[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0316624A - Composite membrane and its production - Google Patents

Composite membrane and its production

Info

Publication number
JPH0316624A
JPH0316624A JP1148472A JP14847289A JPH0316624A JP H0316624 A JPH0316624 A JP H0316624A JP 1148472 A JP1148472 A JP 1148472A JP 14847289 A JP14847289 A JP 14847289A JP H0316624 A JPH0316624 A JP H0316624A
Authority
JP
Japan
Prior art keywords
membrane
thin layer
composite membrane
natural polymer
partially hydrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148472A
Other languages
Japanese (ja)
Inventor
Akira Mochizuki
明 望月
Yoshio Sato
芳雄 佐藤
Shuzo Yamashita
修蔵 山下
Michio Tsuyumoto
美智男 露本
Yasushi Maeda
恭志 前田
Hiroki Karakane
博樹 唐金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Original Assignee
TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU filed Critical TSUUSHIYOUSANGIYOUSHIYOU KISO SANGIYOUKIYOKUCHIYOU
Priority to JP1148472A priority Critical patent/JPH0316624A/en
Publication of JPH0316624A publication Critical patent/JPH0316624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

PURPOSE:To obtain the composite membrane excellent in permeability, separative performance and mechanical strength and capable of being used in the industry by forming the thin layer of a hydrophilic natural polymer on a partially hydrolyzed polyacrylonitrile-based based membrane. CONSTITUTION:The polyacrylonitrile-based base membrane is partially hydrolyzed by the solid-liquid contact method which is left standing in aq. alkali or a soln. of alkali in alcohol or the like. The thin layer of a hydrophilic natural polymer is then formed on the base membrane by dipping in an aq. polymer soln., coating with a bar coater, spin coater, etc. The polysaccharides such as a water-soluble cellulose derivative is used as the hydrophilic natural polymer. Since the base membrane is partially hydrolyzed, the affinity for the thin layer is improved, and the thin layer with less defects is formed. Consequently, a membrane excellent in durability, permeability and separative performance is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複合膜及びその製造方法に関する。さらに詳し
くは、部分的に加水分解されたポリアクリロニトリル系
基材模に親水性天然高分子からなる薄膜が形成された複
合膜及び複合膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite membrane and a method for manufacturing the same. More specifically, the present invention relates to a composite membrane in which a thin film made of a hydrophilic natural polymer is formed on a partially hydrolyzed polyacrylonitrile base material, and a method for producing the composite membrane.

[従来の技術〕 従来から種々の分離プロセスに複合膜を用いることが検
討されており、このような嘆は分離方法に対応して浸透
気化膜、蒸気透過膜、逆浸透膜、限外枦過嘆、除湿膜等
と呼ばれている。
[Prior art] The use of composite membranes in various separation processes has been considered, and these methods include pervaporation membranes, vapor permeation membranes, reverse osmosis membranes, and ultrafiltration membranes, depending on the separation method. It is also called a dehumidifying membrane.

とくに、分離模で区割された二つの室の供給液側(一次
側)に分離されるべき液体混合物を供給1丸的に透過さ
せる浸透気化法は、水一有機液体混合物から水を除去す
るのにエネルギー効率の高い分離技術として注目されて
おり、種々の複合模が研究されている。
In particular, the pervaporation method, in which the liquid mixture to be separated is completely passed through the feed liquid side (primary side) of two chambers separated by a separation chamber, removes water from a water-organic liquid mixture. However, it is attracting attention as a highly energy-efficient separation technology, and various composite models are being studied.

これらの複合膜において、膜の透過性能を向上させるた
めには膜の厚みを極力薄くすることが重要であるが、あ
まり膜が薄くなると透過性能が上昇する反面、機械的強
度が小さくなるため、実用的には強度を補うための支持
体が必要となる。
In order to improve the permeation performance of these composite membranes, it is important to make the membrane as thin as possible, but if the membrane becomes too thin, the permeation performance will increase, but the mechanical strength will decrease. Practically speaking, a support is required to supplement the strength.

