one cooling unit of the cooling units provided in multiple stages. 3. The environmental test device described in 3. 6. The environmental test according to claim 2, characterized in that the hot gas bypass piping is provided with a heating section that heats the vicinity of the expansion mechanism of the cooling unit of each stage by the refrigerant flowing through the hot gas bypass piping. Device. 7. A test chamber, a high temperature chamber, and a low temperature chamber are provided, a heating device is installed in the high temperature chamber, and the ultralow temperature generator according to any one of claims 1 to 6 is connected to the low temperature chamber; The test chamber and the high temperature room and the test room and the low temperature room are each connected by an air flow path, and the high temperature room and the low temperature room are also connected by an air flow path, and each air flow path is provided with a damper. Environmental test equipment. 8. The environmental testing device according to any one of claims 1 to 7, wherein an inert gas having a boiling point lower than the temperature generated by the ultra-low temperature generator is used as the fluid flowing in the ultra-low temperature generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14966189A JPH0316649A (en) | 1989-06-14 | 1989-06-14 | Environment tester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14966189A JPH0316649A (en) | 1989-06-14 | 1989-06-14 | Environment tester |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0316649A true JPH0316649A (en) | 1991-01-24 |
Family
ID=15480089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14966189A Pending JPH0316649A (en) | 1989-06-14 | 1989-06-14 | Environment tester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0316649A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845055A (en) * | 1992-07-01 | 1998-12-01 | Canon Kabushiki Kaisha | Output apparatus and method for accomodating a plurality of signal terminal identifications |
-
1989
- 1989-06-14 JP JP14966189A patent/JPH0316649A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845055A (en) * | 1992-07-01 | 1998-12-01 | Canon Kabushiki Kaisha | Output apparatus and method for accomodating a plurality of signal terminal identifications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6574978B2 (en) | Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities | |
EP1982126B1 (en) | Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems | |
JP3880653B2 (en) | Low temperature steam recovery method and recovery equipment | |
KR100477303B1 (en) | Ejector circuit | |
US7818978B2 (en) | Vapour compression device and method of performing an associated transcritical cycle | |
US20060130503A1 (en) | Methods of freezeout prevention for very low temperature mixed refrigerant systems | |
EP1567814A2 (en) | Refrigeration system with bypass subcooling and component size de-optimization | |
CN100480598C (en) | Ejector cycle | |
KR100381634B1 (en) | Refrigerator | |
JPS62500257A (en) | High efficiency refrigeration equipment or cooling equipment | |
KR101138970B1 (en) | Defrosting system using air cooling refrigerant evaporator and condenser | |
JP4442068B2 (en) | Refrigeration air conditioner | |
JPH0316649A (en) | Environment tester | |
JP2000035251A (en) | Three layers separator in cooling cycle | |
US20080184722A1 (en) | Method and apparatus for a refrigeration circuit | |
KR100346273B1 (en) | The refrigerator being possessed of ejector as expansion apparatus | |
JP2003028518A (en) | Air conditioner | |
KR102312664B1 (en) | Apparatus for providing cold water and ice with function to detach ice | |
RU2191957C1 (en) | Method of operation of gas liquefier and gas liquefier for realization of this method | |
KR100666057B1 (en) | A system for warm or cool water-production of heat-pump type | |
JPH0642829A (en) | Freezer for low temperature freezing | |
JPH06281270A (en) | Air conditioner | |
KR0151357B1 (en) | Apparatus for controlling cold-degree and absorbing gas of an airconditioner | |
JP4066147B2 (en) | Refrigeration system | |
JPH0541320Y2 (en) |