近年、基材膜上に薄膜を形戊することによって透過性能
、機械的強度ともに優れた膜を得る検討がなされており
、すでに種々のものが提案されている。例えば、特開昭
59− 109204号明細書には、微多孔性支持層に
ポリビニルアルコール等からなる活性層が形成された複
合分離膜が、特開昭60−78601号及び特開昭60
− 97002号明細書には、微多孔性支持層にアセチ
レン系ボリマーからなる活性智が形成された複合分離膜
が開示されている。又、特開昭62− 255441号
明細書には、2枚の限外枦過膜の間に高分子イオン塩の
層を設けた複合膜が、しかしながら、上記明細書に開示
されている複合膜には、分雌係数及び透過速度で代表さ
れる膜の透過性能、ならびに機械的強度全てを満足する
離法の実用化という点で極めて重要なことであり、嘆分
離技術の分野では上記のような性能を併せもった実用に
耐える複合膜が要望されている。
In recent years, studies have been made to obtain membranes with excellent permeability and mechanical strength by forming thin membranes on base membranes, and various membranes have already been proposed. For example, JP-A-59-109204 discloses a composite separation membrane in which an active layer made of polyvinyl alcohol or the like is formed on a microporous support layer, as described in JP-A-60-78601 and JP-A-60.
-97002 discloses a composite separation membrane in which an active layer made of an acetylene polymer is formed on a microporous support layer. Furthermore, JP-A No. 62-255441 discloses a composite membrane in which a layer of polymer ion salt is provided between two ultrafiltration membranes, but the composite membrane disclosed in the above specification is This is extremely important in terms of the practical application of separation methods that satisfy all of the membrane permeation performance represented by the separation coefficient and permeation rate, as well as mechanical strength. There is a need for a composite membrane that has both excellent performance and is durable for practical use.

従って、本発明の目的は、透過性能及び分離性能が優れ
、かつ機械的強度にも優れた工業的に満足しうる複合分
Mlとその製造方法を提供することにある。
Therefore, an object of the present invention is to provide an industrially satisfactory composite component Ml that has excellent permeation performance, separation performance, and mechanical strength, and a method for producing the same.

[!II題を解決するための手段] 本発明者らは鋭意検討し、部分的に加水分解されたポリ
アクリロニトリル系基材膜に、親水性天然高分子からな
る薄層を形成させた複合膜が上記性能を満足する複合膜
であることを見い出し、本発明に至った。すなわち本発
明により、部分的に加水分解されたポリアクリロニトリ
ル系基材膜に輯水性天然高分子からなる薄層が形成され
た複合膜及びその製造方法が提供される。
[! Means for Solving Problem II] The present inventors have made extensive studies and have developed a composite membrane in which a thin layer made of a hydrophilic natural polymer is formed on a partially hydrolyzed polyacrylonitrile base membrane. We have discovered that this is a composite membrane that satisfies the performance, and have arrived at the present invention. That is, the present invention provides a composite membrane in which a thin layer of a water-soluble natural polymer is formed on a partially hydrolyzed polyacrylonitrile base membrane, and a method for producing the same.

本発明に用いられるポリアクリaニトリル系基材膜は、
アクリロニトリルを主構成単位とするボリマーからなる
膜であり、このようなポリマーのような大きな孔を有す
る多孔膜の場合は、基ItM4上に親水性天然高分子か
らなる薄層を形成したときにピンホールが発生しやすく
、又実質的に無孔の緻密膜では充分な透過流速を得るこ
とが困難であるので、微多孔質であることが好ましく、
とくルピロリドン、酢酸ビニル、ビニルビリジン、塩化
ビニリデン、ビニルスルホン酸、スチレンスルホン酸、
アリルスルホン酸、(メタ)アクリル酸等との少なくと
も1種以上の単位とを構成威分とするコボリマー、ボリ
アクリロニトリルホモポリマー又はそのコポリマーと他
のボリマーとのブレンド物等をあげることができる。
The polyacrylic nitrile base film used in the present invention is
It is a membrane made of a polymer whose main constituent unit is acrylonitrile, and in the case of a porous membrane with large pores such as this polymer, when a thin layer made of a hydrophilic natural polymer is formed on the ItM4 group, pin Since holes are likely to occur and it is difficult to obtain a sufficient permeation flow rate with a substantially non-porous dense membrane, it is preferably microporous.
Tokurupyrrolidone, vinyl acetate, vinylpyridine, vinylidene chloride, vinylsulfonic acid, styrenesulfonic acid,
Examples include a copolymer having at least one unit with allylsulfonic acid, (meth)acrylic acid, etc., a polyacrylonitrile homopolymer, or a blend of the copolymer with another polymer.

アクリロニトリルを主構成単位とするコボリマーの場合
、加水分解によって生ずる親和性の増加という観点から
アクリロニトリル単位は50モル%以上含まれることが
好ましい。
In the case of a copolymer having acrylonitrile as the main constitutional unit, it is preferable that the acrylonitrile unit is contained in an amount of 50 mol % or more from the viewpoint of increasing affinity caused by hydrolysis.

ポリアクリロニトリル系基材膜の形態は、平膜、管状膜
、中空糸膜等いずれの形態でも使用可能である。基材峡
の構造は孔径がミクロンオーダーのボリアクリロニトリ
ル系基材膜を部分加水分解するにはアルカリ水溶液また
はアルカリのアルコール性水溶液中に静置するか、これ
らの液中を適度な速度で通過させるなどの固液接触方法
で達成できる。使用しうるアルカリとしては、アルカリ
金属の水酸化物、アミン類またはこれらの混合物等があ
げられるが、水酸化ナトリウムまたは水酸化カリウムが
実用的であり好適である。
The polyacrylonitrile base membrane may be in any form such as a flat membrane, a tubular membrane, or a hollow fiber membrane. In order to partially hydrolyze a polyacrylonitrile base film with a pore size on the order of microns, the structure of the base material gorge must be left standing in an alkaline aqueous solution or alkaline alcoholic aqueous solution, or passed through these solutions at a moderate speed. This can be achieved using solid-liquid contact methods such as Examples of the alkali that can be used include alkali metal hydroxides, amines, and mixtures thereof, and sodium hydroxide or potassium hydroxide is preferred as it is practical.

ポリアクリロニトリル系ボリマーの加水分解の程度は、
アルカリの濃度、アルカリ溶液の温度及び接触時間等の
処理条件によって制御することができ、該処理条件は、
加水分解されるべきポリマー又はコボリマーの組威、膜
の耐熱性等により適宜選択される。一般的にはO.1〜
2N濃度のアルカリ溶液中50〜80℃、5〜60分と
いう処理条件が選ばれる。
The degree of hydrolysis of polyacrylonitrile polymers is
It can be controlled by processing conditions such as concentration of alkali, temperature of alkaline solution and contact time, and the processing conditions are:
It is appropriately selected depending on the composition of the polymer or copolymer to be hydrolyzed, the heat resistance of the membrane, etc. Generally O. 1~
Processing conditions of 50-80° C. and 5-60 minutes in a 2N alkaline solution are chosen.

アクリロニトリル系ボリマーが加水分解されていること
は赤外吸収スペクトルにより、カルボキシル基に由来す
る吸収の出現または増加を確認す部分的に加水分解され
たポリアクリロニトリル系基材膜は、カルボキシル基が
使用したアルカリの種類に対応した種々の金属塩、アミ
ン塩等の形態となっているが、酸処理により酸型に変換
することもできる。部分的に加水分解されたポリアクリ
ロニトリル系基材膜はそのままで分離膜として使用でき
るが、該基材膜上に親水性天然高分子からなる薄層を形
成させて複合膜とすることにより、分離係敗、透過速度
、及び機械的性能等の機能性明の効果が発現しにくいの
で、本発明においては膜の形態を保持できる範囲内で適
宜用途に応じて加水分解されるべきである。上述のよう
に、太発明において、ポリアクリロニトリル系基材膜を
部分的に加水分解するとは、膜形態が保持される程度に
加水分鱗することを意味している。従って、本発明にお
いては、アルカリ水溶液を種々の条件で膜表面に接触さ
せることによって膜表面部分を加水分解すればよい。
Hydrolysis of the acrylonitrile polymer is confirmed by the appearance or increase of absorption derived from carboxyl groups using an infrared absorption spectrum.Partially hydrolyzed polyacrylonitrile base film shows that carboxyl groups are used. It is in the form of various metal salts, amine salts, etc. depending on the type of alkali, but it can also be converted to the acid form by acid treatment. A partially hydrolyzed polyacrylonitrile base membrane can be used as a separation membrane as it is, but it can be used as a separation membrane by forming a thin layer of a hydrophilic natural polymer on the base membrane to create a composite membrane. In the present invention, it should be hydrolyzed as appropriate depending on the application within a range that can maintain the membrane form, since it is difficult to achieve functional effects such as anchorage, permeation rate, and mechanical performance. As mentioned above, in the present invention, partially hydrolyzing the polyacrylonitrile base film means hydrolyzing it to such an extent that the film form is maintained. Therefore, in the present invention, the membrane surface portion may be hydrolyzed by bringing an alkaline aqueous solution into contact with the membrane surface under various conditions.

しボリイオンコンプレックス化されるため高性能で耐久
性のある複合膜を得るうえで好都合である。
Since it is made into a polyion complex, it is convenient for obtaining a high-performance and durable composite membrane.

本発明に用いられる親水性天然高分子の例としては、キ
トサン、キトサン塩、キトサン誘導体(塩)、アルギン
酸、アルギン酸塩、アルギン酸誘導体(塩)、ペクチン
酸(塩)、カルボキシメトキシキチン、プルラン、カラ
ギーナン、コンドロイチン硫酸、ヒアロン酸、カルボキ
シメトキシセルロース、硫酸セルロース等の水溶性セル
ロース誘導体等の多糖類をあげることができる。
Examples of hydrophilic natural polymers used in the present invention include chitosan, chitosan salt, chitosan derivative (salt), alginic acid, alginate, alginic acid derivative (salt), pectic acid (salt), carboxymethoxychitin, pullulan, carrageenan. , chondroitin sulfate, hyalonic acid, carboxymethoxycellulose, cellulose sulfate, and other water-soluble cellulose derivatives.

本発明においては、支持層である部分的に加水分解・さ
れたポリアクリロニトリル系基材膜に親水性天然高分子
からなるtii+を形成させることが重要であり、かか
る点に最大の特徴を有している。
In the present invention, it is important to form tii+ made of a hydrophilic natural polymer on the partially hydrolyzed polyacrylonitrile base film that is the support layer, and this is the most distinctive feature. ing.

すなわち、部分的に加水分解されたポリアクリロニトリ
ル系基材膜は薄層を形成する親水性天然高分子との親和
性が強いため容易に薄層を形成することができる。さら
に、薄層としてキトサン等のカチオン性親水性天然高分
子を用いる場合には、リロニトリル系基材膜が中空糸膜
の場合、薄層は中空糸膜の内面又は外面のいずれにも形
成することができ、形成後、乾燥することによって本発
明の複合膜を得ることができる。
That is, the partially hydrolyzed polyacrylonitrile base film has a strong affinity with the hydrophilic natural polymer forming the thin layer, so that a thin layer can be easily formed. Furthermore, when using a cationic hydrophilic natural polymer such as chitosan as the thin layer, if the rylonitrile base membrane is a hollow fiber membrane, the thin layer may be formed on either the inner or outer surface of the hollow fiber membrane. After formation, the composite membrane of the present invention can be obtained by drying.

得られた攪合膜の透過流速を大きくするためには、基材
膜上に形成される薄層の厚みはできる限り薄い方が好ま
しいが、この厚みは基材膜表面の平滑性や基材膜と薄層
を形成する天然高分子物質との親和性等により制約され
る。薄層の厚みは一般にこれらの制約条件を考慮のうえ
、ドープ液の濃度及び各種の薄層形成方法の条件を調整
することによりコントロールすることが可能である。ま
た、作成した複合膜は素材や活性層(薄層)の性質に応
じて、限外枦過、逆浸透、除湿、浸透気化、蒸気透過な
どの複合膜として使用できることば明系基材膜上に親水
性天然高分子からなる薄層を形成するI二は、高分子水
溶液中(ドープ液)への浸漬、バーコーター等による塗
布、スビンコート等の公知の方法を適用することができ
る。ポリアクポリアクリロニトリル系限外が過中空糸膜
(内径0.8smq外径1.4IIm+,分画分千@ 
1300G)をgo”cのN/5 Mail水溶液中に
10分間浸漬することにより、該膜のニトリル基の部分
加水分解を行なった。
In order to increase the permeation flow rate of the resulting stirred membrane, it is preferable that the thin layer formed on the base membrane be as thin as possible, but this thickness may vary depending on the smoothness of the base membrane surface and the base material. It is limited by the affinity between the membrane and the natural polymer substance that forms the thin layer. The thickness of the thin layer can generally be controlled by taking these constraints into account and adjusting the concentration of the dope and the conditions of the various thin layer formation methods. In addition, depending on the material and properties of the active layer (thin layer), the composite membrane created can be used as a composite membrane for ultrafiltration, reverse osmosis, dehumidification, pervaporation, vapor permeation, etc. For forming a thin layer of a hydrophilic natural polymer on the substrate, known methods such as immersion in an aqueous polymer solution (dope solution), coating with a bar coater or the like, and tin coating can be applied. Polyacrylonitrile-based hollow fiber membrane (inner diameter 0.8smq outer diameter 1.4IIm+, fraction 1,000@
1300G) was immersed in an aqueous N/5 Mail solution of go''c for 10 minutes, the nitrile groups of the membrane were partially hydrolyzed.

様にして複合膜を作製した。実施例1と同様にして95
重量%エタノール水溶液からの脱水を行なったところ、
分離係数は4.8、透過速度は1.1kg/s”・br
であった(比較例1)。
A composite membrane was prepared in the same manner. 95 in the same manner as in Example 1
When dehydration was performed from a wt% ethanol aqueous solution,
Separation coefficient is 4.8, permeation rate is 1.1 kg/s"・br
(Comparative Example 1).

実施例2および比較例2 親水性天然高分子液として0.8重量%のアルギ実施例
1および比較例l 参考例で得られた部分的に加水分解されたポリアクリロ
ニトリル系基材屓を0.3重量%キトサン水溶液(0.
6重量%酢酸を含む)中に1時間浸漬した後、風乾し、
該基材膜外面上にキトサン酢酸塩からなる薄層を形成し
た。薄層の厚さは走査型電all察の結果から約0.I
I1mであった。
Example 2 and Comparative Example 2 0.8% by weight of Algi as a hydrophilic natural polymer liquid Example 1 and Comparative Example 1 The partially hydrolyzed polyacrylonitrile base material obtained in the Reference Example was 0.8% by weight. 3% by weight chitosan aqueous solution (0.
(containing 6 wt% acetic acid) for 1 hour, then air-dried.
A thin layer of chitosan acetate was formed on the outer surface of the base membrane. The thickness of the thin layer is approximately 0.0 mm based on the results of scanning electron microscopy. I
It was I1m.

この複合膜を用い、95重量%エタノール水溶液からの
脱水を60”C、2次側の圧カQ.6ssHgの条件で
浸透気化法により行なったところ、分離係数88、透過
速度0.27kg/1・hrが得られた(実施例!).
参考例で得られた加水分解されていないポリアクリロニ
トリル系暎を基材膜とし、実施例lと同た(実施例2)
Using this composite membrane, dehydration from a 95% by weight ethanol aqueous solution was carried out by pervaporation under the conditions of 60"C and secondary side pressure Q.6ssHg, resulting in a separation coefficient of 88 and a permeation rate of 0.27kg/1.・hr was obtained (Example!).
The same procedure as Example 1 was carried out using the unhydrolyzed polyacrylonitrile resin obtained in Reference Example as the base film (Example 2).
.

親水性天然高分子溶液として0.6重量%のアルギン酸
ナトリウム水溶液を用い、比較例1と同じ基材膜を用い
る以外は実施例lと同様にして複合膜を作製し、実施例
lと同様に浸透気化法により脱水を行なったところ、分
離係数は!.7、浸透速度は6.0kg/1・hrであ
った(比較例2)。
A composite membrane was prepared in the same manner as in Example 1, except that a 0.6% by weight sodium alginate aqueous solution was used as the hydrophilic natural polymer solution and the same base membrane as in Comparative Example 1 was used. When dehydration was performed by pervaporation, the separation coefficient was! .. 7. The penetration rate was 6.0 kg/1·hr (Comparative Example 2).

実施例3 実施例lで得られた複合膜をN ;/ 100硫酸のエ
タノール水溶液(水/エタノール= 50/ 50重量
比)中に2分間浸漬し、*m中のキトサンの対アニオン
を酢酸イオンから硫酸イオンに変換した後、実施例lと
同様にして95重隋%エタノール水溶液からの脱水を浸
透気化法により行なったところ、分離係数320、透過
速度0.24kg/s″・h『であった。
Example 3 The composite membrane obtained in Example 1 was immersed for 2 minutes in an aqueous ethanol solution of N;/100 sulfuric acid (water/ethanol = 50/50 weight ratio), and the counteranion of chitosan in *m was converted to acetate ion. After converting it into sulfate ion, the 95% ethanol aqueous solution was dehydrated by the pervaporation method in the same manner as in Example 1. As a result, the separation coefficient was 320 and the permeation rate was 0.24 kg/s''·h. Ta.

以上の実施例および比較例の結果から本発明の効果は明
らかである。
The effects of the present invention are clear from the results of the above Examples and Comparative Examples.

[発明の効果] 本発明により、部分的に加水分解されたポリアクリロニ
トリル系基材膜上に親水性天然高分子からなる薄層が形
成された複合膜を容易に作製することができる。このよ
うな襟合膜は、基材嘆と薄層の親和性が良好であるため
欠陥の少ない薄層を形成しやすく、良好な耐久性と透過
性能を有するので、浸透気化法、蒸気透過法等による種
々の水−有機液体混合物からの脱水、空気からの除湿、
ならびに透析、限外が過、逆浸透などの方法による水系
混合物の分離に好適に使用される。
[Effects of the Invention] According to the present invention, a composite membrane in which a thin layer made of a hydrophilic natural polymer is formed on a partially hydrolyzed polyacrylonitrile base membrane can be easily produced. This type of collar film has good affinity with the base material and the thin layer, so it is easy to form a thin layer with few defects, and it has good durability and permeation performance, so it can be used by pervaporation method, vapor permeation method. Dehydration from various water-organic liquid mixtures, dehumidification from air, etc.
It is also suitably used to separate aqueous mixtures by methods such as dialysis, ultrafiltration, and reverse osmosis.

Claims (1)

【特許請求の範囲】 1、部分的に加水分解されたポリアクリロニトリル系基
材膜に親水性天然高分子をコーティングして製造するこ
とを特徴とする複合膜。 2、親水性天然高分子が天然多糖類である請求項1記載
の複合膜。 3、浸透気化用に使用することを特徴とする請求項1又
は請求項2記載の複合膜。 4、ポリアクリロニトリル系基材膜に親水性天然高分子
をコーティングして複合膜を製造する際、ポリアクリロ
ニトリル系基材膜をあらかじめ部分的に加水分解して親
水性を高めておくことを特徴とする複合膜の製造方法。
[Claims] 1. A composite membrane produced by coating a partially hydrolyzed polyacrylonitrile base membrane with a hydrophilic natural polymer. 2. The composite membrane according to claim 1, wherein the hydrophilic natural polymer is a natural polysaccharide. 3. The composite membrane according to claim 1 or 2, which is used for pervaporation. 4. When manufacturing a composite membrane by coating a polyacrylonitrile base film with a hydrophilic natural polymer, the polyacrylonitrile base film is partially hydrolyzed in advance to increase its hydrophilicity. A method for manufacturing a composite membrane.
JP1148472A 1989-06-13 1989-06-13 Composite membrane and its production Pending JPH0316624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148472A JPH0316624A (en) 1989-06-13 1989-06-13 Composite membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148472A JPH0316624A (en) 1989-06-13 1989-06-13 Composite membrane and its production

Publications (1)

Publication Number Publication Date
JPH0316624A true JPH0316624A (en) 1991-01-24

Family

ID=15453513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148472A Pending JPH0316624A (en) 1989-06-13 1989-06-13 Composite membrane and its production

Country Status (1)

Country Link
JP (1) JPH0316624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533217A (en) * 2006-04-11 2009-09-17 マサチューセッツ・インスティテュート・オブ・テクノロジー Film with fouling resistance formed by polyacrylonitrile graft copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242106A (en) * 1988-03-23 1989-09-27 Toray Ind Inc Composite semipermeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242106A (en) * 1988-03-23 1989-09-27 Toray Ind Inc Composite semipermeable membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533217A (en) * 2006-04-11 2009-09-17 マサチューセッツ・インスティテュート・オブ・テクノロジー Film with fouling resistance formed by polyacrylonitrile graft copolymer

Similar Documents

Publication Publication Date Title
US5342521A (en) Reverse osmosis or nanofiltration membrane and its production process
CN107029562B (en) MXene-based composite nanofiltration membrane and preparation method thereof
Wang et al. A novel composite chitosan membrane for the separation of alcohol-water mixtures
JP2694341B2 (en) Improved oxidation resistant film and method of manufacturing the same
JPH02302449A (en) Preparation of microporous film
WO1999020378A1 (en) A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane
KR20190129494A (en) Method for preparing thin film nanocomposite membrane for the reverse osmosis having nano material layer and thin film nanocomposite membrane prepared thereby
WO1989005182A1 (en) Hydrolyzed membrane and process for its production
JPH025132B2 (en)
JPH0316624A (en) Composite membrane and its production
JPH0634909B2 (en) Method for manufacturing composite membrane
CN116159436B (en) Nano composite reverse osmosis membrane containing ultrathin hydrophilic covalent organic framework nano material intermediate layer
CN113926317A (en) Positively charged composite membrane and preparation method and application thereof
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
CN116159446A (en) Molecular sieve/polyamide mixed matrix membrane
JP2572015B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
JPH0567332B2 (en)
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JP3218709B2 (en) Manufacturing method of separation membrane
CN115463548B (en) Pollution-resistant reverse osmosis membrane and preparation method thereof
JP3613973B2 (en) Method for producing polysulfone separation membrane
JPS59179103A (en) Composite semipermeable membrane and its manufacture
Uragami Functional separation membranes from chitin and chitosan derivatives
JPH02229534A (en) Selectively water permeable hydrolyzed membrane and its production
SU1186623A1 (en) Method of producing porous polyamide membranes